+
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Genomic analysis of intracranial and subcortical brain volumes yields polygenic scores accounting for variation across ancestries

Abstract

Subcortical brain structures are involved in developmental, psychiatric and neurological disorders. Here we performed genome-wide association studies meta-analyses of intracranial and nine subcortical brain volumes (brainstem, caudate nucleus, putamen, hippocampus, globus pallidus, thalamus, nucleus accumbens, amygdala and the ventral diencephalon) in 74,898 participants of European ancestry. We identified 254 independent loci associated with these brain volumes, explaining up to 35% of phenotypic variance. We observed gene expression in specific neural cell types across differentiation time points, including genes involved in intracellular signaling and brain aging-related processes. Polygenic scores for brain volumes showed predictive ability when applied to individuals of diverse ancestries. We observed causal genetic effects of brain volumes with Parkinson’s disease and attention-deficit/hyperactivity disorder. Findings implicate specific gene expression patterns in brain development and genetic variants in comorbid neuropsychiatric disorders, which could point to a brain substrate and region of action for risk genes implicated in brain diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Meta-analyses results overview.
Fig. 2: Polygenic prediction in the ABCD cohort.
Fig. 3: Genetic overlap with neuropsychiatric traits and disorders.
Fig. 4: Genetic structure of subcortical brain volumes.

Similar content being viewed by others

Data availability

Detailed information on how to access publicly available GWAS summary data from the ENIGMA and CHARGE consortia is reported in their corresponding publications2,12,15. Researchers can access individual-level data from the UKB and ABCD cohorts following the corresponding data application procedures. Work performed using UKB data was done under application 25331. Full genome-wide summary statistics generated in the present study are available at the ENIGMA website (http://enigma.ini.usc.edu/research/download-enigma-gwas-results).

Code availability

No custom code was used in this study. Publicly available software tools were used to perform genetic analyses and are referenced throughout the paper.

References

  1. Thompson, P. M. et al. ENIGMA and global neuroscience: a decade of large-scale studies of the brain in health and disease across more than 40 countries. Transl. Psychiatry 10, 1–28 (2020).

    Article  Google Scholar 

  2. Satizabal, C. L. et al. Genetic architecture of subcortical brain structures in 38,851 individuals. Nat. Genet. 51, 1624–1636 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Xu, H. et al. Subcortical brain abnormalities and clinical relevance in patients with hemifacial spasm. Front. Neurol. 10, 1383 (2019).

    Article  PubMed  Google Scholar 

  4. Van Schouwenburg, M. R., den Ouden, H. E. M. & Cools, R. The human basal ganglia modulate frontal-posterior connectivity during attention shifting. J. Neurosci. 30, 9910–9918 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bickart, K. C., Wright, C. I., Dautoff, R. J., Dickerson, B. C. & Barrett, L. F. Amygdala volume and social network size in humans. Nat. Neurosci. 14, 163–164 (2011).

    Article  CAS  PubMed  Google Scholar 

  6. Palomero-Gallagher, N. & Amunts, K. A short review on emotion processing: a lateralized network of neuronal networks. Brain Struct. Funct. 227, 673–684 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Krabbe, K. et al. Increased intracranial volume in Parkinson’s disease. J. Neurol. Sci. 239, 45–52 (2005).

    Article  PubMed  Google Scholar 

  8. Tate, D. F. et al. Intracranial volume and dementia: some evidence in support of the cerebral reserve hypothesis. Brain Res. 1385, 151 (2011).

    Article  CAS  PubMed  Google Scholar 

  9. Klein, M. et al. Genetic markers of ADHD-related variations in intracranial volume. Am. J. Psychiatry 176, 228–238 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Nalls, M. A. et al. Identification of novel risk loci, causal insights, and heritable risk for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet Neurol. 18, 1091–1102 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sønderby, I. E. et al. Dose response of the 16p11.2 distal copy number variant on intracranial volume and basal ganglia. Mol. Psychiatry 25, 584 (2020).

