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Statistically and functionally fine-mapped
blood eQTLs and pQTLs from1,405humans
reveal distinctregulation patternsand
diseaserelevance
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Studying the genetic regulation of protein expression (through protein
quantitative traitloci (pQTLs)) offers a deeper understanding of regulatory
variants uncharacterized by mRNA expression regulation (expression QTLs
(eQTLs)) studies. Here we report cis-eQTL and cis-pQTL statistical fine-mapping
from1,405 genotyped samples withblood mRNA and 2,932 plasma samples of
proteinexpression, as part of the Japan COVID-19 Task Force (JCTF). Fine-mapped
eQTLs (n=3,464) were enriched for 932 variants validated withamassively parallel
reporter assay. Fine-mapped pQTLs (rn = 582) were enriched for missense variations
onstructured and extracellular domains, although the possibility of epitope-binding
artifactsremains. Trans-eQTL and trans-pQTL analysis highlighted associations
of classIHLA allele variation with KIR genes. We contrast the multi-tissue origin
of plasma protein with blood mRNA, contributing to the limited colocalization
level, distinct regulatory mechanisms and trait relevance of eQTLs and pQTLs.
We report a negative correlation between ABO mRNA and protein expression
because of linkage disequilibrium between distinct nearby eQTLs and pQTLs.

Studies of genetic regulation of mRNA expression (expression quanti-
tative trait locus (eQTL) studies) is highly informative in interpreting
associations between genetic variation and human diseases’”. However,
mRNA expressionis alimited proxy of protein expression, which affects
human phenotypesin a more direct manner®>.

Analysis of genetic regulation of protein expressions (protein
QTL (pQTL) studies) is gaining popularity®™", owing to the devel-
opment of high-throughput affinity-based assays that enable

one-shot measurements of thousands of proteins in large-scale
biobank cohorts. Sun et al.” performed a pQTL study in 3,301
samples on 3,622 plasma proteins measured using SOMAscan and
identified nearly 2,000 pQTLs. Zhang et al.® performed large-scale
pQTL fine-mapping in European and African populations and dis-
cussed druggability. The UK Biobank (UKB) Pharma Proteomics
Project (PPP) has performed pQTL mapping in more than 50,000
samples™™, uncovering common and rare variant contributions to
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variation in protein expression that do not necessarily involve the
effect of eQTLs in major tissues.

Complementing such studies, having another layer of diversity
by studying East Asian (EAS) populations would be promising because
multi-cohort genetic and proteomic studies have been effective in
identifying drug targets”'®. In addition, instead of using an external
eQTL dataset to examine colocalization between eQTLs and pQTLs,
building on earlier studies with multimodal measurements of mRNA
and protein expressionin the same sample set” in this era of large-scale
proteomics would be effective inidentifying disease-causing variants
inmultiple layers as it minimizes the potential loss of discovery power
duetodifferencesintechnical and clinical backgrounds.

Inthis study, we systematically characterized shared versus mRNA
expression or protein-specific QTLs using a collection of 1,405 geno-
typed samples, whole-blood mRNA and 2,932 plasma protein expres-
sion data (measured using Olink Explore 3072) in the Japan COVID-19
Task Force (JCTF?*?), including 998 samples and 2,211 genes with
both mRNA and protein measurements (Extended Data Fig. 1). Using
statistical fine-mapping, we describe the distinctive features for each
class of QTLs, show therelevance of protein-specific QTLs to complex
traits and provide examples where protein-specific QTLs explain vari-
ant-disease associations. We then discuss the dynamics of mRNA and
protein expression as afunction of disease (COVID-19) severity. Finally,
we characterize that eQTLs and pQTLs in complex linkage disequilib-
rium (LD) inthe ABOlocus might possibly create a negative correlation
between mRNA and protein expression.

Results

An expanded catalog of fine-mapped whole-blood eQTLs

We identified 3,464 putative causal (posterior inclusion probability
(PIP) > 0.9) cis-eQTLs from statistical fine-mapping of 165,410,953
variant-gene pairsin 1,019 samples. The power gain compared to the
previous version of our fine-mapping call from 465 samples® is repre-
sented by a2.96-fold increase in the number of putative causal eQTLs
(from 1,169 to 3,464; Extended Data Fig. 2a); the largely maintained
quality of fine-mapping was validated by functional enrichment and
consistency withexternal datasets (Extended Data Fig. 2b, and Supple-
mentary Figs.1and 2). Thelist of splice QTLs (sQTLs) was also updated
(Supplementary Fig. 3).

For further validation of statistically fine-mapped eQTLs, we per-
formed a massively parallel reporter assay (MPRA*>?) targeting over
10,000 variants with nontrivial causal evidence in the previous call (PIP
>0.1). The fraction of MPRA hits (Supplementary Dataland Methods)
increased along with the PIPs. For example, 13.9% of variants with a PIP
of 1 presented expression modifier effects in either or both K562 and
HepG2 at a false discovery rate (FDR) of less than 0.1 (2.2-fold enrich-
ment compared to 6.3% at a PIP < 0.1; Fisher’s exact test P=2.5x1075;
Extended Data Fig. 2c). In addition, we observed increased concord-
ance between the direction of the eQTL effects and the effects in the
MPRA, along with the confidence in each metric. For example, when
focusing on 60 variants with a PIP greater than 0.99 and an MPRA hit
FDR lower than 0.01 (that s, tier 1) in either tissue, an effect direction
concordance of around 80% was observed in both cell types (82.5% in
K562 and 79.4% inHepG2 cells; Extended Data Fig. 2d). Taken together,
these results provide orthogonal support for our fine-mapping results.

Afine-mapped pQTLresource from1,384 EAS samples
Using the expression of 2,932 plasma proteins measured with the Olink
Explore 3072 assay for 1,384 samples, we performed genome-wide
cis-pQTL calling and fine-mapping (Supplementary Fig. 4 and Meth-
ods). Morethan40% of the measured proteins (n =1,191 proteins, 40.6%)
had atleast onevariant with P<5 x 1078 (Fig. 1a). Statistical fine-mapping
identified n = 582 putative causal (PIP > 0.9) pQTLs.

Tovalidate our pQTL calling, we compared our result with multiple
external studies. First, we compared our results withthe recent large-scale

pQTL mapping results from the UKB PPP study and observed a high cor-
relationin effect size estimates (Fig. 1b). The correlationincreased along
withthe causal evidence (PIP) in our dataset; it was the highest when the
populationbackground matched (thatis, when comparedton =262 EAS
samplesinthe UKB; Pearsonr=0.97 when PIP =1; firstrowinFig.1b). The
second highest correlation was observed in European (EUR) samplesin
the UKB (n >40,000 samples; Pearsonr=0.93whenPIP =1; second row
inFig.1b), followed by African (AFR) samplesinthe UKB (n = 931; Pearson
r=0.85when PIP =1). The fraction of the lead variants in the UKB PPP
datasetalsoincreased along with the PIP (as an approximation of causal-
ityinthe absence of fine-mapping data in the UKB PPP; Supplementary
Fig.5).Such concordance between two datasets, bothmeasured using
the Olink Explore 3072 assay, validate our pQTL fine-mapping. Lower
consistency was observed when comparing with other datasets based
ondifferent technological platforms®** (Fig. 1c), as discussed in detail
in Supplementary Figs. 6 and 7 and in Supplementary Note.

Functional characterization of fine-mapped pQTLs

To characterize fine-mapped pQTLs, we tested the enrichment of
major functional annotations. For noncoding annotations, the 5’ and
3’untranslated regions (UTRs) were significantly enriched for putative
causal pQTLs (521.5-fold and 167.6-fold; Fisher’s exact test P= 8.8 x 1077’
and 5.3 x 1078, respectively); for coding annotations, missense and
predicted loss of function (pLoF) showed enrichments an order of
magnitude higher (2109.2-fold and 8046.9-fold; Fisher’s exact test
P <107 for both), which is consistent with our understanding that
pQTL effects could be driven by both transcriptional and posttran-
scriptional regulations (Fig. 2a).

