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Statistically and functionally fine-mapped 
blood eQTLs and pQTLs from 1,405 humans 
reveal distinct regulation patterns and 
disease relevance

Qingbo S. Wang    1,2  , Takanori Hasegawa3, Ho Namkoong    4  , 
Ryunosuke Saiki    5, Ryuya Edahiro2,6, Kyuto Sonehara    1,2, Hiromu Tanaka7, 
Shuhei Azekawa    7, Shotaro Chubachi7, Yugo Takahashi    8, 
Saori Sakaue    2,9,10,11, Shinichi Namba    2, Kenichi Yamamoto    2,12,13, 
Yuichi Shiraishi    14, Kenichi Chiba14, Hiroko Tanaka3, Hideki Makishima    5, 
Yasuhito Nannya5, Zicong Zhang    15, Rika Tsujikawa15, Ryuji Koike16, 
Tomomi Takano    17, Makoto Ishii18, Akinori Kimura    19, Fumitaka Inoue    15, 
Takanori Kanai20, Koichi Fukunaga7, Seishi Ogawa5,15, Seiya Imoto    21, 
Satoru Miyano    3, Yukinori Okada    1,2,22,23,24   & Japan COVID-19 Task Force*

Studying the genetic regulation of protein expression (through protein 
quantitative trait loci (pQTLs)) offers a deeper understanding of regulatory 
variants uncharacterized by mRNA expression regulation (expression QTLs 
(eQTLs)) studies. Here we report cis-eQTL and cis-pQTL statistical fine-mapping 
from 1,405 genotyped samples with blood mRNA and 2,932 plasma samples of 
protein expression, as part of the Japan COVID-19 Task Force (JCTF). Fine-mapped 
eQTLs (n = 3,464) were enriched for 932 variants validated with a massively parallel 
reporter assay. Fine-mapped pQTLs (n = 582) were enriched for missense variations 
on structured and extracellular domains, although the possibility of epitope-binding 
artifacts remains. Trans-eQTL and trans-pQTL analysis highlighted associations 
of class I HLA allele variation with KIR genes. We contrast the multi-tissue origin 
of plasma protein with blood mRNA, contributing to the limited colocalization 
level, distinct regulatory mechanisms and trait relevance of eQTLs and pQTLs. 
We report a negative correlation between ABO mRNA and protein expression 
because of linkage disequilibrium between distinct nearby eQTLs and pQTLs.

Studies of genetic regulation of mRNA expression (expression quanti-
tative trait locus (eQTL) studies) is highly informative in interpreting 
associations between genetic variation and human diseases1,2. However, 
mRNA expression is a limited proxy of protein expression, which affects 
human phenotypes in a more direct manner3–5.

Analysis of genetic regulation of protein expressions (protein 
QTL (pQTL) studies) is gaining popularity6–11, owing to the devel-
opment of high-throughput affinity-based assays that enable 

one-shot measurements of thousands of proteins in large-scale 
biobank cohorts. Sun et al.7 performed a pQTL study in 3,301  
samples on 3,622 plasma proteins measured using SOMAscan and 
identified nearly 2,000 pQTLs. Zhang et al.8 performed large-scale 
pQTL fine-mapping in European and African populations and dis-
cussed druggability. The UK Biobank (UKB) Pharma Proteomics 
Project (PPP) has performed pQTL mapping in more than 50,000 
samples12–14, uncovering common and rare variant contributions to 
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pQTL mapping results from the UKB PPP study12 and observed a high cor-
relation in effect size estimates (Fig. 1b). The correlation increased along 
with the causal evidence (PIP) in our dataset; it was the highest when the 
population background matched (that is, when compared to n = 262 EAS 
samples in the UKB; Pearson r = 0.97 when PIP = 1; first row in Fig. 1b). The 
second highest correlation was observed in European (EUR) samples in 
the UKB (n > 40,000 samples; Pearson r = 0.93 when PIP = 1; second row 
in Fig. 1b), followed by African (AFR) samples in the UKB (n = 931; Pearson 
r = 0.85 when PIP = 1). The fraction of the lead variants in the UKB PPP 
dataset also increased along with the PIP (as an approximation of causal-
ity in the absence of fine-mapping data in the UKB PPP; Supplementary 
Fig. 5). Such concordance between two datasets, both measured using 
the Olink Explore 3072 assay, validate our pQTL fine-mapping. Lower 
consistency was observed when comparing with other datasets based 
on different technological platforms8,24–26 (Fig. 1c), as discussed in detail 
in Supplementary Figs. 6 and 7 and in Supplementary Note.

Functional characterization of fine-mapped pQTLs
To characterize fine-mapped pQTLs, we tested the enrichment of 
major functional annotations. For noncoding annotations, the 5′ and 
3′ untranslated regions (UTRs) were significantly enriched for putative 
causal pQTLs (521.5-fold and 167.6-fold; Fisher’s exact test P = 8.8 × 10−77 
and 5.3 × 10−86, respectively); for coding annotations, missense and 
predicted loss of function (pLoF) showed enrichments an order of 
magnitude higher (2109.2-fold and 8046.9-fold; Fisher’s exact test 
P < 10−100 for both), which is consistent with our understanding that 
pQTL effects could be driven by both transcriptional and posttran-
scriptional regulations (Fig. 2a).

Focusing on missense pQTLs, we tested the enrichment of protein 
structure and localization-related annotations (Fig. 2b). Our analy-
sis highlighted two factors: (1) putative causal pQTLs were enriched 
for protein domains that form an alpha-helix or beta-sheet structure 
(2.48-fold and 1.96-fold; Fisher’s exact test P = 7.6 × 10−6 and 1.3 × 10−3, 
respectively) and (2) they were enriched for extracellular domains (or 
depleted for cytoplasmic domains; 1.43-fold and 0.23-fold; Fisher’s exact 
test P = 4.5 × 10−3 and 1.8 × 10−3, respectively). These observations suggest 
that missense mutations could show pQTL effects by affecting protein 
structure and stability, especially in an extracellular environment, as dis-
cussed in ref. 9, who reported an enrichment of secreted protein-related 
features in genes harboring pQTLs (Supplementary Fig. 7).

