+
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Realizing the promise of genome-wide association studies for effector gene prediction

Abstract

Genome-wide association studies (GWAS) identify regions of the genome in which genetic variation is associated with the risk of complex diseases, such as diabetes, or the magnitude of traits, such as blood pressure. Determining which ‘effector genes’ mediate the effects of GWAS associations is essential to using GWAS to understand disease mechanisms and develop new therapies. In recent years, GWAS authors have increasingly included effector gene predictions as part of their study results. However, the research community has not yet converged on standards for generating or reporting these predictions. In this Perspective, we illustrate the diversity of the evidence types used to support effector gene predictions and argue for future initiatives to increase their accessibility and usefulness.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Different approaches for connecting variants to genes, illustrated for a single GWAS locus.
Fig. 2: Evidence types in current use for gene prioritization and effector gene prediction.
Fig. 3: Evidence usage and presentation formats in gene prioritizations and effector gene predictions.

Similar content being viewed by others

References

  1. Tam, V. et al. Benefits and limitations of genome-wide association studies. Nat. Rev. Genet. 20, 467–484 (2019).

    Article  CAS  PubMed  Google Scholar 

  2. Visscher, P. M. et al. 10 years of GWAS discovery: biology, function, and translation. Am. J. Hum. Genet. 101, 5–22 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Boyle, E. A., Li, Y. I. & Pritchard, J. K. An expanded view of complex traits: from polygenic to omnigenic. Cell 169, 1177–1186 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Claussnitzer, M. et al. A brief history of human disease genetics. Nature 577, 179–189 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dornbos, P. et al. Evaluating human genetic support for hypothesized metabolic disease genes. Cell Metab. 34, 661–666 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ochoa, D. et al. The next-generation Open Targets Platform: reimagined, redesigned, rebuilt. Nucleic Acids Res. 51, D1353–D1359 (2023).

    Article  PubMed  Google Scholar 

  7. IGVF Consortium. Deciphering the impact of genomic variation on function. Nature 633, 47–57 (2024).

  8. Gallagher, M. D. & Chen-Plotkin, A. S. The post-GWAS era: from association to function. Am. J. Hum. Genet. 102, 717–730 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Claussnitzer, M. & Susztak, K. Gaining insight into metabolic diseases from human genetic discoveries. Trends Genet. 37, 1081–1094 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cano-Gamez, E. & Trynka, G. From GWAS to function: using functional genomics to identify the mechanisms underlying complex diseases. Front. Genet. 11, 424 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Claussnitzer, M. et al. FTO obesity variant circuitry and adipocyte browning in humans. N. Engl. J. Med. 373, 895–907 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Gupta, R. M. et al. A genetic variant associated with five vascular diseases is a distal regulator of endothelin-1 gene expression. Cell 170, 522–533 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Musunuru, K. et al. From noncoding variant to phenotype via SORT1 at the 1p13 cholesterol locus. Nature 466, 714–719 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Watanabe, K. et al. A global overview of pleiotropy and genetic architecture in complex traits. Nat. Genet. 51, 1339–1348 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Heid, I. M. et al. Meta-analysis identifies 13 new loci associated with waist–hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nat. Genet. 42, 949–960 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cerezo, M. et al. The NHGRI-EBI GWAS Catalog: standards for reusability, sustainability and diversity. Nucleic Acids Res. 53, D998–D1005 (2025).

  17. Qi, T., Song, L., Guo, Y., Chen, C. & Yang, J. From genetic associations to genes: methods, applications, and challenges. Trends Genet. 40, 642–667 (2024).

    Article  CAS  PubMed  Google Scholar 

  18. Schipper, M. & Posthuma, D. Demystifying non-coding GWAS variants: an overview of computational tools and methods. Hum. Mol. Genet. 31, R73–R83 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Stacey, D. et al. ProGeM: a framework for the prioritization of candidate causal genes at molecular quantitative trait loci. Nucleic Acids Res. 47, e3 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Maller, J. B. et al. Bayesian refinement of association signals for 14 loci in 3 common diseases. Nat. Genet. 44, 1294–1301 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li, B. & Ritchie, M. D. From GWAS to gene: transcriptome-wide association studies and other methods to functionally understand GWAS discoveries. Front. Genet. 12, 713230 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Weissbrod, O. et al. Functionally informed fine-mapping and polygenic localization of complex trait heritability. Nat. Genet. 52, 1355–1363 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yuan, K. et al. Fine-mapping across diverse ancestries drives the discovery of putative causal variants underlying human complex traits and diseases. Nat. Genet. 56, 1841–1850 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Peña-Martínez, E. G. & Rodríguez-Martínez, J. A. Decoding non-coding variants: recent approaches to studying their role in gene regulation and human diseases. Front. Biosci. (Schol. Ed.) 16, 4 (2024).