Focusing on missense pQTLs, we tested the enrichment of protein
structure and localization-related annotations (Fig. 2b). Our analy-
sis highlighted two factors: (1) putative causal pQTLs were enriched
for protein domains that form an alpha-helix or beta-sheet structure
(2.48-fold and 1.96-fold; Fisher’s exact test P=7.6 x 10 and 1.3 x 1073,
respectively) and (2) they were enriched for extracellular domains (or
depleted for cytoplasmic domains; 1.43-fold and 0.23-fold; Fisher’s exact
testP=4.5x10and 1.8 x 107, respectively). These observations suggest
that missense mutations could show pQTL effects by affecting protein
structure and stability, especially inan extracellular environment, as dis-
cussedinref.9,whoreported anenrichment of secreted protein-related
features in genes harboring pQTLs (Supplementary Fig. 7).

Ontheotherhand, as protein expressionin our study was measured
with an affinity-based assay using antibodies specific to each protein,
the observed pQTL effects might reflect differences in binding affinity
introduced by genomic variations, rather than differences in physiologi-
cal protein abundance. To evaluate such potential ‘epitope effects’, we
investigated the replication rate of fine-mapped pQTLs stratified accord-
ing to missense and other functional annotations (ARIC® instead of the
UKB PPP was used because fine-mapping data were only available for
ARIC). Missense variations were the most enriched functional annota-
tion, even whenfocusing on possibly causal pQTLs replicatedin the ARIC
study (PIP> 0.1inboth studies; Fig. 2cand Supplementary Fig.8). Onthe
otherhand, replicated possibly causal missense pQTLs often presented
opposite effect directions (Fig. 2d; 13 of 57 variants). A possible model
derived from these observations is that a missense variant increases
affinity to an antibody in one platform while decreasing affinity to the
probe in another platform; thus, the ‘true’ effect size and direction in
the physiological context is uncertain, warranting future large-scale
experimental validation of pQTLs as done in the MPRA for eQTLs.

A subset of causal pQTLs in noncoding regions possibly presents
pQTL effects caused by transcriptional regulation in related tissues. To
characterize such pQTL variants as colocalizing® with eQTL variants,
we compared our fine-mapping results with the eQTL fine-mapping
results from the Genotype-Tissue Expression (GTEx) project v.8
(ref. 2) in 49 major tissues (Supplementary Fig. 9a,b and Methods). The
liver presented the highest enrichment, followed by whole blood and
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the population in the UKB PPP (row) and the PIP of our pQTL fine-mapping

spleen, whichis consistent with our understanding thatalarge proportion ~ Contrasting eQTLs and pQTLs highlights distinct functional

of plasma proteinsare secreted from the liver®, as well ashematopoietic ~ features

organs (2.44-fold, 2.15-foldand 1.92-fold, respectively; P=2 x10>forthe ~ Although colocalization between eQTLs and pQTLs has been investi-
spleen; Fig. 2e). The testis and most brain-related tissues were signifi- ~ gated previously®”*>'****! when eQTL and pQTL dataare from different
cantly depleted for colocalization (for example, 0.33-fold, P=1x10for ~ cohorts, the correlation between two association statistics can be low
the testis), which is consistent with the previous literature®. because of LD structure differences even when the underlying causal
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GTEX tissue

inconsistent effect direction between datasets. e, Enrichment of colocalization
score between pQTLs and 49 fine-mapped eQTLs in the GTEx. *P < 0.05,
**P<0.05/49.a,b,n=27,354,135,164,350, 32,868, 4,257,562, 508 and 81
variant-gene pairs areincluded in each category. ¢,n=1,008,1,304,1,759

and 4,705 variant-gene pairs are included in each panel. e, Al 27,556,761
variant-gene pairs are included. Those missing in the GTEx were omitted from
the downsampling process (Methods).
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variants are the same. CallingeQTLs and pQTLs from the same samples
isbetter suited to colocalization analysis as LD contributes equally to
both QTL calls. Thus, we used n =998 samples and 2,211 genes where
both RNA and protein expression profiles existed, fine-mapped the
eQTLs and pQTLs within the 998 samples once more and compared
their effect sizes (Fig. 3a). While the correlation was relatively high
for putative causal eQTLs and pQTLs (Fig. 3a, bottom right; r = 0.80
whenbotheQTLand pQTL PIPs are greater than 0.9), there were many
fine-mapped eQTLs and pQTLs that are probably causalin either mMRNA
or protein expression in the blood but not both (for example, top-right
and bottom-left in Fig. 3a).

Further, we created mRNA-adjusted protein expression and
protein-adjusted mRNA expression profiles, and performed adjusted
mRNA or protein expression QTL" calling followed by statistical
fine-mapping (Supplementary Fig. 10). Using a catalog of fine-mapped
eQTLs, pQTLs, protein-adjusted eQTLs and mRNA-adjusted pQTLs, we
classified putative causal variant-gene pairsinto three classes: (1) ‘colo-
calizing QTLs’, confidently acting onbothmRNA and protein expression;
(2) ‘mRNA-specific QTLs’; and (3) ‘protein-specific QTLs’ (Methods).
Nearly half of colocalizing QTLs are probably explained by splice vari-
ation (17 of 42 (40.5%) had an sQTL PIP > 0.9, in contrast to 20.2% for
mRNA-specific QTLs and 6.4%for protein-specific QTLs; Fisher’sexact test
P=5.3x10and 5.3 x107%;Fig. 3b). When focusing on noncoding annota-
tions, mRNA-specific QTLs were enriched for transcription factor binding
sitesand marginally for 5 UTR variants (1.96-fold and 1.91-fold compared
toprotein-specificQTLs; P=1.2 x102and 5.3 x 10 testing the difference
ofthe oddsratio). The enrichmentlevel of 3’ UTR variants for mRNA and
protein-specific QTLs was comparable (67.8-fold and 86.0-fold, P> 0.05),
supporting the notion that RNA sequencing (RNA-seq)-based methods
for testing the effects of 3 UTR variants®>**, which often involve post-
transcriptional modifications, are harder than those of 5 UTR variants.
For coding annotations, missense variants were strongly enriched for
protein-specific QTLs as expected (8.95-fold compared to mRNA-specific
QTLs, P=1.1x1075;Fig. 3c and Supplementary Fig.11a).

Buffering of blood mRNA expression variation in constrained
genes

Turningto agene-centric view, we classified 557 genes carrying variants
belonging to one (or, rarely, more than one) of the three QTL classes
defined above (Supplementary Data 2 and Fig. 3d). We then examined
their mRNA expression level across tissues inthe GTEx, as well as their
constraint from the Genome Aggregation Database (gnomAD) (LoF
observed/expected upper bound fraction (LOEUF)**; Fig. 3e and Sup-
plementary Fig.11b). Genes carrying mRNA-specific QTLs had ahigher
number of expressed tissues in the GTEx (expressed in 46 versus 41 or
34tissuesonaverage, t-testP=6.3 x10*and 1.4 x10%), and were more
highly constrained compared to those carrying colocalization QTLs or
protein-specific QTLs (mean LOEUF = 0.90 versus 1.29 or 1.02, t-test
P=1.7x107and 4.0 x 107%). Our observation suggests that, in highly
constrained and ubiquitously expressed genes, transcriptional regula-
tion in the blood is more likely to be buffered in plasma, presumably
resulting in maintained functionality.

Limited colocalization between eQTLs and pQTLs
We next shifted our focus to the intersection of eQTL and pQTL
effects (that is, colocalization). In our QTL classification, even with a

colocalization posterior probability (CLPP) threshold of 0.1 (Methods),
the number of genes carrying possibly colocalizing QTLs were far fewer
than those carrying mRNA or protein-specific QTLs (68 versus 260 or
158). Using an alternative method (Mendelian randomization; Sup-
plementary Fig. 12 and Methods) also suggested limited overlap; we
explored possible reasons for such alow colocalization level.

First, we tested colocalization with a larger blood eQTL dataset
(eQTLgen) to evaluate the potential power loss attributed to a low
sample size. Even with a lenient assumption that a significant P value
ineQTLgen is a sign of colocalization (in reality, many are noncausal,
tagged variants), the colocalization level remained low (only less than
25% wereresolved; Supplementary Fig.13a-d). Second, we compared
our colocalization detection method with another state-of-the-art
method (SuSiE-coloc). While more colocalization could be declared
depending onthe threshold setting, the overall fraction of genes with
colocalizing evidence remained low (<15% at a PP.H4 = 0.1 threshold;
Supplementary Fig.13e,f).