On the other hand, as protein expression in our study was measured 
with an affinity-based assay using antibodies specific to each protein, 
the observed pQTL effects might reflect differences in binding affinity 
introduced by genomic variations, rather than differences in physiologi-
cal protein abundance. To evaluate such potential ‘epitope effects’, we 
investigated the replication rate of fine-mapped pQTLs stratified accord-
ing to missense and other functional annotations (ARIC8 instead of the 
UKB PPP was used because fine-mapping data were only available for 
ARIC). Missense variations were the most enriched functional annota-
tion, even when focusing on possibly causal pQTLs replicated in the ARIC 
study (PIP > 0.1 in both studies; Fig. 2c and Supplementary Fig. 8). On the 
other hand, replicated possibly causal missense pQTLs often presented 
opposite effect directions (Fig. 2d; 13 of 57 variants). A possible model 
derived from these observations is that a missense variant increases 
affinity to an antibody in one platform while decreasing affinity to the 
probe in another platform; thus, the ‘true’ effect size and direction in 
the physiological context is uncertain, warranting future large-scale 
experimental validation of pQTLs as done in the MPRA for eQTLs.

A subset of causal pQTLs in noncoding regions possibly presents 
pQTL effects caused by transcriptional regulation in related tissues. To 
characterize such pQTL variants as colocalizing27 with eQTL variants, 
we compared our fine-mapping results with the eQTL fine-mapping 
results from the Genotype-Tissue Expression (GTEx) project v.8  
(ref. 2) in 49 major tissues (Supplementary Fig. 9a,b and Methods). The 
liver presented the highest enrichment, followed by whole blood and 

variation in protein expression that do not necessarily involve the 
effect of eQTLs in major tissues.

Complementing such studies, having another layer of diversity 
by studying East Asian (EAS) populations would be promising because 
multi-cohort genetic and proteomic studies have been effective in 
identifying drug targets15–18. In addition, instead of using an external 
eQTL dataset to examine colocalization between eQTLs and pQTLs, 
building on earlier studies with multimodal measurements of mRNA 
and protein expression in the same sample set19 in this era of large-scale 
proteomics would be effective in identifying disease-causing variants 
in multiple layers as it minimizes the potential loss of discovery power 
due to differences in technical and clinical backgrounds.

In this study, we systematically characterized shared versus mRNA 
expression or protein-specific QTLs using a collection of 1,405 geno-
typed samples, whole-blood mRNA and 2,932 plasma protein expres-
sion data (measured using Olink Explore 3072) in the Japan COVID-19 
Task Force ( JCTF20,21), including 998 samples and 2,211 genes with 
both mRNA and protein measurements (Extended Data Fig. 1). Using 
statistical fine-mapping, we describe the distinctive features for each 
class of QTLs, show the relevance of protein-specific QTLs to complex 
traits and provide examples where protein-specific QTLs explain vari-
ant–disease associations. We then discuss the dynamics of mRNA and 
protein expression as a function of disease (COVID-19) severity. Finally, 
we characterize that eQTLs and pQTLs in complex linkage disequilib-
rium (LD) in the ABO locus might possibly create a negative correlation 
between mRNA and protein expression.

Results
An expanded catalog of fine-mapped whole-blood eQTLs
We identified 3,464 putative causal (posterior inclusion probability 
(PIP) > 0.9) cis-eQTLs from statistical fine-mapping of 165,410,953 
variant–gene pairs in 1,019 samples. The power gain compared to the 
previous version of our fine-mapping call from 465 samples20 is repre-
sented by a 2.96-fold increase in the number of putative causal eQTLs 
(from 1,169 to 3,464; Extended Data Fig. 2a); the largely maintained 
quality of fine-mapping was validated by functional enrichment and 
consistency with external datasets (Extended Data Fig. 2b, and Supple-
mentary Figs. 1 and 2). The list of splice QTLs (sQTLs) was also updated 
(Supplementary Fig. 3).

For further validation of statistically fine-mapped eQTLs, we per-
formed a massively parallel reporter assay (MPRA22,23) targeting over 
10,000 variants with nontrivial causal evidence in the previous call (PIP 
≥ 0.1). The fraction of MPRA hits (Supplementary Data 1 and Methods) 
increased along with the PIPs. For example, 13.9% of variants with a PIP 
of 1 presented expression modifier effects in either or both K562 and 
HepG2 at a false discovery rate (FDR) of less than 0.1 (2.2-fold enrich-
ment compared to 6.3% at a PIP < 0.1; Fisher’s exact test P = 2.5 × 10−6; 
Extended Data Fig. 2c). In addition, we observed increased concord-
ance between the direction of the eQTL effects and the effects in the 
MPRA, along with the confidence in each metric. For example, when 
focusing on 60 variants with a PIP greater than 0.99 and an MPRA hit 
FDR lower than 0.01 (that is, tier 1) in either tissue, an effect direction 
concordance of around 80% was observed in both cell types (82.5% in 
K562 and 79.4% in HepG2 cells; Extended Data Fig. 2d). Taken together, 
these results provide orthogonal support for our fine-mapping results.

A fine-mapped pQTL resource from 1,384 EAS samples
Using the expression of 2,932 plasma proteins measured with the Olink 
Explore 3072 assay for 1,384 samples, we performed genome-wide 
cis-pQTL calling and fine-mapping (Supplementary Fig. 4 and Meth-
ods). More than 40% of the measured proteins (n = 1,191 proteins, 40.6%) 
had at least one variant with P < 5 × 10−8 (Fig. 1a). Statistical fine-mapping 
identified n = 582 putative causal (PIP ≥ 0.9) pQTLs.