    Article  PubMed  Google Scholar 

  12. Hibar, D. P. et al. Common genetic variants influence human subcortical brain structures. Nature 520, 224–229 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Grasby, K. L. et al. The genetic architecture of the human cerebral cortex. Science 367, eaay6690 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nawaz, M. S. et al. Thirty novel sequence variants impacting human intracranial volume. Brain Commun. 4, fcac271 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Adams, H. H. et al. Novel genetic loci underlying human intracranial volume identified through genome-wide association. Nat. Neurosci. 19, 1569–1582 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hibar, D. P. et al. Novel genetic loci associated with hippocampal volume. Nat. Commun. 8, 13624 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hofer, E. et al. Genetic correlations and genome-wide associations of cortical structure in general population samples of 22,824 adults. Nat. Commun. 11, 4796 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Van der Meer, D. & Kaufmann, T. Mapping the genetic architecture of cortical morphology through neuroimaging: progress and perspectives. Transl. Psychiatry 12, 447 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  19. Loughnan, R. J. et al. Generalization of cortical MOSTest genome-wide associations within and across samples. Neuroimage 263, 119632 (2022).

    Article  CAS  PubMed  Google Scholar 

  20. Park, S. M., Park, H. R. & Lee, J. H. MAPK3 at the autism-linked human 16p11.2 locus influences precise synaptic target selection at Drosophila larval neuromuscular junctions. Mol. Cells 40, 151 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Choi, C. Y., Vo, M. T., Nicholas, J. & Choi, Y. B. Autophagy-competent mitochondrial translation elongation factor TUFM inhibits caspase-8-mediated apoptosis. Cell Death Differ. 29, 451–464 (2022).

    Article  CAS  PubMed  Google Scholar 

  22. Lee, S. & Choi, I. Expression patterns and biological function of Specc1 during mouse preimplantation development. Gene Expr. Patterns 41, 119196 (2021).

    Article  CAS  PubMed  Google Scholar 

  23. Kaku, H. & Rothstein, T. L. FAIM is a non-redundant defender of cellular viability in the face of heat and oxidative stress and interferes with accumulation of stress-induced protein aggregates. Front. Mol. Biosci. 7, 32 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Redenšek, S., Trošt, M. & Dolžan, V. Genetic determinants of Parkinson’s disease: can they help to stratify the patients based on the underlying molecular defect? Front. Aging Neurosci. 9, 20 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ham, S. et al. Hydrocortisone-induced parkin prevents dopaminergic cell death via CREB pathway in Parkinson’s disease model. Sci. Rep. 7, 525 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cheng, W.-W., Zhu, Q. & Zhang, H.-Y. Identifying risk genes and interpreting pathogenesis for Parkinson’s disease by a multiomics analysis. Genes 11, 1100 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Inda, C. et al. cAMP-dependent cell differentiation triggered by activated CRHR1 in hippocampal neuronal cells. Sci. Rep. 7, 1944 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Jerber, J. et al. Population-scale single-cell RNA-seq profiling across dopaminergic neuron differentiation. Nat. Genet. 53, 304–312 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Grotzinger, A. D. et al. Genomic structural equation modelling provides insights into the multivariate genetic architecture of complex traits. Nat. Hum. Behav. 3, 513–525 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Liu, N. et al. Cross-ancestry genome-wide association meta-analyses of hippocampal and subfield volumes. Nat. Genet. 55, 1126–1137 (2023).

    Article  CAS  PubMed  Google Scholar 

  31. Roshchupkin, G. V. et al. Heritability of the shape of subcortical brain structures in the general population. Nat. Commun. 7, 13738 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Rentería, M. E. et al. Genetic architecture of subcortical brain regions: common and region-specific genetic contributions. Genes Brain Behav. 13, 821–830 (2014).

    Article  PubMed  Google Scholar 

  33. Smith, S. M. et al. An expanded set of genome-wide association studies of brain imaging phenotypes in UK Biobank. Nat. Neurosci. 24, 737–745 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Angeles, F.-G. M., Palacios-Bote, R., Leo-Barahona, M. & Mora-Encinas, J. P. Anatomy of the brainstem: a gaze into the stem of life. Semin. Ultrasound CT MR 31, 196–219 (2010).

    Article  Google Scholar 

  35. Lanciego, J. L., Luquin, N. & Obeso, J. A. Functional neuroanatomy of the basal ganglia. Cold Spring Harb. Perspect. Med. 2, a009621 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Javed, N. & Cascella, M. Neuroanatomy, Globus Pallidus (StatPearls Publishing, 2023).