Last is the contribution of tissues other than blood. We stratified
the genesetsintodistinct classes based onthe mRNA expression level
inwholeblood relative to other tissuesin the GTEx and observed that
geneswithahigher percentage of mRNA expression had a higher corre-
lation of blood mRNA and plasma protein expression (average Pearson
r=0.26 for genes with more than 50% expression in the blood versus
0.021for genes with less than1% expression, t-test P=1.2 x 1078, where
percentage expression was defined as the transcripts per million (TPM)
inwholeblood divided by the sum of TPM across 54 tissues inthe GTEx;
Fig.3f).Such differences inthe mRNA expression level inwhole blood
presented major differences in colocalization level (Fig. 3g). Only 5% of
lowly (<1%) mRNA-expressed genes had colocalization evidenceata 0.1
CLPP threshold, while over 20% did for highly (>5%) mRNA-expressed
genes. Considering additional biological properties, such as active
secretion of proteinsinto the bloodstream (Supplementary Fig.13g,h)
or testing colocalization with fine-mapped variantsin the GTEx across
49tissuesalsoincreased the colocalization signal (from approximately
5%to over10%; Supplementary Figs. 9cand 13i). Nevertheless, the frac-
tion of genes with colocalization evidence remained low, even with the
most lenient threshold (<33% at an ultra-lenient 0.001 CLPP threshold
across GTEx tissues).

Thus, our observations are in line with previous reports® that only
asizablefraction of plasma pQTLs are mediated through eQTL effects
inmajor tissues.

Examples of limited colocalization between eQTLs and pQTLs

As an example of blood mRNA-specific regulation on a constrained
gene, we highlight rs12519827 (chr5:150488763:G:A), anintronic variant
on the NDST1 gene (Fig. 3h). The variant has a strong negative effect
onblood mRNA expression (P <1x1072%,PIP =1, 3=-0.68) butlittle or
no effect on the protein expression level in plasma (P= 0.41, PIP = 0).
NDST1is anonsecreted protein, highly constrained (LoF observed/
expected =3/41.1=0.07 ingnomAD) and mouse homozygous knockout
lethal® with known association with severe intellectual developmental
disorder’. Associations with complex traits did not reach genome-wide
significance in the Biobank Japan (BBJ)**® (P=2.6 x 107 for basophil
count and P>1x107*for others). Notably, the mRNA expression of
NDSTI in whole blood was the lowest among all tissues in the GTEx
(median TPM = 8.9); the eQTL effect of rs12519827 is highly specific to

Fig.3 | Characterization of mRNA-specific and protein-specific or
colocalizing QTLs and genes. a, Correlation between eQTL and pQTL effect
sizesin our dataset, stratified according to the PIPs from the fine-mapping of
each QTL.b, Fraction of fine-mapped sQTLs for different QTL categories.

¢, Enrichment of major functional annotations for mRNA-specific or protein-
specific QTLPIP bins. d, Number of genes harboring mRNA-specific or protein-
specific or colocalizing QTLs. e, Distribution of constraint score (LOEUF) and
number of mRNA-expressing (TPM > 1) tissues in the GTEx for different QTL

categories. f, Ridge plot showing the distribution of correlation between mRNA
and protein expression in 998 samples, stratified according to the percentage
of whole-blood expression in the GTEx. g, Fraction with colocalization evidence
accordingto varying thresholds, stratified according to the percentage of
whole-blood expression in the GTEx. Each stratum contains 1,429, 510 and

272 (174 + 55+ 43) genes, as visible in f. h, Locus zoom around the NDSTI gene,
as an example of blood mRNA-specific regulation on a constrained gene.
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wholeblood (P=1.3 10" in whole blood but more than 5 x 10 8in all
other tissues), suggesting that the whole-blood-specific eQTL effect
hasonly anegligible effect and is buffered by relatively high and stable
mRNA expression in other tissues relevant to plasma protein expres-
sion. As another example of agene with limited colocalization evidence,
we highlight the unresolved ALDH21ocus® *?in Supplementary Note,
Supplementary Fig. 14 and Supplementary Table 1.

pQTLs may be more relevant to complex traits than eQTLs
The observation that variation in mRNA expression in constrained
genes is often buffered suggests possible differences in contribu-
tion to complex traits. We used large-scale fine-mapping results for
79 traits from the BBJ to quantify the level of trait-causal variant colo-
calization (Fig. 4a, Supplementary Fig.15 and Supplementary Data 3).
Protein-specific QTLs had significantly higher enrichment compared
to mRNA-specific QTLs (7.6-fold versus 5.6-fold, P=2.7 x 1073, ratio
of means test for PIP > 0.01 combined), suggesting that alteration in
protein expression is more relevant to complex traits. We replicated
these observations using the fine-mapping results for 96 traits in
the UKB***, stratified according to trait categories, validating that
protein-specific QTL enrichment is not simply driven by a specific
biological trait (protein-specific QTL enrichment was greater; P < 0.05
except for psychological traits; Fig. 4b). Enrichment is not likely to be
driven by simple measurement traits such as blood cell count or lipid
levels as enrichment persisted in several major disease and complex
traits, although not universal to all traits as the opposite enrichment
pattern was observed for body mass index (Supplementary Fig. 15a).
Stratification according to the percentage of mRNA expression of
the genes suggested that the power gain of protein-specific QTLs is
mainly from genes that are relatively lowly mRNA-expressed in the
blood (Fig. 4c and Supplementary Fig. 15d), highlighting the value of
the multi-tissue origin of plasma proteins. Comparison with nonspecific
QTLsismorenuanced, asdescribedin detail in the Supplementary Note.
Asspecificexamples, we highlighted three scenarios where plasma
pQTL fine-mapping is beneficial in addition to eQTL fine-mapping in
wholeblood for complex trait-causal variantinterpretation: (1)a3’ UTR
variant possibly involved in posttranscriptional regulation (rs884205
onthe TNFRSF11A gene; Fig.4d); (2) amissense variant probably affect-
ing protein stability (rs429358, the well-known constituent of the
APOE-£4 allele™; Fig. 4e and Supplementary Fig. 16); and (3) mRNA
expression regulation taking place in non-blood tissue (rs13395911
on EFHDI and rs28372783 on CDHI; Supplementary Fig. 15h,i), with
detailed interpretationin Supplementary Note.

Characterizing the trans-pQTL effects

The regulatory effects of genetic variants on distal genes (that is,
trans-regulation) are much lower than those on a nearby gene (that
is, cis-regulation). Thus, identifying genome-wide trans-regulatory
variants requires a sample size much larger than that of a canonical
cis-QTL analysis® %, In this study, we used two different approaches
to maximize the prior and to control for the multiple test burden
(Supplementary Note).

First, we focused onthelead cis-pQTL (that s, the variant with the
lowest cis-pQTL Pvalue) for each gene and tested their genome-wide
trans-effects. We observed a distribution shift in the test statistics
for the lead cis-variant in trans-pQTL effects compared to random
variants (Fig. 5a), validating the strategy. Notably, we replicated the
observation of a trans-pQTL ‘hotspot’ in the ABO gene, regulating the
expressions of 26 genes genome-wide (at a Bonferroni significance;
P<1.1x107% Fig.5b).

Second, we focused onvariation in the classical alleles of the HLA*
genes (and MICA, an HLA-like gene located within the major histocom-
patibility complex (MHC); Fig. 5¢) and examined the genome-wide
trans-eQTL and trans-pQTL effect. This identified significant asso-
ciations (P <1x107) for 42 genes (Supplementary Data 4), includ-
ing those between class 1 HLA alleles (especially, HLA-C) and killer
immunoglobulin-like receptor (KIR) genes (KIRDL2 at the mRNA level
andKIRDL3 at the proteinlevel; P=7.2 x10°and P=1.2 x 10"%), provid-
ing a genetic basis for the well-known molecular interaction between
KIR and class1HLA at the protein-protein level** %,

For HLA, comparing trans-mRNA-regulated and protein-regulated
genes, there was zero overlap at the threshold of P <1x 107%, potentially
suggesting that plasma pQTL analysis better captures the dynamics of
immunological responses across cells and organs led by the variationin
HLA alleles, whereas the blood transcriptome is more narrowly focused
on peripheralimmune cell responses.

Buffering of context-specific (severe COVID-19) eQTL effects
Our study cohort was ascertained for COVID-19-positive cases, classi-
fiedinto four levels of severity. We used this phenotype to understand
the dynamics of mRNA and protein expression in response to infec-
tious diseases.