To validate our pQTL calling, we compared our result with multiple 
external studies. First, we compared our results with the recent large-scale 
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spleen, which is consistent with our understanding that a large proportion 
of plasma proteins are secreted from the liver28, as well as hematopoietic 
organs (2.44-fold, 2.15-fold and 1.92-fold, respectively; P = 2 × 10−3 for the 
spleen; Fig. 2e). The testis and most brain-related tissues were signifi-
cantly depleted for colocalization (for example, 0.33-fold, P = 1 × 10−3 for 
the testis), which is consistent with the previous literature29.

Contrasting eQTLs and pQTLs highlights distinct functional 
features
Although colocalization between eQTLs and pQTLs has been investi-
gated previously6,7,9,12,19,30,31, when eQTL and pQTL data are from different 
cohorts, the correlation between two association statistics can be low 
because of LD structure differences even when the underlying causal 
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Fig. 1 | A fine-mapped pQTL resource from 1,384 EAS samples. a, Fraction 
of genes passing the minimum P threshold. b, Concordance of variant effect 
size in an external large pQTL dataset (the UKB PPP), stratified according to 
the population in the UKB PPP (row) and the PIP of our pQTL fine-mapping 

(column). For simplicity, only variants with P < 0.05 in the UKB PPP are included. 
c, Concordance of PIP with an external pQTL fine-mapping dataset that used the 
SOMAscan platform (ARIC)8.
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Fig. 2 | Functional characterization of fine-mapped pQTLs. a, Enrichment 
of major functional annotations along with pQTL PIPs. The missing dot in the 
category corresponds to n = 0. b, Enrichment of protein-level structure and 
localization annotations along with pQTL PIPs for missense variants.  
c, Concordance between the fine-mapped pQTL PIPs in our dataset and the 
ARIC dataset, stratified according to major functional annotations.  
d, Enrichment of missense variation in possibly causal (PIP > 0.1) pQTLs, with 

inconsistent effect direction between datasets. e, Enrichment of colocalization 
score between pQTLs and 49 fine-mapped eQTLs in the GTEx. *P < 0.05, 
**P < 0.05/49. a,b, n = 27,354,135, 164,350, 32,868, 4,257, 562, 508 and 81  
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variant–gene pairs are included. Those missing in the GTEx were omitted from 
the downsampling process (Methods).
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variants are the same. Calling eQTLs and pQTLs from the same samples 
is better suited to colocalization analysis as LD contributes equally to 
both QTL calls. Thus, we used n = 998 samples and 2,211 genes where 
both RNA and protein expression profiles existed, fine-mapped the 
eQTLs and pQTLs within the 998 samples once more and compared 
their effect sizes (Fig. 3a). While the correlation was relatively high 
for putative causal eQTLs and pQTLs (Fig. 3a, bottom right; r = 0.80 
when both eQTL and pQTL PIPs are greater than 0.9), there were many 
fine-mapped eQTLs and pQTLs that are probably causal in either mRNA 
or protein expression in the blood but not both (for example, top-right 
and bottom-left in Fig. 3a).

Further, we created mRNA-adjusted protein expression and 
protein-adjusted mRNA expression profiles, and performed adjusted 
mRNA or protein expression QTL19 calling followed by statistical 
fine-mapping (Supplementary Fig. 10). Using a catalog of fine-mapped 
eQTLs, pQTLs, protein-adjusted eQTLs and mRNA-adjusted pQTLs, we 
classified putative causal variant–gene pairs into three classes: (1) ‘colo-
calizing QTLs’, confidently acting on both mRNA and protein expression; 
(2) ‘mRNA-specific QTLs’; and (3) ‘protein-specific QTLs’ (Methods). 
Nearly half of colocalizing QTLs are probably explained by splice vari-
ation (17 of 42 (40.5%) had an sQTL PIP > 0.9, in contrast to 20.2% for 
mRNA-specific QTLs and 6.4% for protein-specific QTLs; Fisher’s exact test 
P = 5.3 × 10−3 and 5.3 × 10−8; Fig. 3b). When focusing on noncoding annota-
tions, mRNA-specific QTLs were enriched for transcription factor binding 
sites and marginally for 5′ UTR variants (1.96-fold and 1.91-fold compared 
to protein-specific QTLs; P = 1.2 × 10−2 and 5.3 × 10−2 testing the difference 
of the odds ratio). The enrichment level of 3′ UTR variants for mRNA and 
protein-specific QTLs was comparable (67.8-fold and 86.0-fold, P > 0.05), 
supporting the notion that RNA sequencing (RNA-seq)-based methods 
for testing the effects of 3′ UTR variants32,33, which often involve post-
transcriptional modifications, are harder than those of 5′ UTR variants. 
For coding annotations, missense variants were strongly enriched for 
protein-specific QTLs as expected (8.95-fold compared to mRNA-specific 
QTLs, P = 1.1 × 10−15; Fig. 3c and Supplementary Fig. 11a).