  37. Young, C. B., Reddy, V. & Sonne, J. Neuroanatomy, Basal Ganglia (StatPearls Publishing, 2022).

  38. Yang, Y. & Wang, J.-Z. From structure to behavior in basolateral amygdala-hippocampus circuits. Front. Neural Circuits 11, 86 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Walton, E. et al. Exploration of shared genetic architecture between subcortical brain volumes and anorexia nervosa. Mol. Neurobiol. 56, 5146–5156 (2019).

    Article  CAS  PubMed  Google Scholar 

  40. Schmaal, L. et al. Subcortical brain alterations in major depressive disorder: findings from the ENIGMA Major Depressive Disorder working group. Mol. Psychiatry 21, 806–812 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  41. García-Marín, L. M. et al. Large-scale genetic investigation reveals genetic liability to multiple complex traits influencing a higher risk of ADHD. Sci. Rep. 11, 22628 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Bivol, S. et al. Australian Parkinson’s Genetics Study (APGS): pilot (n = 1532). BMJ Open 12, e052032 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Hoogman, M. et al. Subcortical brain volume differences of participants with ADHD across the lifespan: an ENIGMA collaboration. Lancet Psychiatry 4, 310 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Müller, M. et al. YIP1 family member 4 (YIPF4) is a novel cellular binding partner of the papillomavirus E5 proteins. Sci. Rep. 5, 12523 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Zhang, C. et al. Genomic identification and expression analysis of nuclear pore proteins in Malus domestica. Sci. Rep. 10, 17426 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Mao, Q. et al. KTN1 variants underlying putamen gray matter volumes and Parkinson’s disease. Front. Neurosci. 14, 651 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Yao, S. et al. A transcriptome-wide association study identifies susceptibility genes for Parkinson’s disease. NPJ Parkinsons Dis. 7, 79 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Xu, J. et al. Effects of urban living environments on mental health in adults. Nat. Med. 29, 1456–1467 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cursano, S. et al. A CRHR1 antagonist prevents synaptic loss and memory deficits in a trauma-induced delirium-like syndrome. Mol. Psychiatry 26, 3778 (2021).

    Article  CAS  PubMed  Google Scholar 

  50. Kim, M. S. et al. Testing the generalizability of ancestry-specific polygenic risk scores to predict prostate cancer in sub-Saharan Africa. Genome Biol. 23, 194 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Lamballais, S., Jansen, P. R., Labrecque, J. A., Ikram, M. A. & White, T. Genetic scores for adult subcortical volumes associate with subcortical volumes during infancy and childhood. Hum. Brain Mapp. 42, 1583–1593 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Wang, Y. et al. Theoretical and empirical quantification of the accuracy of polygenic scores in ancestry divergent populations. Nat. Commun. 11, 3865 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Campos, A. I. et al. Boosting the power of genome-wide association studies within and across ancestries by using polygenic scores. Nat. Genet. 55, 1769–1776 (2023).

    Article  CAS  PubMed  Google Scholar 

  54. Aschard, H., Vilhjálmsson, B. J., Joshi, A. D., Price, A. L. & Kraft, P. Adjusting for heritable covariates can bias effect estimates in genome-wide association studies. Am. J. Hum. Genet. 96, 329–339 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Voevodskaya, O. et al. The effects of intracranial volume adjustment approaches on multiple regional MRI volumes in healthy aging and Alzheimer’s disease. Front. Aging Neurosci. 6, 264 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Unverdi, M. & Alsayouri, K. Neuroanatomy, Cerebellar Dysfunction (StatPearls Publishing, 2023).

  57. Thompson, P. M. et al. The ENIGMA Consortium: large-scale collaborative analyses of neuroimaging and genetic data. Brain Imaging Behav. 8, 153–182 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Psaty, B. M. et al. Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium: design of prospective meta-analyses of genome-wide association studies from 5 cohorts. Circ. Cardiovasc. Genet. 2, 73–80 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Sudlow, C. et al. UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Bycroft, C. et al. The UK Biobank resource with deep phenotyping and genomic data. Nature 562, 203–209 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Loh, P.-R. et al. Efficient Bayesian mixed-model analysis increases association power in large cohorts. Nat. Genet. 47, 284–290 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Alfaro-Almagro, F. et al. Image processing and quality control for the first 10,000 brain imaging datasets from UK Biobank. Neuroimage 166, 400 (2018).