First, we observed an increase in the correlation between mRNA
and protein expression in patients with severe COVID-19 (Fig. 6a and
Supplementary Fig. 17), presumably because of the natural immune
response triggering an increase in relevant genes at both the blood
mRNA and plasma protein level. As an example, interleukin-1
receptor-like 1 (ILIRL1), a well-known chemokine, had high correla-
tion specifically in the severe and most severe states (Fig. 6b; r=0.50
inthe most severe disease and 0.08 in the asymptomatic state). In addi-
tion, the shared biological entities of blood mRNA and plasma protein
dynamics were visible at the module level (Supplementary Fig. 18).

Then, weinvestigated the genetic regulationlandscapein several
different infectious disease statuses™. Specifically, we performed
COVID-19 severity interaction QTL (iQTL) analysis as described previ-
ouslyin®*and compared the interaction landscape at the mRNA and pro-
teinlevels (Supplementary Figs.19 and 20 and Supplementary Data 5).
The interaction between disease status and pQTL effects was less sig-
nificant compared to eQTL effects (Fig. 6¢-f). We attribute this to buff-
ering from high and stable expression of mMRNAs in other tissues, such
aslymphocytes (Fig. 6¢), the dynamics of solid components missingin
plasma and the limitation of detection (LOD) specific to the quantifica-
tion of affinity-based protein expression (Supplementary Fig. 21), with
further details described in Supplementary Note.

Fig. 4 | Complex trait colocalization. a, Number of colocalizing genes for each
ofthe major BBJ trait-QTL pairs, along with gene examples. The color coding
ofthe genes corresponds to the QTL classifications. b, Enrichment of complex
trait PIPs from the UKB according to trait category, for variants with putative
mRNA-specific or protein-specific causal QTL effects. ¢, Enrichment of complex
trait PIPs from the UKB, stratified according to the percentage of whole-blood
expressioninthe GTEx.d,e, Specific examples where pQTLs colocalize with
complex trait-causal variants (TNFRSFIIA (d) and APOE (e)).b, n = 3,206 protein-
specific and n = 5,308 mRNA expression-specific QTLs passing the PIP > 0.1
threshold were included. ¢, Those QTLs were further divided inton = 3,181,
1,344 and 799 mRNA-specific QTLs and n =1,908, 723 and 585 protein-specific
QTLsin each whole-blood mRNA expression level stratum (from low to high),

after removing the ones where GTEx data were missing. AID, autoimmune
disease; AG, albumin to globulin ratio; ALP, alkaline phosphatase; ALT, alanine
aminotransferase; AST, aspartate aminotransferase; CAD, coronary artery
disease; CRP, C-reactive protein; eGFR, estimated glomerular filtration rate;
GD, Graves’ disease; GGT, y-glutamyltransferase; HDLC, high-density lipoprotein
cholesterol; LDLC, low-density lipoprotein cholesterol; MAP, mean arterial
pressure; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular
hemoglobin concentration; MCV, mean corpuscular volume; Meno, age at
menopause; MI, myocardial infarction; NAP, nucleosome assembly protein;
RA, rheumatoid arthritis; RBC, red blood cell; SBP, systolic blood pressure;
sCr, serum creatinine response; T2D, type 2 diabetes; WBC, white blood cell.
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protein (xaxis) and mRNA (y axis) expression for the rs656105 genotype, with and
without controlling for LD with another nearby putative causal pQTL.

Interpreting a negative correlation between mRNA and
protein expression

Consistent with previous studies®**, the correlation between mRNA
and protein expression was limited in our dataset (Fig. 3f and Supple-
mentary Fig. 17a,b; mean Pearson r=0.047); alarge fraction of genes

had a negative correlation between mRNA and protein expression
(866 0f2,211(39.1%)). While multiple mechanisms could contribute to
suchanegative correlation®, we highlight ABO (r =-0.26; Fig. 7a), where
multiple distinct causal variants on the same gene acting at different
stages of the central dogmain the opposite direction (eQTLsand pQTLs;
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Fig.7b) might be a potential cause of the negative correlation. The ABO
gene has partially overlapping eQTL and pQTL peaks with a different
effect direction; statistical fine-mapping identified five distinct puta-
tive cis-causal variants (three separate eQTLs plus two pQTLs, hereafter
calledel, e2,e3, pland p2, with further details shownin Supplementary
Table 2). Although p1had asignificant positive effect on protein expres-
sionand a negative effect on mRNA expression (Fig. 7c), controlling the
LD withelande2 (and e3, whichisinnear-perfect LD with e2) resolved
the negative effect on mRNA expression. Similarly, although e2 had a
significant positive effect on protein expression and a negative effect
onmRNA expression (Fig. 7d), controlling the LD with p1 nearly resolved
the negative effect on protein expression. Functional annotations of
these variants further supported the distinct causal mechanisms.
p1(chr9:133257521:T:TC, rs8176719) is a frameshift variant on exon 6,
thereby acting during translation, whereas el (chr9:133252214:G:A,
rs9411476) and e2 (chr9:133301911:T:C, rs656105) had medium-to-high
sQTL evidence (sQTL PIP = 0.97 and 0.11, respectively, although not
canonical splicesites), thatis, in the earlier stage of the central dogma
and more subject to buffering at the multi-tissue level. For example, a
stable supply of the specific mRNA isoformin tissues other thanblood
may dominate the observed eQTL and sQTL effect on blood mRNA
and possibly mask the effect of the variant at the plasma protein level.
These observations highlight acomplex regulation landscape of ABO
mRNA and protein expression by multiple entangled causal variants
that form a negative correlation between mRNA and protein expres-
sioninthe blood.

Discussion

In this study, we presented a collection of whole-blood mRNA and
plasma protein expression data from 1,405 genotyped Japanese
samples. Our eQTL analysis presented an expanded catalog of 3,464
fine-mapped putative causal eQTLs at single-variant resolution, includ-
ing 932 validated by an MPRA, thereby allowing functional prioritization
of putative causal mRNA regulatory variants even in the case of tight
LD. Our pQTL analysis of 2,932 proteins presented a catalog of 582
fine-mapped putative causal pQTLs, allowing us to carry out detailed
functional characterization, ranging from mediation by eQTL effects
in several tissues (for example, liver or spleen) to protein structure
disruption.

Combining mRNA and protein expression for 998 samples, we
compared mRNA-specific or protein-specific versus shared regula-
tory effects to highlight distinct characteristics, such as enrichment of
sQTLs for shared regulatory variants and higher constraint for genes
specifically regulated by mRNA. Wereported a limited level of colocali-
zation between causal eQTLs and pQTLs, attributed to fundamental
differencesinmRNA versus plasmaproteinintheir origin and biological
property. Furthermore, we reported a higher proportion of trait-causal
and disease-causal variant colocalization for protein-specific QTLs
compared to mRNA-specific QTLs, especiallyingenes withalow mRNA
expression fraction in the blood, as well as clear differences in the
trans-regulatory landscape of class | HLA variations and their con-
nection to KIR families, all highlighting the value of plasma protein
expression studies on top of blood mRNA expression studies.

We also showed that theinteraction of QTL effects with COVID-19
severity was milder for protein expression compared to mRNA expres-
sion, probably because of active expression of mMRNA in lymphocytes
regardless of mRNA regulation in the blood, as well as the limited
dynamic range of affinity-based protein measurement (LOD). Finally,
taking the ABO locus as an example, we showed that negative cor-
relation could arise due to the LD of distinct nearby causal eQTLs and
pQTLs, warranting the need to consider the combination of variants®’
acting on different layers of regulatory mechanisms.

The limitations of our study include: (1) the existence of
measurement-specific effects by altering epitope-binding sites (epitope
effects). Although our analysis using multiple cohorts spanning

multiple technological platforms suggested a certain level of consist-
ency of pQTL architecture, it also suggested that epitope effects have
arole ininconsistent effect size estimations, especially in missense
variants; (2) the existence of measurements below the LOD, which
probably decreased the power of pQTL calling, especially when the
LOD fraction correlated with the biological properties of the sample
(forexample, COVID-19 severity); and (3) the fact that our pQTL analysis
was restricted to approximately 3,000 genes where measurements
were available.