Buffering of blood mRNA expression variation in constrained 
genes
Turning to a gene-centric view, we classified 557 genes carrying variants 
belonging to one (or, rarely, more than one) of the three QTL classes 
defined above (Supplementary Data 2 and Fig. 3d). We then examined 
their mRNA expression level across tissues in the GTEx, as well as their 
constraint from the Genome Aggregation Database (gnomAD) (LoF 
observed/expected upper bound fraction (LOEUF)34; Fig. 3e and Sup-
plementary Fig. 11b). Genes carrying mRNA-specific QTLs had a higher 
number of expressed tissues in the GTEx (expressed in 46 versus 41 or 
34 tissues on average, t-test P = 6.3 × 10−4 and 1.4 × 10−3), and were more 
highly constrained compared to those carrying colocalization QTLs or 
protein-specific QTLs (mean LOEUF = 0.90 versus 1.29 or 1.02, t-test 
P = 1.7 × 10−5 and 4.0 × 10−3). Our observation suggests that, in highly 
constrained and ubiquitously expressed genes, transcriptional regula-
tion in the blood is more likely to be buffered in plasma, presumably 
resulting in maintained functionality.

Limited colocalization between eQTLs and pQTLs
We next shifted our focus to the intersection of eQTL and pQTL 
effects (that is, colocalization). In our QTL classification, even with a 

colocalization posterior probability (CLPP) threshold of 0.1 (Methods), 
the number of genes carrying possibly colocalizing QTLs were far fewer 
than those carrying mRNA or protein-specific QTLs (68 versus 260 or 
158). Using an alternative method (Mendelian randomization; Sup-
plementary Fig. 12 and Methods) also suggested limited overlap; we 
explored possible reasons for such a low colocalization level.

First, we tested colocalization with a larger blood eQTL dataset 
(eQTLgen) to evaluate the potential power loss attributed to a low 
sample size. Even with a lenient assumption that a significant P value 
in eQTLgen is a sign of colocalization (in reality, many are noncausal, 
tagged variants), the colocalization level remained low (only less than 
25% were resolved; Supplementary Fig. 13a–d). Second, we compared 
our colocalization detection method with another state-of-the-art 
method (SuSiE-coloc). While more colocalization could be declared 
depending on the threshold setting, the overall fraction of genes with 
colocalizing evidence remained low (<15% at a PP.H4 = 0.1 threshold; 
Supplementary Fig. 13e,f).

Last is the contribution of tissues other than blood. We stratified 
the gene sets into distinct classes based on the mRNA expression level 
in whole blood relative to other tissues in the GTEx and observed that 
genes with a higher percentage of mRNA expression had a higher corre-
lation of blood mRNA and plasma protein expression (average Pearson 
r = 0.26 for genes with more than 50% expression in the blood versus 
0.021 for genes with less than 1% expression, t-test P = 1.2 × 10−8, where 
percentage expression was defined as the transcripts per million (TPM) 
in whole blood divided by the sum of TPM across 54 tissues in the GTEx; 
Fig. 3f). Such differences in the mRNA expression level in whole blood 
presented major differences in colocalization level (Fig. 3g). Only 5% of 
lowly (<1%) mRNA-expressed genes had colocalization evidence at a 0.1 
CLPP threshold, while over 20% did for highly (>5%) mRNA-expressed 
genes. Considering additional biological properties, such as active 
secretion of proteins into the bloodstream (Supplementary Fig. 13g,h) 
or testing colocalization with fine-mapped variants in the GTEx across 
49 tissues also increased the colocalization signal (from approximately 
5% to over 10%; Supplementary Figs. 9c and 13i). Nevertheless, the frac-
tion of genes with colocalization evidence remained low, even with the 
most lenient threshold (<33% at an ultra-lenient 0.001 CLPP threshold 
across GTEx tissues).

Thus, our observations are in line with previous reports19 that only 
a sizable fraction of plasma pQTLs are mediated through eQTL effects 
in major tissues.

Examples of limited colocalization between eQTLs and pQTLs
As an example of blood mRNA-specific regulation on a constrained 
gene, we highlight rs12519827 (chr5:150488763:G:A), an intronic variant 
on the NDST1 gene (Fig. 3h). The variant has a strong negative effect 
on blood mRNA expression (P < 1 × 10−200, PIP = 1, β = −0.68) but little or 
no effect on the protein expression level in plasma (P = 0.41, PIP = 0). 
NDST1 is a nonsecreted protein, highly constrained (LoF observed/
expected = 3/41.1 = 0.07 in gnomAD) and mouse homozygous knockout 
lethal35 with known association with severe intellectual developmental 
disorder36. Associations with complex traits did not reach genome-wide 
significance in the Biobank Japan (BBJ)37,38 (P = 2.6 × 10−7 for basophil 
count and P > 1 × 10−4 for others). Notably, the mRNA expression of 
NDST1 in whole blood was the lowest among all tissues in the GTEx 
(median TPM = 8.9); the eQTL effect of rs12519827 is highly specific to 

Fig. 3 | Characterization of mRNA-specific and protein-specific or 
colocalizing QTLs and genes. a, Correlation between eQTL and pQTL effect 
sizes in our dataset, stratified according to the PIPs from the fine-mapping of 
each QTL. b, Fraction of fine-mapped sQTLs for different QTL categories.  
c, Enrichment of major functional annotations for mRNA-specific or protein-
specific QTL PIP bins. d, Number of genes harboring mRNA-specific or protein-
specific or colocalizing QTLs. e, Distribution of constraint score (LOEUF) and 
number of mRNA-expressing (TPM > 1) tissues in the GTEx for different QTL 

categories. f, Ridge plot showing the distribution of correlation between mRNA 
and protein expression in 998 samples, stratified according to the percentage 
of whole-blood expression in the GTEx. g, Fraction with colocalization evidence 
according to varying thresholds, stratified according to the percentage of  
whole-blood expression in the GTEx. Each stratum contains 1,429, 510 and  
272 (174 + 55 + 43) genes, as visible in f. h, Locus zoom around the NDST1 gene,  
as an example of blood mRNA-specific regulation on a constrained gene.
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whole blood (P = 1.3 × 10−97 in whole blood but more than 5 × 10−8 in all 
other tissues), suggesting that the whole-blood-specific eQTL effect 
has only a negligible effect and is buffered by relatively high and stable 
mRNA expression in other tissues relevant to plasma protein expres-
sion. As another example of a gene with limited colocalization evidence, 
we highlight the unresolved ALDH2 locus39–42 in Supplementary Note, 
Supplementary Fig. 14 and Supplementary Table 1.