    Article  PubMed  Google Scholar 

  25. McLaren, W. et al. The Ensembl Variant Effect Predictor. Genome Biol. 17, 122 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Weeks, E. M. et al. Leveraging polygenic enrichments of gene features to predict genes underlying complex traits and diseases. Nat. Genet. 55, 1267–1276 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schipper, M. et al. Prioritizing effector genes at trait-associated loci using multimodal evidence. Nat. Genet. 57, 323–333 (2025).

    Article  CAS  PubMed  Google Scholar 

  28. de Leeuw, C. A., Mooij, J. M., Heskes, T. & Posthuma, D. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Cairns, J. et al. CHiCAGO: robust detection of DNA looping interactions in Capture Hi-C data. Genome Biol. 17, 127 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fulco, C. P. et al. Activity-by-contact model of enhancer–promoter regulation from thousands of CRISPR perturbations. Nat. Genet. 51, 1664–1669 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pliner, H. A. et al. Cicero predicts cis-regulatory DNA interactions from single-cell chromatin accessibility data. Mol. Cell 71, 858–871 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gaulton, K. J., Preissl, S. & Ren, B. Interpreting non-coding disease-associated human variants using single-cell epigenomics. Nat. Rev. Genet. 24, 516–534 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Moore, J. E. et al. Expanded encyclopaedias of DNA elements in the human and mouse genomes. Nature 583, 699–710 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  34. Boix, C. A., James, B. T., Park, Y. P., Meuleman, W. & Kellis, M. Regulatory genomic circuitry of human disease loci by integrative epigenomics. Nature 590, 300–307 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Neumeyer, S., Hemani, G. & Zeggini, E. Strengthening causal inference for complex disease using molecular quantitative trait loci. Trends Mol. Med. 26, 232–241 (2020).

    Article  CAS  PubMed  Google Scholar 

  36. Zhu, Z. et al. Leveraging molecular quantitative trait loci to comprehend complex diseases/traits from the omics perspective. Hum. Genet. 142, 1543–1560 (2023).

    Article  PubMed  Google Scholar 

  37. Connally, N. J. et al. The missing link between genetic association and regulatory function. eLife 11, e74970 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mostafavi, H., Spence, J. P., Naqvi, S. & Pritchard, J. K. Systematic differences in discovery of genetic effects on gene expression and complex traits. Nat. Genet. 55, 1866–1875 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cuomo, A. S. E., Nathan, A., Raychaudhuri, S., MacArthur, D. G. & Powell, J. E. Single-cell genomics meets human genetics. Nat. Rev. Genet. 24, 535–549 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Groza, T. et al. The International Mouse Phenotyping Consortium: comprehensive knockout phenotyping underpinning the study of human disease. Nucleic Acids Res. 51, D1038–D1045 (2023).

    Article  CAS  PubMed  Google Scholar 

  41. Goldstein, D. B. et al. Sequencing studies in human genetics: design and interpretation. Nat. Rev. Genet. 14, 460–470 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lee, S., Wu, M. C. & Lin, X. Optimal tests for rare variant effects in sequencing association studies. Biostatistics 13, 762–775 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Raychaudhuri, S. et al. Identifying relationships among genomic disease regions: predicting genes at pathogenic SNP associations and rare deletions. PLoS Genet. 5, e1000534 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Pers, T. H. et al. Biological interpretation of genome-wide association studies using predicted gene functions. Nat. Commun. 6, 5890 (2015).

    Article  CAS  PubMed  Google Scholar 

  45. Watanabe, K., Taskesen, E., van Bochoven, A. & Posthuma, D. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mountjoy, E. et al. An open approach to systematically prioritize causal variants and genes at all published human GWAS trait-associated loci. Nat. Genet. 53, 1527–1533 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Fang, H. et al. A genetics-led approach defines the drug target landscape of 30 immune-related traits. Nat. Genet. 51, 1082–1091 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Watanabe, K. et al. Genome-wide meta-analysis of insomnia prioritizes genes associated with metabolic and psychiatric pathways. Nat. Genet. 54, 1125–1132 (2022).

    Article  CAS  PubMed  Google Scholar 

  49. Sarsani, V. et al. A cross-ancestry genome-wide meta-analysis, fine-mapping, and gene prioritization approach to characterize the genetic architecture of adiponectin. HGG Adv. 5, 100252 (2024).