    Article  PubMed  Google Scholar 

  63. Volkow, N. D. et al. The conception of the ABCD study: from substance use to a broad NIH collaboration. Dev. Cogn. Neurosci. 32, 4–7 (2018).

    Article  PubMed  Google Scholar 

  64. Hagler, D. J. Jr et al. Image processing and analysis methods for the Adolescent Brain Cognitive Development study. Neuroimage 202, 116091 (2019).

    Article  CAS  PubMed  Google Scholar 

  65. Casey, B. J. et al. The Adolescent Brain Cognitive Development (ABCD) study: imaging acquisition across 21 sites. Dev. Cogn. Neurosci. 32, 43–54 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Das, S. et al. Next-generation genotype imputation service and methods. Nat. Genet. 48, 1284–1287 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Saragosa-Harris, N. M. et al. A practical guide for researchers and reviewers using the ABCD study and other large longitudinal datasets. Dev. Cogn. Neurosci. 55, 101115 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Crowley, S. et al. Considering total intracranial volume and other nuisance variables in brain voxel based morphometry in idiopathic PD. Brain Imaging Behav. 12, 1 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Turley, P. et al. Multi-trait analysis of genome-wide association summary statistics using MTAG. Nat. Genet. 50, 229–237 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Fischl, B. FreeSurfer. Neuroimage 62, 774–781 (2012).

    Article  PubMed  Google Scholar 

  72. Makris, N. et al. Decreased volume of the brain reward system in alcoholism. Biol. Psychiatry 64, 192–202 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. De Leeuw, C. A., Mooij, J. M. & Heskes, T. MAGMA: generalized gene-set analysis of GWAS data. PLoS Comput. Biol. 11, e1004219 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  74. Watanabe, K., Taskesen, E. & van Bochoven, A. Functional mapping and annotation of genetic associations with FUMA. Nat. Commun. 8, 1826 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Gusev, A. et al. Integrative approaches for large-scale transcriptome-wide association studies. Nat. Genet. 48, 245–252 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhu, Z. et al. Integration of summary data from GWAS and eQTL studies predicts complex trait gene targets. Nat. Genet. 48, 481–487 (2016).

    Article  CAS  PubMed  Google Scholar 

  77. O’Brien, H. E. et al. Expression quantitative trait loci in the developing human brain and their enrichment in neuropsychiatric disorders. Genome Biol. 19, 194 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  78. Bulik-Sullivan, B. K. et al. LD score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet. 47, 291–295 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. García-Marín, L. M., Campos, A. I., Martin, N. G., Cuéllar-Partida, G. & Rentería, M. E. Inference of causal relationships between sleep-related traits and 1,527 phenotypes using genetic data. Sleep 44, zsaa154 (2020).

    Article  Google Scholar 

  80. Pickrell, J. K. et al. Detection and interpretation of shared genetic influences on 42 human traits. Nat. Genet. 48, 709–717 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. García-Marín, L. M. et al. Shared molecular genetic factors influence subcortical brain morphometry and Parkinson’s disease risk. NPJ Parkinsons Dis. 9, 73 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  82. Mitchell, B. L. et al. Elucidating the relationship between migraine risk and brain structure using genetic data. Brain 145, 3214–3224 (2022).

    Article  PubMed  Google Scholar 

  83. Frei, O. et al. Bivariate causal mixture model quantifies polygenic overlap between complex traits beyond genetic correlation. Nat. Commun. 10, 2417 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  84. O’Connor, L. J. & Price, A. L. Distinguishing genetic correlation from causation across 52 diseases and complex traits. Nat. Genet. 50, 1728 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Darrous, L., Mounier, N. & Kutalik, Z. Simultaneous estimation of bi-directional causal effects and heritable confounding from GWAS summary statistics. Nat. Commun. 12, 7274 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Aman, A. M. et al. Phenome-wide screening of the putative causal determinants of depression using genetic data. Hum. Mol. Genet. 31, 2887–2898 (2022).

    Article  CAS  PubMed  Google Scholar 

  87. García-Marín, L. M. et al. Phenome-wide screening of GWAS data reveals the complex causal architecture of obesity. Hum. Genet. 140, 1253–1265 (2021).