With refined understanding of epitope effects, identification of
larger number of putative causal pQTLs by increasing the study size
and theintegration of more detailed machine learning-derived variant
features, such as effects on folding®®*, we envision a future where func-
tional priors specific for pQTLs similar to our previous work on eQTLs®°
could be leveraged to better understand protein regulation. Finally,
although we presented an example where nearby eQTLs and pQTLs
withanopposite effect direction existin LD, asystematic, genome-wide
evaluation of such QTL ‘entanglement’is yet to be performed. Digesting
regulatory mechanisms in light of multiple regulatory layers, includ-
ing splicing, isoform level expression and the dynamics of mRNA and
protein turnover, would be important for several aspects, such as
estimation of disease heritability mediated at different layers of the
central dogma or developments of drugs targeting mRNA or protein
expression specifically.

Our study, leveraging arich dataset of 1,405 EAS individuals with
genomics, transcriptomics and proteomics measurements, serves as
animportant step forward for deciphering the complex multiomics
landscape of human genetic variation in health and disease. All the
eQTL and pQTL summary statistics, and the MPRA results, are publicly
available via the Japan Omics Browser v.0.1 (https://japan-omics.jp/).
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Methods

Ethics

We complied with all relevant ethical regulations. This study was
approved by the ethics committees of the Keio University School of
Medicine, the Osaka University Graduate School of Medicine and
affiliated institutes. Written informed consent was obtained from all
participants.

TheCTF

The study participants were recruited through the Japan COVID-19 Task
Force (JCTF), whichis described indetailin®. In this study, 1,405 geno-
typed samples from the JCTF cohort presenting varying levels of the
COVID-19 phenotype at the time of recruitment and passing stringent
quality control (QC) steps (as described in detail in the next sections)
were analyzed. COVID-19 severity was categorized according to four
levels: most severe for patients in the intensive care unit or requiring
intubation and ventilation (n = 501); severe for others requiring oxygen
support (n =494); mild for other symptomatic patients (for example,
those with shortness of breath; n = 332); and asymptomatic for those
without COVID-19-related symptoms (n =78).In1,405 genotyped sam-
ples, mRNA expression in the whole blood was measured with RNA-seq
in 1,019 samples, protein expression in the plasma was measured in
1,384 samples and 998 samples were at the intersection.

Genotyping, RNA-seq and protein expression measurement
Genotyping was performed using an Infinium Asian Screening Array
(Illumina). Stringent sample and variant-level QC filters were applied
(forexample, sample call rate greater than 0.98, variant call rate greater
than 0.99), resulting in n =1,405 samples and a total of n=13,355,923
variants (n=502,364 genotyped and n =12,853,559 imputed). For
imputation, we extended our in-house and population-specific imputa-
tionreference panel; the extended, Japanese-specific reference panel
included n = 4,561 whole-genome sequenced (WGS) datafrom multiple
studies (for example, n=1,939 from the BBJ study® and n =141 WGS
data from ), and was higher in number and population specificity
compared to the imputation panel used in our previous transcrip-
tomics study of the JCTF?°, which consisted of WGS data from 1,037
Japanese samples® plus those from the 1000 Genomes Project. We
expected potential bias because the disease-ascertained nature of
the WGS datainthereference panel was relatively low, as we observed
animprovementinthe eQTL fine-mapping results when compared to
using the previous reference panel (Supplementary Fig. 1), suggest-
ing a major benefit of alarger sample size and population specificity
(Supplementary Note).

We lifted over the hgl9 genotypes to hg38 using the Genome
Analysis Toolkit (GATK) LiftoverVcftool, and filtered out those without
unique mapping. For the downstream QTL calling and fine-mapping
analyses, we applied additional filtering based on the minor allele
count (MAC) and imputation quality, while using a relatively lenient
threshold (MAC > 2 and imputation R*> 0.6). The loose threshold
setting was based on recent simulation-based observations®® that
fine-mapping benefits more from including low-frequency variants
evenwith arelatively limited quality, and was validated with functional
enrichmentanalyses (although warning us that low-frequency variants
could be slightly enriched for false positives; Supplementary Fig. 2i-I
and Supplementary Note).

RNA-seqwasperformed usingtheNovaSeq6000 platform (Illumina)
with paired end reads (read length of 100 bp), using the S4 Reagent Kit
(200 cycles). Plasma protein expression was measured using the Olink
Explore 3072 platform. The QC steps are described in the next sections.

eQTL and sQTL fine-mapping

We followed our previous pipeline for eQTL calling in principle, which
is based on the GTEx pipeline and described in detail in *°. To quantify
mRNA expression, RNA-seq datawere first aligned to the hg38 human

reference genome using STAR v.2.5.3a. Transcripts were quantified
using RSEM v.1.3.0. The following criteria were applied for sample
QC: 0.5 x108<number of mapped reads < 3 x 10%, mapping rate > 0.97,
intergenicrate <0.05, rRNA rate <0.05, base mismatch rate <0.005 and
intersample correlation deviation measure > -15 (the threshold was
slightly different from the GTEx pipeline or our previous pipeline to fit
the observed datadistribution; Supplementary Fig.22). mRNA expres-
sionwas thentrimmed mean of M component (TMM)-normalized while
low-expression datawere filtered out asinthe GTEx pipeline. AneQTL
call was performed using fastQTL, including 60 PEER factors, sex and
five genotype principal components as covariates. Potential variations
originating fromtechnicalfactors, such as RNA integrity number, were
thought to be captured by the PEER factors (Supplementary Fig. 23).
Performing eQTL mapping for each disease severity stratumand com-
bining the test statistics using a fixed effects model yielded generally
consistent results (Supplementary Fig. 24).

Fine-mapping of eQTLs and other QTLs was performed based
on our previous pipeline (that is, using FINEMAP v.1.3.1 and susieR
v.0.11.43 with default parameters, where the inputs were the summary
statistics and in-sample covariate-adjusted LD matrix), with two minor
changes. First, we changed the number of single effects in the SuSiE
model from ten to five, to be consistent with the default parameter
in FINEMAP. This change in number led to slightly conservative but
largely consistent results, as previously observed in ref. 20. Second,
we performed fine-mapping of all genes regardless of their minimum
Pvalue (whereas in a previous version®®, we restricted this to genes
withaminimum P <5 x107®), aswe had alarger sample size and higher
power. This could resultinasmallbut limited number of false positives
(described in detail in ref. 64). Throughout the article, we report PIP
as the minimum of the output from FINEMAP and SuSiE, and define
putative causal QTLs as PIP greater than 0.9.

sQTL calling and fine-mapping were also performed mainly based
onthe previous pipeline (that s, the splicing level was quantified using
LeafCutterv.0.2.7 and 15PEER factors wereincluded) with the changes
described above and the following additional modifications to reduce
possible false positive calls due to noisy annotation-free splice variant
quantification: (1) we defined the cis-window to be +0.1 Mb from the
center of theintron cluster; and (2) we omitted several additional filters
from the GTEx pipeline (WASP and z-score-based filtering). Instead,
we applied an additional stringent filtering step after nominal sQTL
calling, which filtered out intron clusters with aminimum P> 5x 108,
analogous to our eQTL fine-mapping in a smaller sample®.

pQTL fine-mapping

The Olink Explore 3072 platform quantifies the expression of each
proteininanormalized scale (normalized protein expression (NPX)).
As measuring proteins was separated into three batches for logistical
reasons, we bridge-normalized the NPX values using the OlinkAn-
alyze R package®, using 16 intersecting samples as bridging samples.
The distribution of COVID-19 severity was similar between batches
(Supplementary Fig. 4). To be consistent with the eQTL fine-mapping
pipeline and other major pQTL studies using Olink data, we further
inverse-normal transformed the bridge-normalized NPX matrix. Sam-
pleswith QC warning flags were removed. We did not apply additional
sample QC after confirming that there were no outlier and major batch
effects in the first two principal component spaces (Supplementary
Fig. 4) after bridge normalization. Although we observed a high per-
centage of measurements below the LOD for asubset of genes, we fol-
lowed the guideline on the Olink website (see ‘How is LOD estimated
for Olink Explore 3072/384’ and ‘Explore HT and what is recommended
downstream usage?’ at https://olink.com/faq) and did not explicitly
remove or adjust those entries. We instead evaluated the potential
effect of samples below the LOD post hoc and found no major bias
introduced by the inclusion of samples below the LOD (Supplementary
Fig.21and Supplementary Note).
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The gene names from the Olink platform were converted into
canonical gene names and Ensembl gene IDs based on gencode v.30.
Forthe assays corresponding to multiple gene names separated by an
underbar “_’ (forexample, CGB3_CGB5_CGBS8), we empirically split the
entryinto multiple entries with anidentical value (in the case above, we
interpreted that three proteins, CGB3, CGB5 and CGBS8, had the same
measurement value). Small numbers of genes where any gene name
alias in GeneCards (https://www.genecards.org/) did not match the
gene name in gencode v.30 were excluded from the analysis. When
a gene name was mapped to multiple Ensembl IDs, we exploded the
matrix and included all the Ensembl IDs separately. When multiple
measurements (either multiple gene names or assays) were mapped to
anEnsembl ID, we collapsed the measurements by taking the mean. In
all such cases, the differences between measurements were minimal,
limiting the bias introduced by this step (Supplementary Fig. 4).