    CAS  PubMed  Google Scholar 

  50. Minikel, E. V., Painter, J. L., Dong, C. C. & Nelson, M. R. Refining the impact of genetic evidence on clinical success. Nature 629, 624–629 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kunkle, B. W. et al. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat. Genet. 51, 414–430 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Schwartzentruber, J. et al. Genome-wide meta-analysis, fine-mapping and integrative prioritization implicate new Alzheimer’s disease risk genes. Nat. Genet. 53, 392–402 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Shah, S. et al. Genome-wide association and Mendelian randomisation analysis provide insights into the pathogenesis of heart failure. Nat. Commun. 11, 163 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Levin, M. G. et al. Genome-wide association and multi-trait analyses characterize the common genetic architecture of heart failure. Nat. Commun. 13, 6914 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Malik, R. et al. Multiancestry genome-wide association study of 520,000 subjects identifies 32 loci associated with stroke and stroke subtypes. Nat. Genet. 50, 524–537 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mishra, A. et al. Stroke genetics informs drug discovery and risk prediction across ancestries. Nature 611, 115–123 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Stanzick, K. J. et al. Discovery and prioritization of variants and genes for kidney function in >1.2 million individuals. Nat. Commun. 12, 4350 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Liu, H. et al. Epigenomic and transcriptomic analyses define core cell types, genes and targetable mechanisms for kidney disease. Nat. Genet. 54, 950–962 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Strande, N. T. et al. Evaluating the clinical validity of gene–disease associations: an evidence-based framework developed by the Clinical Genome Resource. Am. J. Hum. Genet. 100, 895–906 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. DiStefano, M. T. et al. The Gene Curation Coalition: a global effort to harmonize gene–disease evidence resources. Genet. Med. 24, 1732–1742 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Richards, S. et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet. Med. 17, 405–424 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Skrivankova, V. W. et al. Strengthening the reporting of observational studies in epidemiology using Mendelian randomization: the STROBE-MR Statement. JAMA 326, 1614–1621 (2021).

    Article  PubMed  Google Scholar 

  63. Hirschhorn, J. N., Lohmueller, K., Byrne, E. & Hirschhorn, K. A comprehensive review of genetic association studies. Genet. Med. 4, 45–61 (2002).

    Article  CAS  PubMed  Google Scholar 

  64. Marigorta, U. M., Rodríguez, J. A., Gibson, G. & Navarro, A. Replicability and prediction: lessons and challenges from GWAS. Trends Genet. 34, 504–517 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gazal, S. et al. Combining SNP-to-gene linking strategies to identify disease genes and assess disease omnigenicity. Nat. Genet. 54, 827–836 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Forgetta, V. et al. An effector index to predict target genes at GWAS loci. Hum. Genet. 141, 1431–1447 (2022).

    Article  CAS  PubMed  Google Scholar 

  67. Schipper, M., Ulirsch, J., Posthuma, D., Ripke, S. & Heilbron, K. Simplifying causal gene identification in GWAS loci. Preprint at medRxiv https://doi.org/10.1101/2024.07.26.24311057 (2025).

  68. Long, E., Wan, P., Chen, Q., Lu, Z. & Choi, J. From function to translation: decoding genetic susceptibility to human diseases via artificial intelligence. Cell Genom. 3, 100320 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gamazon, E. R. et al. A gene-based association method for mapping traits using reference transcriptome data. Nat. Genet. 47, 1091–1098 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mahajan, A. et al. Identification and functional characterization of G6PC2 coding variants influencing glycemic traits define an effector transcript at the G6PC2-ABCB11 locus. PLoS Genet. 11, e1004876 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Hertz, M. I. & McNeill, A. S. Eleven quick tips for properly handling tabular data. PLoS Comput. Biol. 20, e1012604 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Wilkinson, M. D. et al. The FAIR Guiding Principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    Google Scholar 

Download references

Acknowledgements

The authors thank their colleagues for helpful discussions. This work was supported by the awards 5U24HG011453, 2UM1DK105554 and 1U24HG012542-01 from the National Institutes of Health and by European Molecular Biology Laboratory Core Funds.

Author information

Authors and Affiliations

Authors

Contributions

M.C.C., Y.J. and J.F. performed the literature analyses. M.C.C. and J.F. drafted the manuscript, M.C.C., Y.J. and A.M. drafted the figures, and L.W.H., Y.J., A.M. and N.P.B. reviewed and edited.

Corresponding author

Correspondence to Jason Flannick.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Costanzo, M.C., Harris, L.W., Ji, Y. et al. Realizing the promise of genome-wide association studies for effector gene prediction. Nat Genet 57, 1578–1587 (2025). https://doi.org/10.1038/s41588-025-02210-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41588-025-02210-5

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载