    Article  PubMed  Google Scholar 

  88. García-Marín, L. M., Campos, A. I., Martin, N. G., Cuéllar-Partida, G. & Rentería, M. E. Phenome-wide analysis highlights putative causal relationships between self-reported migraine and other complex traits. J. Headache Pain 22, 66 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  89. Lloyd-Jones, L. R. et al. Improved polygenic prediction by Bayesian multiple regression on summary statistics. Nat. Commun. 10, 5086 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Chung, W. Statistical models and computational tools for predicting complex traits and diseases. Genomics Inform. 19, e36 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all the study participants for contributing to this research. Full acknowledgments and grant support details are provided in Supplementary Note.

Author information

Authors and Affiliations

Authors

Contributions

L.M.G.-M., A.I.C., S.D.-T., J.A.R., Z.C., B.L.M., K.L.G., J.G.T., P.M.T., C.L.S., S.E.M. and M.E.R. conducted the core analysis and wrote the paper. I.A., D.A., O.A.A., A.A.-V., D.A.B., M.P.M.B., D.I.B., H.B., J.K.B., W.C., V.D.C., S.C., B.C.-F., A.M.D., G.I.d.Z., C. DeCarli, C. Depondt, S. Desrivières, S. Ehrlich, T.E., S.E.F., M.F., B.F., H.J.G., O. Gruber, V.G., A.K.H., U.K.H., A.H., S.H., P.J.H., M.K.I., M.A.I., E.G.J., R.S.K., L.J.L., S.M.L., H. Lemaître, P. Mecocci, A.M.-L., T.H.M., M.M.N., N.G.M., P.A.N., J.O., T.P., Z.P., B.W.J.H.P., B.M.P., P.S.S., P.G.S., A.J.S., R.S., G.S., S.S., J.W.S., D.J.S., J.N.T., D.v.E., H.v.B., N.J.A.v.d.W., D.J.V., M.W.V., A.V., H.W., D.R.W., M.W.W., T.W., A.V.W., H.S. and H.V. were the principal investigators of participating cohorts. I.A., S.A., K.A., M.E.B., A.S.B., V.D.C., B.C.-F., F.C., E.J.C.d.G., C. DeCarli, S. Erk, T.E., G.F., I.F., D.A.F., A.L.G., O. Grimm, O. Gruber, V.G., A.K.H., U.K.H., S.H., B.-C.H., A.J.H., N.H., M.A.I., C.R.J., E.G.J., R.S.K., S.M.L., H. Lemaître, D.C.M.L., J.-L.M., V.S.M., K.L.M., P. Mecocci, T.H.M., T.W.M., S.M.M., P.A.N., J.O., M.P., B.W.J.H.P., G.B.P., N.R.-S., P.G.S., G.S., S.S., S.M.S., H.S.S., D.T.-G., J.N.T., M.C.V.