After creating the protein expression matrix as described above,
QTL calling and fine-mapping were performed according to the same
stepsasineQTL fine-mapping (that s, sex, five genotype principal com-
ponentsand 60 PEER factors aimed at capturing sample-to-sample tech-
nical variation, each recalculated within the genotype and expression
matrix), except that the step corresponding tofiltering the genes based
onTPMandthe number of samples withnonzero TPM did not exist. Thus,
2,932 proteins were included in QTL calling. We acknowledge the slight
difference in the number of unique proteins measured compared to a
recent large-scale analysis using the same Olink Explore 3072 platform,
suchas the UKB PPP, because of minor differencesin the dataprocessing
step, as described above. The biological properties of these 2,932 genes
compared to all coding genes; for example, enrichment in inflamma-
tory functions, as noted on their website (https://olink.com/products/
olink-explore-3072-384) are summarized in Supplementary Fig. 25.

pQTLreplication

The UKB PPP data were downloaded from the Synapse portal (https://
www.synapse.org/#!Synapse:syn51365301). We matched each canoni-
calgenenameasingencode v.30 and the variant ID in hgl9 to perform
the comparison. For the effect size concordance analysis, pQTLs with
P>0.05in the UKB PPP dataset were not included for simplicity. The
ARIC® data (the full summary statistics and PIPs) were kindly shared by
theauthors (http://nilanjanchatterjeelab.org/pwas/). We matched the
Ensembl gene IDs based on gencode v.30 and the variant IDs in hg38,
removed any unmatched entries and performed the comparison. For
the EPIC-Norfolk study, we downloaded the supplementary data from
ref. 9 and matched the Ensembl gene IDs and the variant IDs (lifted to
hg38).For the mass spectrometry-derived pQTL data, we downloaded
the supplementary datafromref. 15 (Supplementary Data 3, summary
ofidentified pQTLs) and matched themonthe variant ID (lifted to hg38).
As the mass spectrometry data did not directly nominate the affected
genes, we matched the variantID alone and assumed that the gene with
the most significant cis-pQTL effectin our dataset was the affected gene
tomake the comparison. Different prefiltering strategies could contrib-
ute to the differences in replication rate, deeming our comparison of
thereplication rate between cohorts as semiquantitative.

mRNA-specific and protein-specific eQTL fine-mapping

To investigate the mRNA-specific or protein-specific expression of
QTLs, wefocused on 998 samples and 2,211 genes with both QC-passed
mRNA and protein expression measurements. Normalization was
reperformed within this reduced sample-by-gene matrix, for mRNA
and protein expression separately. For each normalized mRNA (or
protein) expression datum, linear regression using protein (or mRNA)
expression of the same gene as the only variable was performed to
calculate the regression coefficient. The mRNA (or protein) expres-
sion datawhere the linear effect of protein (or mRNA) were regressed
outusing the model described above were used as the mRNA-specific
or protein-specific expression matrix. QTL calling and fine-mapping

were performed in the same manner as described by others (that is,
preparing the same set of covariates in the QTL calling and with the
same parameter setting in the fine-mapping algorithm).

Targeted trans-eQTL and trans-pQTL calling
We first focused on the common lead pQTLs (variants with the lowest
pQTLPvalueforeachgene, minorallele frequency >0.01) and tested their
genome-wide pQTL effects (Bonferroni-corrected P=0.05/4,569,247,
where 4,569,247 is 1,569 common lead variants times 2,932 genes and
minus 31,061 cis-variant-gene pairs within a 5-Mb distance to the TSS)
using tensorQTL, including the same set of covariates as in cis-pQTL
mapping. Both the lead pQTLs and corresponding random control
variants were filtered to minor allele frequency >0.01 for consistency.
When focusing on the genetic variation in classical HLA genes to
test genome-wide trans-eQTL and trans-pQTL effects, DEEP*HLA® was
used to impute HLA alleles for the 998 samples with both mRNA and
protein measurements. We focused on 144 four-digit alleles passing
QC (imputation R*> 0.7 and minor allele frequency > 0.01) mainly on
classical HLA genes (HLA-A, HLA-B, HLA-C, DRBI1, DQA1, DQBI, DPAI,
DPBI and MICA). tensorQTL was used to test the trans-effect (defined
by >5Mb distance between the center of the MHC region and the gene
TSS) of each of the four-digit alleles on genome-wide mRNA and pro-
tein expression. For each of the HLA genes, the minimum Pvalue over
all the four-digit alleles were displayed in a Miami plot; those passing
asuggestive P<1x107 threshold were annotated. The MHC region
(defined as chr6:25726063-33400644) was not included in the cis-QTL
fine-mapping analyses because of their high complexity leading to
lower mapping quality (thatis, while we controlled any biases due toa
differencein LD structure by focusing on the same set of 998 samples,
we left the fine-mapping of causal variants within HLA, whether in cis
or trans, on mRNA or protein expression, as future work).

ieQTLand ipQTL calling

COVID-19severityieQTL calling (ieQTL calling) was performed accord-
ing to the pipeline described previously in ref. 20. Briefly, we used
COVID-19 severity classified into four levels as the interaction term,
kept all the other terms such as principal components and PEER fac-
tors, and used tensorQTL to obtain the P value from the likelihood
ratio test. ipQTL calling was performed in a similar fashion. Results
were largely consistent when excluding age from the covariates
(Supplementary Fig.20); they were far from identical when testing for
the interaction with age instead of COVID-19 phenotype, suggesting
that the inclusion of age was not introducing bias and that the COVID-19
interaction effects were not simply driven by shifts inage distribution
(Supplementary Note). Samples withboth RNA-seq and protein meas-
urements (n = 998) were used for ieQTL and ipQTL calling.

MPRA
Massively parallel reporter assay (MPRA) is a high-throughput method
that allows quantification of variant effects by measuring the tran-
scriptional activity of many reporters inserted with different sequence
elements. Our MPRA library contained 24,000 oligonucleotides,
allowing us to test nearly 12,000 variants across the genome (that is,
(24,000 - no. of controls)/2). While the library design is described in
a separate manuscript in preparation, using K562 and HepG2 cells,
we systematically tested variants with PIP > 0.1in the previous eQTL
fine-mapping from the JCTF?°, PIP > 0.1 in the previous functionally
informed fine-mapping of the GTEx whole-blood eQTLs®’, and asmall
number of additional variants with possible phenotypic effects, while
removing variants withaninsertionand deletion length greater than 70.
The MPRA experiments were performed according to the steps
inref. 23. Briefly, the MPRA library was synthesized by Agilent, ampli-
fied using PCR, adding randombarcodes and cloned into the pLS-Scel
vector (no. 137725, Addgene). Sequence-barcode associations in the
plasmid library were determined by sequencing using the NextSeq
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Mid Output 300 cycle kit. The plasmid library was packaged with len-
tivirus and infected into 2.8 million HepG2 or 10 million K562 cells
at a multiplicity of infection of 50 and 10, respectively. For each cell
line, three independent infections were performed to obtain three
biological replicates. After 3 days, genomic DNA and total RNA were
extracted using an AllPrep DNA/RNA Mini Kit (no. 80204, QIAGEN).
Total RNA was reverse-transcribed to generate complementary DNA,
using Superscript IV Reverse Transcriptase (Thermo Fisher Scientific).
Integrated and transcribed barcodes were amplified with specific
primerswhileincorporating the 16-bp unique molecularidentifier and
lllumina sequencing adapters. Barcodes were then sequenced using
the NextSeq High Output 75 cycle kit.