pQTLs may be more relevant to complex traits than eQTLs
The observation that variation in mRNA expression in constrained 
genes is often buffered suggests possible differences in contribu-
tion to complex traits. We used large-scale fine-mapping results for  
79 traits from the BBJ to quantify the level of trait-causal variant colo-
calization (Fig. 4a, Supplementary Fig. 15 and Supplementary Data 3). 
Protein-specific QTLs had significantly higher enrichment compared 
to mRNA-specific QTLs (7.6-fold versus 5.6-fold, P = 2.7 × 10−3, ratio 
of means test for PIP > 0.01 combined), suggesting that alteration in 
protein expression is more relevant to complex traits. We replicated 
these observations using the fine-mapping results for 96 traits in 
the UKB38,43, stratified according to trait categories, validating that 
protein-specific QTL enrichment is not simply driven by a specific 
biological trait (protein-specific QTL enrichment was greater; P < 0.05 
except for psychological traits; Fig. 4b). Enrichment is not likely to be 
driven by simple measurement traits such as blood cell count or lipid 
levels as enrichment persisted in several major disease and complex 
traits, although not universal to all traits as the opposite enrichment 
pattern was observed for body mass index (Supplementary Fig. 15a). 
Stratification according to the percentage of mRNA expression of 
the genes suggested that the power gain of protein-specific QTLs is 
mainly from genes that are relatively lowly mRNA-expressed in the 
blood (Fig. 4c and Supplementary Fig. 15d), highlighting the value of 
the multi-tissue origin of plasma proteins. Comparison with nonspecific 
QTLs is more nuanced, as described in detail in the Supplementary Note.

As specific examples, we highlighted three scenarios where plasma 
pQTL fine-mapping is beneficial in addition to eQTL fine-mapping in 
whole blood for complex trait-causal variant interpretation: (1) a 3′ UTR 
variant possibly involved in posttranscriptional regulation (rs884205 
on the TNFRSF11A gene; Fig. 4d); (2) a missense variant probably affect-
ing protein stability (rs429358, the well-known constituent of the 
APOE-ε4 allele44; Fig. 4e and Supplementary Fig. 16); and (3) mRNA 
expression regulation taking place in non-blood tissue (rs13395911 
on EFHD1 and rs28372783 on CDH1; Supplementary Fig. 15h,i), with 
detailed interpretation in Supplementary Note.

Characterizing the trans-pQTL effects
The regulatory effects of genetic variants on distal genes (that is, 
trans-regulation) are much lower than those on a nearby gene (that 
is, cis-regulation). Thus, identifying genome-wide trans-regulatory 
variants requires a sample size much larger than that of a canonical 
cis-QTL analysis45–48. In this study, we used two different approaches 
to maximize the prior and to control for the multiple test burden  
(Supplementary Note).

First, we focused on the lead cis-pQTL (that is, the variant with the 
lowest cis-pQTL P value) for each gene and tested their genome-wide 
trans-effects. We observed a distribution shift in the test statistics 
for the lead cis-variant in trans-pQTL effects compared to random 
variants (Fig. 5a), validating the strategy. Notably, we replicated the 
observation of a trans-pQTL ‘hotspot’ in the ABO gene, regulating the 
expressions of 26 genes genome-wide (at a Bonferroni significance; 
P < 1.1 × 10−8; Fig. 5b).

Second, we focused on variation in the classical alleles of the HLA49 
genes (and MICA, an HLA-like gene located within the major histocom-
patibility complex (MHC); Fig. 5c) and examined the genome-wide 
trans-eQTL and trans-pQTL effect. This identified significant asso-
ciations (P < 1 × 10−5) for 42 genes (Supplementary Data 4), includ-
ing those between class 1 HLA alleles (especially, HLA-C) and killer 
immunoglobulin-like receptor (KIR) genes (KIRDL2 at the mRNA level 
and KIRDL3 at the protein level; P = 7.2 × 10−9 and P = 1.2 × 10−25), provid-
ing a genetic basis for the well-known molecular interaction between 
KIR and class 1 HLA at the protein–protein level50–52.

For HLA, comparing trans-mRNA-regulated and protein-regulated 
genes, there was zero overlap at the threshold of P < 1 × 10−5, potentially 
suggesting that plasma pQTL analysis better captures the dynamics of 
immunological responses across cells and organs led by the variation in 
HLA alleles, whereas the blood transcriptome is more narrowly focused 
on peripheral immune cell responses.

Buffering of context-specific (severe COVID-19) eQTL effects
Our study cohort was ascertained for COVID-19-positive cases, classi-
fied into four levels of severity. We used this phenotype to understand 
the dynamics of mRNA and protein expression in response to infec-
tious diseases.

First, we observed an increase in the correlation between mRNA 
and protein expression in patients with severe COVID-19 (Fig. 6a and 
Supplementary Fig. 17), presumably because of the natural immune 
response triggering an increase in relevant genes at both the blood 
mRNA and plasma protein level. As an example, interleukin-1 
receptor-like 1 (IL1RL1), a well-known chemokine, had high correla-
tion specifically in the severe and most severe states (Fig. 6b; r = 0.50 
in the most severe disease and 0.08 in the asymptomatic state). In addi-
tion, the shared biological entities of blood mRNA and plasma protein 
dynamics were visible at the module level (Supplementary Fig. 18).