-H., D.v.E., N.J.A.v.d.W., M.W.V., H.W., J.M.W., M.W.W., W.W., L.T.W., E.W., T.W., M.P.Z., H.V., I.M., O.L.L., S.R. and W.H. collected the imaging data. I.A., D.A., J.C.B., H.B., J.K.B., J.G.T., V.D.C., C.R.K.C., G.D.S., E.J.C.d.G., P.L.D.J., S. Desrivières, S. Ehrlich, T.E., G.F., I.F., S.E.F., A.J.F., C.F., B.F., H.J.G., K.L.G., N.A.G., O. Gruber, U.K.H., D.P.H., S.H., J.J.H., N.H., M.A.I., J.C.I., N.J., M.J.K., S.M.L., P.H.L., H. Lemaître, H. Lin, W.T.L., M.L., A.F.M., K.A.M., V.S.M., A.M.-L., B.L.M., T.H.M., W.J.N., M.M.N., P.A.N., T.P., B.W.J.H.P., B.M.P., J.I.R., P.S.S., C.L.S., S.I.T., A.J.S., G.S., E.S., S.S., L. Shen, S.M.S., H.S.S., D.J.S., J.L.S., S.I.T., P.M.T., A.W.T., J.N.T., M.W.V., J.M.W., D.R.W., M.W.W., L.T.W., T.W., N.M.-S., N.G.M., J.I.R., L.M.G.-M., A.I.C. and M.E.R. edited the paper. A.S., H.V., M.N., N.J.A., O.L.L. and W.H. contributed to the editing of the paper. S.A., P.A., L.A., R.B., V.D.C., S.C., E.J.C.d.G., P.L.D.J., C. Depondt, S. Desrivières, S. Djurovic, S. Erk, T.E., S.E.F., A.J.F., C.F., R.C.G., O. Gruber, V.G., A.K.H., B.-C.H., G.H., M.A.I., E.G.J., S.L.H., D.C.M.L., J.-L.M., K.A.M., P. Mecocci, T.H.M., T.W.M., M.M.N., P.A.N., B.W.J.H.P., B.M.P., B.P., M.D.R., J.I.R., A.J.S., P.R.S., M. Scholz, S.S., L. Shen, S.M.S., H.S.S., V.M.S., N.J.A.v.d.W., J.V.-B., H.W., I.M., M.N., S.R. and W.H. collected the genetic data. S.A., K.A., R.M.B., O.T.C., M.C., Q.C., C.R.K.C., B.C.-F., F.C., C. DeCarli, S. Desrivières, S. Ehrlich, S. Erk, G.F., I.F., T.G., A.L.G., O. Grimm, N.A.G., A.K.H., U.K.H., D.P.H., S.H., D.F.H., A.J.H., N.J., R.K., D.C.M.L., P. Maillard, A.F.M., K.L.M., S.M.M., K.N., W.J.N., P.A.N., J.O., S.L.R., R.R.-G., G.V.R., P.G.S., C.L.S., L. Schmaal, D.T.-G., M.C.V.-H., D.v.E., N.J.A.v.d.W., L.N.V., H.W., J.M.W., W.W., L.T.W., A.V.W., M.P.Z., A.S., E.F. and O.L.L. conducted the imaging data analysis. L.A., J.C.B., J.G.T., R.M.B., Q.C., C.R.K.C., S.C., E.J.C.d.G., P.L.D.J., S. Debette, S. Desrivières, S. Djurovic, S. Ehrlich, M.F., T.G., K.L.G., N.A.G., D.P.H., E.H., M.K., M.J.K., S.L.H., P.H.L., S.L., D.C.M.L., M.L., Y.M., B.L.M., B.M.-M., K.N., S.L.R., G.V.R., P.G.S., M. Sargurupremraj, C.L.S., R.S., P.R.S., M. Scholz, L. Shen, J.S., A.V.S., D.v.E., D.v.d.M., C.W., J.Y., L.M.G.-M., A.I.C., M.E.R., H.S. and N.J.A. conducted the genetic data analysis.