MPRAflow” was used to associate the barcodes to individual
200-bp sequences and to count the number of DNA and RNA reads
(Supplementary Fig. 26). After filtering noisy barcodes with fewer
than five DNA countsinareplicate, as well as noisy variants with fewer
than five total barcode-replicate pairs in reference or alternative
alleles, we aggregated all barcode counts for each sequence across
replicates and defined the allelic effect of each variant as log,((total
RNA count/total DNA countinalt)/(total RNA count/total DNA count
inref)). We then performed permutation-based significance tests to
obtainthe Pvalue for each variant and used the Benjamini-Hochberg
method to estimate the FDR. Variants passing an FDR threshold of
0.01 were defined as tier 1 EMVars; other variants passing an FDR
threshold of 0.1 were defined as tier 2 EMVars. As described in detail
in the Supplementary Note, our analysis was based on a simplified
model where RNA count follows a Poisson distribution with
A = a x (DNA count), where the translation rate a is a function of the
200-bp sequence alone.

As shown in Extended Data Fig. 2c,d, we did not observe a major
difference in enrichment level between K562 and HepG2 cells, even
though K562 cells are physiologically more relevant to blood, suggest-
ing that the effect of culturability, transduction efficiency and other
methodological details could differ depending on cell type.

Defining shared and specific QTLs

To investigate shared and distinct QTL effects on mRNA and protein
expression, we calculated the product of the eQTL and pQTL PIP (recal-
culated using theidentical set of n = 998 samples for each of the inter-
secting n = 2,211 genes) to define the CLPP. As eQTL and pQTL calling
from identical samples were nonindependent, we deemed this CLPP
assignment as conservative, and thus took different thresholds to
declare (single-variant-level) colocalization: CLPP > 0.9 for ‘colocal-
izing QTLs” and CLPP = 0.1 for ‘possibly colocalizing QTLs". We deem
how to set the threshold to declare colocalization as an open problem,
althoughasanalyzedin the Results section, using different thresholds
did not qualitatively change the results.

When performing coloc, we turned the Pvalues into Bayes factors
assuming a single causal variant per gene and calculated the PP.H1
to PP.H4 with the default prior probability setting described in their
manuscript®. When performing SuSiE-coloc, we calculated the PP.H1
to PP.H4 for each combination of pure mRNA and protein QTL cred-
ible sets in a gene and let the maximum PP.H4 be the colocalization
probability for a gene. (We did not relax the purity filter for credible
sets, which could result in slightly conservative results compared to
their original implementation.) For the main results, we did not use
canonical colocalization® because we observed more than one causal
eQTL or pQTL effect in each. SuSiE-coloc®® was also not chosen as our
main method because we aimed to also use the results from FINEMAP.
We took the minimum PIPs from SuSiE and FINEMAP, resulting in a
slightly more conservative CLPP estimation than using one of the two
(Supplementary Fig. 13i).

mRNA-specific QTLs were defined as those with a protein-adjusted
eQTLPIP>0.9and CLPP < 0.01(CLPPasdescribed above); protein-specific
QTLswere defined as mRNA-adjusted pQTL PIP > 0.9 and CLPP < 0.01.

Functional enrichment
Variant Effect Predictor (VEP) v.108 was used to annotate the vari-
ant-gene pairs with several functional annotations. Instead of using
the canonical ‘most severe consequence’, which could be tagged by
the effect on other genes, we parsed the annotation at the unit of the
variant-gene pairs to be more specific. When multiple annotations
were included, we did not filter to the most severe ones canonically;
thus, each variant-gene pair could be positive for more than one
annotation. Protein-specific annotations were obtained as BED files
from UniProt through the UCSC Genome Browser. We used pybed-
toolsto check whether avariantintersected with each specific protein
annotation.

Enrichment of a category C specific functional annotation given
a bin B PIP was defined as the likelihood ratio compared to arandom
draw (thatis, p(v € C | v € B) /p(v € C)). Theerror bar denotes thes.e.m.
ofthenumerator (thatis, we assumed that the denominator contained
alarge number of variant-gene pairs and that the error could be trivial).
Plots are often displayed in log-scale for visualization purposes. The
colocalization enrichment score between our pQTL calling and eQTL
callingin GTEx v.8 across 49 tissues (Fig. 2e) was calculated as follows:
(1) We obtained variant-gene-tissue triads with PIP > 0.001in GTEx
v.8 (where the PIP was calculated with a uniform prior and the minimum
of SuSiE and FINEMAP was taken, as described in ref. 60) and filtered
outmissense variants. We annotated the pQTLPIPinJCTF asafunction
of variant-gene while filling with zero when either the PIP was lower
than 0.001or missing inthe JCTF. (2) Then, for eachtissue T, we calcu-
lated the average of the CLPP, defined as the product of the eQTL and
pQTL PIPs. Let this be U;. (3) We randomly selected the same number
of variant-gene-tissue triads from tissues other than Tand calculated
the average CLPP. We repeated the process (thatis, sampling the same
number of variant-gene pairs excluding the tissue of interest and
calculating the average CLPP) for 1,000 times (let these be V;,,
V1a,...,V11000); (4) OUr point estimate of the enrichment scoreis the mean
of Urdivided by V;and the error baris the 2.5-97.5% quantile.Although
the estimation could be deflated as it does not distinguish between
variants missing versus having a PIP below the 0.001 threshold, and
the power was dependent on the sample size for each GTEx tissue, we
expected to qualitatively characterize the different level of colocaliza-
tion between plasma proteome and each tissue.

Complex trait and disease analysis

BBJ and UKB fine-mapping data, described in detail in ref. 38, were
downloaded from the National Bioscience Database Center (NBDC)
Human Database (accession no. hum0197) and the Finucane lab
(https://www.finucanelab.org/data). PIP enrichment was defined for
eachvariant-gene-traittriad as the sum(PIP o g X PIPy,;) (those with
PIP,.;; <0.001were not included in this calculation; this had a minimal
effect on the quantification); then, the maximum over genes was taken
to obtain the per-variant scores. When the analysis was not
trait-specific, or according to the trait category, the maximum over
the traits in a category was taken. When visualizing the number of
colocalizing genes per trait (Fig. 4a), we used a custom threshold of
0.1 < min(PIPoiq7L, PIPraic), instead of using the CLPP, to allow compari-
sonbetweenshared versus specific QTLs (that s, for shared QTLs, the
threshold was 0.1 < min(PIPeqry, PIPqrL, PIPyait))-

Negative expression correlation analysis

For the analysis of mMRNA and protein QTL entanglement at the ABO
locus, we selected five variants corresponding to the top PIP vari-
ants from two eQTL credible sets and two pQTL credible sets from
SuSiE that were in LD, removing the ones with limited Bayes factors
or far away from the variant of highest interest (=p1). When compar-
ing the QTL effect with and without controlling for the others, we
restricted the analysis to n =998 samples with both mRNA and protein
measurements.
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Statistical analysis

Allthe statistical tests were two-sided. No adjustment was made for the
reported Pvalues unlessit was clearly stated as ‘adjusted Pvalue’. The
error bars denote the s.e.m. unless noted otherwise. When showing
enrichment, the enrichment error bar denotes the standard error of
the numerator divided by the denominator.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The summary statistics of the QTL analyses and the RNA-seq expres-
sion matrix are available at the NBDC Human Database (accession no.
humO0343). The QTL summary statistics are also available at https://
japan-omics.jp/. Individual genotype data are available at the Euro-
pean Genome-phenome Archive (accessionno. EGAS00001006284).
Publicly available datasets used are: BBJ and UKB fine-mapping;
NBDC Human Database (accession no. hum0197) and https://www.
finucanelab.org/data; the expression modifier score (https://www.
finucanelab.org/data); the GTEx cis-eQTL data (https://gtexportal.org/
home/datasets); the hg38 reference genome (https://hgdownload.soe.
ucsc.edu/goldenPath/hg38/); protein-specific annotations from Uni-
Prot, obtained through the UCSC Genome Browser (https://genome.
ucsc.edu/cgi-bin/hgTables); protein QTL data from the ARIC study
(http://nilanjanchatterjeelab.org/pwas/); and protein QTL data from
the UKB PPP study (https://www.synapse.org/#!Synapse:syn51365301).