Then, we investigated the genetic regulation landscape in several 
different infectious disease statuses53. Specifically, we performed 
COVID-19 severity interaction QTL (iQTL) analysis as described previ-
ously in20 and compared the interaction landscape at the mRNA and pro-
tein levels (Supplementary Figs. 19 and 20 and Supplementary Data 5).  
The interaction between disease status and pQTL effects was less sig-
nificant compared to eQTL effects (Fig. 6c–f). We attribute this to buff-
ering from high and stable expression of mRNAs in other tissues, such 
as lymphocytes (Fig. 6c), the dynamics of solid components missing in 
plasma and the limitation of detection (LOD) specific to the quantifica-
tion of affinity-based protein expression (Supplementary Fig. 21), with 
further details described in Supplementary Note.

Fig. 4 | Complex trait colocalization. a, Number of colocalizing genes for each 
of the major BBJ trait–QTL pairs, along with gene examples. The color coding 
of the genes corresponds to the QTL classifications. b, Enrichment of complex 
trait PIPs from the UKB according to trait category, for variants with putative 
mRNA-specific or protein-specific causal QTL effects. c, Enrichment of complex 
trait PIPs from the UKB, stratified according to the percentage of whole-blood 
expression in the GTEx. d,e, Specific examples where pQTLs colocalize with 
complex trait-causal variants (TNFRSF11A (d) and APOE (e)). b, n = 3,206 protein-
specific and n = 5,308 mRNA expression-specific QTLs passing the PIP > 0.1 
threshold were included. c, Those QTLs were further divided into n = 3,181, 
1,344 and 799 mRNA-specific QTLs and n = 1,908, 723 and 585 protein-specific 
QTLs in each whole-blood mRNA expression level stratum (from low to high), 

after removing the ones where GTEx data were missing. AID, autoimmune 
disease; AG, albumin to globulin ratio; ALP, alkaline phosphatase; ALT, alanine 
aminotransferase; AST, aspartate aminotransferase; CAD, coronary artery 
disease; CRP, C-reactive protein; eGFR, estimated glomerular filtration rate;  
GD, Graves’ disease; GGT, γ-glutamyltransferase; HDLC, high-density lipoprotein 
cholesterol; LDLC, low-density lipoprotein cholesterol; MAP, mean arterial 
pressure; MCH, mean corpuscular hemoglobin; MCHC, mean corpuscular 
hemoglobin concentration; MCV, mean corpuscular volume; Meno, age at 
menopause; MI, myocardial infarction; NAP, nucleosome assembly protein;  
RA, rheumatoid arthritis; RBC, red blood cell; SBP, systolic blood pressure;  
sCr, serum creatinine response; T2D, type 2 diabetes; WBC, white blood cell.
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Fig. 5 | The trans-QTL analysis. a, Q–Q plot comparing the P distribution when 
testing trans-pQTL effects for random variants (blue) or lead cis-pQTL variants 
(orange). b, Overview of the trans-pQTL effects. c, Miami plot for genome-wide 
trans-eQTL and trans-pQTL effects of variation in HLA genes. Genes passing the 
suggestive P < 1 × 10−5 threshold have been enlarged and annotated (in bold if 

the gene had both mRNA and protein measurements). The largest association 
in eQTL effect for RNF5P1 was probably driven by a sequencing error61. In the 
plot, we omitted chromosome X, which contained only one significant pQTL 
association (CFP; P = 9 × 10−5), for visual simplicity.

http://www.nature.com/naturegenetics


Nature Genetics | Volume 56 | October 2024 | 2054–2067 2063

Article https://doi.org/10.1038/s41588-024-01896-3

–0.25

<1 [1,5) [5,25)

Percentage of whole-blood expression in GTEx

Mild or asymptomatic
Most severe

[25,50) ≥50

C
or

re
la

tio
n(

m
RN

A,
 p

ro
te

in
)

Pe
ar

so
n 

r

0

0.25

0.50

0.75

mRNA expression

r = 0.0811
Asymptomatic Mild Severe Most severe

r = –0.0041

IL1RL1 expression according to COVID-19 severity

r = 0.3254 r = 0.4984

Pr
ot

ei
n 

ex
pr

es
si

on

–3 –2 –1 0 1 2 3

–3

–2

–1

0

1

2

3

mRNA expression

Lymphocyte expression rank
in GTEx v.8 (for significant ones)

Best
2nd best
3rd best
4th best or less

IL1RL1

FAS

CLEC4C

–3 –2 –1 0 1 2 3

mRNA expression
–3 –2 –1 0 1 2 3

mRNA expression
–3 –2 –1 0 1 2 3

COVID-19 severity ieQTL, –log10(P)

C
O

VI
D

-1
9 

se
ve

rit
y

ip
Q

TL
, –

lo
g 10

(P
)

Pr
ot

ei
n

(n
or

m
al

iz
ed

)
m

RN
A

(n
or

m
al

iz
ed

)

0
0

5

10

15

5 10 15 20 25 30
–2

Asymptomatic Mild

COVID-19 severity

IL1RL1

CLEC4CFAS

β = –0.28 β = –0.03 β = –0.21 β = –0.17

β = 0.06 β = 0.24 β = –0.17 β = –0.12

β = 0.28 β = 0.35 β = 0.63 β = 0.65

β = 0.57 β = 0.83 β = 1.14 β = 1.36

rs77767746
genotype

T/T
T/G
G/G

rs11202918
genotype

A/A
A/G
G/G

rs7302014
genotype

T/T
T/C
C/C

Severe Most severe

Asymptomatic Mild

COVID-19 severity
Severe Most severeAsymptomatic Mild

COVID-19 severity
Severe Most severe

0

2

4

–2

0

2

4

β = –0.19 β = 0.1 β = –0.04 β = –0.03

β = 0.41 β = 0.44 β = 0.38 β = 0.1

Pr
ot

ei
n

(n
or

m
al

iz
ed

)
m

RN
A

(n
or

m
al

iz
ed

)