Corresponding author

Correspondence to Miguel E. Rentería.

Ethics declarations

Competing interests

I.A. received a speaker’s honorarium from Lundbeck. O.A.A. is a consultant to Cortechs.ai and Precision Health and has received a speaker’s honorarium from Lundbeck, Janssen, Otsuka and Sunovion. H.B. is an Advisory Board Member or Consultant to Biogen, Eisai, Eli Lilly, Roche, Skin2Neuron, Cranbrook Care and Montefiore Homes. C.R.K.C. has received past partial research support from Biogen for work unrelated to the topic of this paper. A.M.D. is the Principal Investigator of a research agreement between General Electric Healthcare and the University of California, San Diego (UCSD); he is a founder of and holds equity in CorTechs Labs and a member of the Scientific Advisory Board of Human Longevity and the Mohn Medical Imaging and Visualization Center in Bergen, Norway. The terms of these arrangements have been reviewed and approved by UCSD in accordance with its conflict of interest policies. B.F. has received educational speaking fees from Medice. H.J.G. has received travel grants and speakers honoraria from Fresenius Medical Care, Neuraxpharm, Servier and Janssen-Cilag, as well as research funding from Fresenius Medical Care. D.P.H. is a full-time employee of Genentech. N.H. is a shareholder in various manufacturers of medical technology. A.M.-L. has received consultant fees from Daimler und Benz Stiftung, EPFL Brain Mind Institute, Fondation FondaMental, Hector Stiftung II, Invisio, Janssen-Cilag GmbH, Lundbeck A/S, Lundbeckfonden, Lundbeck Int. Neuroscience Foundation, Neurotorium, MedinCell, The LOOP Zürich, University Medical Center Utrecht, University of Washington, Verein für Mentales Wohlbefinden and von Behring-Röntgen-Stiftung; speaker fees from Ärztekammer Nordrhein, Caritas, Clarivate, Dt. Gesellschaft für Neurowissenschaftliche Begutachtung, Gentner Verlag, Landesärztekammer Baden-Württemberg, LWL Bochum, Northwell Health, Ruhr University Bochum, Penn State University, Society of Biological Psychiatry, University Prague and Vitos Klinik Rheingau; and editorial and/or author fees from American Association for the Advancement of Science, ECNP, Servier and Thieme Verlag. W.J.N. is the founder of Quantib BV and was the scientific lead of Quantib BV until 31 January 2023. M.M.N. has received fees for membership in an advisory board from HMG Systems Engineering GmbH (Fürth, Germany), for membership in the Medical-Scientific Editorial Office of the Deutsches Ärzteblatt and for serving as a consultant for EVERIS Belgique SPRL in a project of the European Commission (REFORM/SC2020/029), and receives salary payments from Life & Brain GmbH and holds shares in Life & Brain GmbH. All these concerned activities are outside the submitted work. B.M.P. serves on the Steering Committee of the Yale Open Data Access Project funded by Johnson & Johnson. A.J.S. receives support from multiple National Institutes of Health (NIH) grants and has also received support from Avid Radiopharmaceuticals, a subsidiary of Eli Lilly (in-kind contribution of position emission tomography tracer precursor); Bayer Oncology (Scientific Advisory Board); Eisai (Scientific Advisory Board); Siemens Medical Solutions USA (Dementia Advisory Board); NIH National Heart, Lung, and Blood Institute (Multi-Ethnic Study of Atherosclerosis Observational Study Monitoring Board); and Springer Nature Publishing (Editorial Office Support as Editor-in-Chief, Brain Imaging and Behavior). M. Scholz received funding from Pfizer for a project not related to this research. E.S. received speaker fees from bfd buchholz fachinformationsdienst gmbh. P.M.T. receives partial research support from Biogen for research unrelated to this paper. M.W.W. serves on editorial boards for Alzheimer’s & Dementia and the Journal for Prevention of Alzheimer’s Disease. He has served on advisory boards for Acumen Pharmaceutical, Alzheon, Cerecin, Merck Sharp & Dohme and the NC Registry for Brain Health. He also serves on the University of Southern California (USC) Alzheimer’s Clinical Trials Consortium grant that receives funding from Eisai for the AHEAD study; has provided consulting to Boxer Capital, Cerecin, Clario, Dementia Society of Japan, Eisai, Guidepoint, Health and Wellness Partners, Indiana University, LCN Consulting, Merck Sharp & Dohme, NC Registry for Brain Health, Prova Education, T3D Therapeutics, USC and WebMD; has acted as a speaker/lecturer for the China Association for Alzheimer’s Disease and Taipei Medical University, as well as a speaker/lecturer with academic travel funding provided by AD/PD Congress, Cleveland Clinic, CTAD Congress, Foundation of Learning, Health Society (Japan), INSPIRE project, U. Toulouse, Japan Society for Dementia Research, and Korean Dementia Society, Merck Sharp & Dohme, National Center for Geriatrics and Gerontology (Japan) and USC; holds stock options with Alzeca, Alzheon, ALZPath and Anven; and received support for his research from the following funding sources: NIH/National Institute of Neurological Disorders and Stroke/National Institute on Aging, Department of Defense, California Department of Public Health, University of Michigan, Siemens, Biogen, Hillblom Foundation, Alzheimer’s Association, Johnson & Johnson, Kevin and Connie Shanahan, GE, VUmc, Australian Catholic University (Healthy Brain Initiative/Brain Health Registry), The Stroke Foundation, and the Veterans Administration. A.I.C. is currently employed by the Regeneron Genetics Center, a wholly-owned subsidiary of Regeneron Pharmaceuticals, and may hold Regeneron stock or stock options. The other authors declare no competing interests.

Peer review

Peer review information

Nature Genetics thanks Janine Bijsterbosch, Varun Warrier and Chunshui Yu for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods and Figs. 1–129, and Acknowledgments.

Reporting Summary

Peer Review File

Supplementary Tables

Supplementary Tables 1–33.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

García-Marín, L.M., Campos, A.I., Diaz-Torres, S. et al. Genomic analysis of intracranial and subcortical brain volumes yields polygenic scores accounting for variation across ancestries. Nat Genet 56, 2333–2344 (2024). https://doi.org/10.1038/s41588-024-01951-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41588-024-01951-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载