Code availability

The code used in this study is available at https://github.com/Qingbo
Wang/japan_covid_taskforce_multi_omics and has been deposited via
Zenodo at https://doi.org/10.5281/zenodo.11169201 (ref. 69). The soft-
ware and tools used for data analysis and visualization are: DEEP*HLA
v.1.0.0 (https://zenodo.org/record/4478902)7°; fastQTLv.2.165 (http://
fastqtl.sourceforge.net); FINEMAPv.1.3.1 (http://www.christianbenner.
com/); GATK v.4.1.9.0 LiftoverVcf (https://gatk.broadinstitute.org/);
the GTEX pipeline (https://github.com/broadinstitute/gtex-pipeline);
LeafCutter v.0.2.7 (https://davidaknowles.github.io/leafcutter/index.
html); matplotlib v.3.3.4 (https://matplotlib.org); MPRAflow v.2.3.5
(https://mpraflow.readthedocs.io/en/latest/index.html); NumPyv.1.20.1
(https://numpy.org); OlinkAnalyze v.3.4.1 (https://cran.r-project.org/
web/packages/OlinkAnalyze/index.html); pandas v.1.1.4 (https://pandas.
pydata.org); pybedtools v.0.9.0 (https://daler.github.io/pybedtools/);
PyWGCNAVv.1.20.3 (https://github.com/mortazavilab/PyWGCNA); RSEM
v.1.3.0 (https://deweylab.github.io/RSEM/); scikit-learnv.0.24.1 (https://
scikit-learn.github.io/stable); SciPy v.1.6.2 (https://scipy.org/); seaborn
v.0.11.1 (https://seaborn.pydata.org); STARv.2.5.3aand v.2.6.0 (https://
github.com/alexdobin/STAR); susieR v.0.11.43 (https://github.com/
stephenslab/susieR); tensorQTL v.1.0.5 (https://github.com/broadin-
stitute/tensorqtl); TwoSampleMR v.0.5.7 (https://mrcieu.github.io/
TwoSampleMR/articles/introduction.html); and VEP v.108 (https://asia.
ensembl.org/Homo_sapiens/Tools/VEP/).
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Extended DataFig. 1| Overview of the study. We performed mRNA expression and processed in asingle platform as part of the Japan COVID-19 Task Force®.
QTL (eQTL) fine-mapping from 1,019 RNA-sequenced samples, pQTL fine- Massive parallel reporter assay (MPRA) was performed for validation of a subset
mapping from 1,384 protein measured samples, as well as mRNA or protein of fine-mapped eQTLs.

specific QTL fine-mapping from 998 samples with both measures, all genotyped
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Extended Data Fig. 2| eQTL fine-mapping expanded. a. Comparison of the
numbers of eQTLs in our dataset compared to the previous release. b. Functional
score (the expression modifier score = EMS) enrichment in eQTLs along with

the posterior inclusion probability (PIP). c. Percentage of expression modifying
variants (emvars) experimentally validated in massive parallel reporter assay

(MPRA). Tier 1corresponds to FDR < 0.01and tier2to FDR < 0.1.nineach
bin=7,418,2,060, 685,885 and 317 variants. d. Percentage of agreement between
the direction of variant effects in eQTL or MPRA study. nin each bin=7,418,2,992
and 955 variants.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed
IZ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

|X’ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
N Gjve P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

000 0 O00000%

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  No software was used in data collection.

Data analysis The set of softwares and tools used for the analysis as well as data visualization are listed as below;
DEEP*HLA v1.0.0 (https://zenodo.org/record/4478902)
fastQTL v2.165 (http://fastqgtl.sourceforge.net)
FINEMAP v1.3.1 (http://www.christianbenner.com/)
GATK v4.1.9.0 LiftoverVcf ( https://gatk.broadinstitute.org/)
GTEx pipeline (https://github.com/broadinstitute/gtex-pipeline)
LeafCutter v0.2.7 (https://davidaknowles.github.io/leafcutter/index.html)
matplotlib v3.3.4 (https://matplotlib.org)
MPRAflow v2.3.5 (https://mpraflow.readthedocs.io/en/latest/index.html)
numpy v1.20.1 (https://numpy.org)
OlinkAnalyze v3.4.1 (https://cran.r-project.org/web/packages/OlinkAnalyze/index.html)
pandas v1.1.4 (https://pandas.pydata.org)
pybedtools v0.9.0 (https://daler.github.io/pybedtools/)
pYWGCNA v1.20.3 (https://github.com/mortazavilab/PyWGCNA)
RSEM v1.3.0 (https://deweylab.github.io/RSEM/)
scikit-learn v0.24.1 (https://scikit-learn.github.io/stable)
scipy v1.6.2 (http://scikit-learn.github.io/stable)
seaborn v0.11.1 (https://seaborn.pydata.org)
STARv2.5.3a and v2.6.0 (https://github.com/alexdobin/STAR)




susieR v0.11.43 (https://github.com/stephenslab/susieR)

tensorQTL v1.0.5 (https://github.com/broadinstitute/tensorqtl)

TwoSampleMR v0.5.7 (https://mrcieu.github.io/TwoSampleMR/articles/introduction.html)

Variant Effect Predictor (VEP) version 108 web interface (https://asia.ensembl.org/Homo_sapiens/Tools/VEP/)

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability

- For clinical datasets or third party data, please ensure that the statement adheres to our policy

The summary statistics of QTL analyses, as well as the RNA-seq expression matrix are available at the National Bioscience Database Center (NBDC) Human Database
(accession code: hum0343; https://humandbs.biosciencedbc.jp/en/hum0343). The QTL summary statistics are also visible at the browser https://japan-omics.jp/.
The individual genotype data is available at European Genome-Phenome Archive (EGA) (accession code: EGAS00001006284; https://ega-archive.org/studies/
EGAS00001006284).

The list of publicly available datasets used are listed below:

Biobank Japan (BBJ) and UK Biobank (UKB) fine-mapping:

NBDC Human Database (accession code: hum0197; https://humandbs.biosciencedbc.jp/en/hum0197 ) and https://www.finucanelab.org/data
hg38 reference genome: https://hgdownload.soe.ucsc.edu/goldenPath/hg38/

The expression modifier score (EMS): https://www.finucanelab.org/data

Genotype-Tissue Expression (GTEx) cis-eQTL data: https://gtexportal.org/home/datasets

Protein specific annotations from Uniprot, obtained through the UCSC genome browser; https://genome.ucsc.edu/cgi-bin/hgTables
Protein-QTL data from the ARIC study; http://nilanjanchatterjeelab.org/pwas/

Protein-QTL data from the UKB-PPP study; https://www.synapse.org/#!Synapse:syn51365301

Research involving human participants, their data, or biological material

Policy information about studies with human participants or human data. See also policy information about sex, gender (identity/presentation),
and sexual orientation and race, ethnicity and racism.

Reporting on sex and gender No selection based on sexual orientation was performed.

Reporting on race, ethnicity, or = We did not pre-select study samples based on any social groupings.
other socially relevant

groupings

Population characteristics Study participants are of East Asian ancestry (age mean =59.9 yrs old, sd = 17.1), tested positive for PCR test results.

Recruitment We enrolled participants diagnosed as COVID-19 positive by physicians using the clinical manifestation and PCR test results at
one of the >100 the affiliated hospitals participating to Japan COVID-19 Task Force. Any subjects with obtained informed
consent were included without further biases. Due to the nature of COVID-19 susceptibility, the number of male participants
were larger than that of females (997 / 1,405 = 70.1% male).

Ethics oversight This study was approved by the ethical committees of Keio University School of Medicine, Osaka University Graduate School

of Medicine, and affiliated institutes. Informed consent was obtained from all participants.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size The study participants were recruited through Japan COVID-19 Task Force. Whole blood-RNA-sequencing and/or plasma protein expression
assay was performed for a subset of the genotyped samples (n=1405) and analyzed in this study. Although no sample size was predetermined
due to the unpredictable nature of the COVID-19 outbreak, the current sample size is deemed reasonable, as it is larger than that of major
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bulk RNA-seq studies such as GTEx (n = 670 for whole blood) and the size of east Asian samples in a major pQTL study (UKB-PPP, east Asian
n=262).

Data exclusions  Stringent sample and variant level quality control (QC) filters were applied (e.g. call rate >0.97). The distribution of the quality are available at
Supplementary Figures

Replication Although we did not attempt to replicate our results by constructing another dataset of the same nature due to its uniqueness, we replicated
our main findings by comparing with existing databases such as GTEx and UK Biobank.

Randomization  We did not need to use randomization in this study because this is a genotype-gene expression association study. All the samples with
available accessibility to genotype and RNA/protein expression data passing quality control threshold were included in the analysis.

Blinding We did not apply blinding of the samples because this is a genotype-gene expression association study and no intervention was conducted in
our study.
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We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
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