–2

0

2

4

–2

0

2

4

Pr
ot

ei
n

(n
or

m
al

iz
ed

)
m

RN
A

(n
or

m
al

iz
ed

)

0

2

–2

0

2

4

a

b

c d

e f

Fig. 6 | COVID-19 severity interaction eQTLs (ieQTLs) and interaction pQTLs 
(ipQTLs). a, Increase of correlation between mRNA and protein expression in 
severe COVID-19 across a ranging fraction of whole-blood expression in the GTEx. 
The boxes inside the violin plots show the 25%, 50% and 75% quantiles. b, An 
example of increased correlation between mRNA and protein expression along 
with COVID-19 severity (IL1RL1 gene). c, Scatter plot comparing the significance 

(−log10(P)) of ieQTLs (x axis) and ipQTLs (y axis), colored according to the rank of 
expression in lymphocytes in the GTEx, when significant. d, Scatter plot showing 
the effect of rs77767746 on IL1RL1 mRNA and protein expression. e, Scatter plot 
showing the effect of rs11202918 on FAS mRNA and protein expression. f, Scatter 
plot showing the effect of rs11055602 on CLEC4C mRNA and protein expression.
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Interpreting a negative correlation between mRNA and 
protein expression
Consistent with previous studies54,55, the correlation between mRNA 
and protein expression was limited in our dataset (Fig. 3f and Supple-
mentary Fig. 17a,b; mean Pearson r = 0.047); a large fraction of genes 

had a negative correlation between mRNA and protein expression  
(866 of 2,211 (39.1%)). While multiple mechanisms could contribute to 
such a negative correlation56, we highlight ABO (r = −0.26; Fig. 7a), where 
multiple distinct causal variants on the same gene acting at different 
stages of the central dogma in the opposite direction (eQTLs and pQTLs; 

–3

AB
O

 p
ro

te
in

 e
xp

re
ss

io
n

m
RN

A 
(n

or
m

al
iz

ed
)

pQ
TL

–l
og

10
(P

)
eQ

TL
–l

og
10

(P
)

pQ
TL

PI
P

eQ
TL

PI
P

–2

–1

0

1

2

3

ABO mRNA expression

r = –0.2605

0

0

100

0

0

133.20 133.22 133.24 133.26

Position on chr 9 (Mbp)

e2, e3p2 r = –0.44

r = –0.14

r > 0.99r = 0.22

r = 0.34

r = 0.59

r = –0.54

p1e1

133.28 133.30

1

1

100

200 β > 0
β < 0

β > 0
β < 0

ABO locus

p1

e1 e3
e2

p1

–3 –2 –1 0 1 2 3

–0.6
–1.5 –1.0 –0.5 0

Protein (normalized)

Genotype:
REF/REF (n = 242)

REF/REF, e1 and e2 are REF/REF (n = 32)
REF/ALT, e1 and e2 are REF/REF (n = 65)
ALT/ALT, e1 and e2 are REF/REF (n = 31)

REF/ALT (n = 516)
ALT/ALT (n = 240)

Genotype:
REF/REF (n = 384)

REF/REF, p1 has ALT (n = 352)
REF/ALT, p1 has ALT (n = 373)
ALT/ALT, p1 has ALT (n = 31)

REF/ALT (n = 477)
ALT/ALT (n = 137)

–1.00 –0.75 –0.50 –0.25 0 0.25 0.50

Protein (normalized)

E�ect of rs8176719 (p1) on ABO expression E�ect of rs656105 (e2) on ABO expression

0.5 1.5

–0.4

–0.2

0

0.2

0.4

0.6

m
RN

A 
(n

or
m

al
iz

ed
)

–0.6

–0.4

–0.2

0

0.2

0.4

0.6

0.8

a b

c d

Fig. 7 | Negative correlation between whole-blood mRNA and plasma protein 
expression in ABO. a, Density scatter plot showing negatively correlated mRNA 
and protein expression for the ABO gene. b, Locus zoom around the ABO locus 
containing two putative causal eQTLs and three putative causal pQTLs, and 
visualization of LD between those five causal variants. c, Normalized protein  
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without controlling for LD with another nearby putative causal pQTL.
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Fig. 7b) might be a potential cause of the negative correlation. The ABO 
gene has partially overlapping eQTL and pQTL peaks with a different 
effect direction; statistical fine-mapping identified five distinct puta-
tive cis-causal variants (three separate eQTLs plus two pQTLs, hereafter 
called e1, e2, e3, p1 and p2, with further details shown in Supplementary 
Table 2). Although p1 had a significant positive effect on protein expres-
sion and a negative effect on mRNA expression (Fig. 7c), controlling the 
LD with e1 and e2 (and e3, which is in near-perfect LD with e2) resolved 
the negative effect on mRNA expression. Similarly, although e2 had a 
significant positive effect on protein expression and a negative effect 
on mRNA expression (Fig. 7d), controlling the LD with p1 nearly resolved 
the negative effect on protein expression. Functional annotations of 
these variants further supported the distinct causal mechanisms.  
p1 (chr9:133257521:T:TC, rs8176719) is a frameshift variant on exon 6, 
thereby acting during translation, whereas e1 (chr9:133252214:G:A, 
rs9411476) and e2 (chr9:133301911:T:C, rs656105) had medium-to-high 
sQTL evidence (sQTL PIP = 0.97 and 0.11, respectively, although not 
canonical splice sites), that is, in the earlier stage of the central dogma 
and more subject to buffering at the multi-tissue level. For example, a 
stable supply of the specific mRNA isoform in tissues other than blood 
may dominate the observed eQTL and sQTL effect on blood mRNA 
and possibly mask the effect of the variant at the plasma protein level. 
These observations highlight a complex regulation landscape of ABO 
mRNA and protein expression by multiple entangled causal variants 
that form a negative correlation between mRNA and protein expres-
sion in the blood.

Discussion
In this study, we presented a collection of whole-blood mRNA and 
plasma protein expression data from 1,405 genotyped Japanese 
samples. Our eQTL analysis presented an expanded catalog of 3,464 
fine-mapped putative causal eQTLs at single-variant resolution, includ-
ing 932 validated by an MPRA, thereby allowing functional prioritization 
of putative causal mRNA regulatory variants even in the case of tight 
LD. Our pQTL analysis of 2,932 proteins presented a catalog of 582 
fine-mapped putative causal pQTLs, allowing us to carry out detailed 
functional characterization, ranging from mediation by eQTL effects 
in several tissues (for example, liver or spleen) to protein structure 
disruption.

Combining mRNA and protein expression for 998 samples, we 
compared mRNA-specific or protein-specific versus shared regula-
tory effects to highlight distinct characteristics, such as enrichment of 
sQTLs for shared regulatory variants and higher constraint for genes 
specifically regulated by mRNA. We reported a limited level of colocali-
zation between causal eQTLs and pQTLs, attributed to fundamental 
differences in mRNA versus plasma protein in their origin and biological 
property. Furthermore, we reported a higher proportion of trait-causal 
and disease-causal variant colocalization for protein-specific QTLs 
compared to mRNA-specific QTLs, especially in genes with a low mRNA 
expression fraction in the blood, as well as clear differences in the 
trans-regulatory landscape of class I HLA variations and their con-
nection to KIR families, all highlighting the value of plasma protein 
expression studies on top of blood mRNA expression studies.

We also showed that the interaction of QTL effects with COVID-19 
severity was milder for protein expression compared to mRNA expres-
sion, probably because of active expression of mRNA in lymphocytes 
regardless of mRNA regulation in the blood, as well as the limited 
dynamic range of affinity-based protein measurement (LOD). Finally, 
taking the ABO locus as an example, we showed that negative cor-
relation could arise due to the LD of distinct nearby causal eQTLs and 
pQTLs, warranting the need to consider the combination of variants57 
acting on different layers of regulatory mechanisms.

The limitations of our study include: (1) the existence of 
measurement-specific effects by altering epitope-binding sites (epitope 
effects). Although our analysis using multiple cohorts spanning  

multiple technological platforms suggested a certain level of consist-
ency of pQTL architecture, it also suggested that epitope effects have 
a role in inconsistent effect size estimations, especially in missense 
variants; (2) the existence of measurements below the LOD, which 
probably decreased the power of pQTL calling, especially when the 
LOD fraction correlated with the biological properties of the sample 
(for example, COVID-19 severity); and (3) the fact that our pQTL analysis 
was restricted to approximately 3,000 genes where measurements 
were available.

With refined understanding of epitope effects, identification of 
larger number of putative causal pQTLs by increasing the study size 
and the integration of more detailed machine learning-derived variant 
features, such as effects on folding58,59, we envision a future where func-
tional priors specific for pQTLs similar to our previous work on eQTLs60 
could be leveraged to better understand protein regulation. Finally, 
although we presented an example where nearby eQTLs and pQTLs 
with an opposite effect direction exist in LD, a systematic, genome-wide 
evaluation of such QTL ‘entanglement’ is yet to be performed. Digesting 
regulatory mechanisms in light of multiple regulatory layers, includ-
ing splicing, isoform level expression and the dynamics of mRNA and 
protein turnover, would be important for several aspects, such as 
estimation of disease heritability mediated at different layers of the 
central dogma or developments of drugs targeting mRNA or protein 
expression specifically.

Our study, leveraging a rich dataset of 1,405 EAS individuals with 
genomics, transcriptomics and proteomics measurements, serves as 
an important step forward for deciphering the complex multiomics 
landscape of human genetic variation in health and disease. All the 
eQTL and pQTL summary statistics, and the MPRA results, are publicly 
available via the Japan Omics Browser v.0.1 (https://japan-omics.jp/).
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Methods
Ethics
We complied with all relevant ethical regulations. This study was 
approved by the ethics committees of the Keio University School of 
Medicine, the Osaka University Graduate School of Medicine and 
affiliated institutes. Written informed consent was obtained from all 
participants.

The JCTF
The study participants were recruited through the Japan COVID-19 Task 
Force ( JCTF), which is described in detail in 21. In this study, 1,405 geno-
typed samples from the JCTF cohort presenting varying levels of the 
COVID-19 phenotype at the time of recruitment and passing stringent 
quality control (QC) steps (as described in detail in the next sections) 
were analyzed. COVID-19 severity was categorized according to four 
levels: most severe for patients in the intensive care unit or requiring 
intubation and ventilation (n = 501); severe for others requiring oxygen 
support (n = 494); mild for other symptomatic patients (for example, 
those with shortness of breath; n = 332); and asymptomatic for those 
without COVID-19-related symptoms (n = 78). In 1,405 genotyped sam-
ples, mRNA expression in the whole blood was measured with RNA-seq 
in 1,019 samples, protein expression in the plasma was measured in 
1,384 samples and 998 samples were at the intersection.

Genotyping, RNA-seq and protein expression measurement
Genotyping was performed using an Infinium Asian Screening Array 
(Illumina). Stringent sample and variant-level QC filters were applied 
(for example, sample call rate greater than 0.98, variant call rate greater 
than 0.99), resulting in n = 1,405 samples and a total of n = 13,355,923 
variants (n = 502,364 genotyped and n = 12,853,559 imputed). For 
imputation, we extended our in-house and population-specific imputa-
tion reference panel; the extended, Japanese-specific reference panel 
included n = 4,561 whole-genome sequenced (WGS) data from multiple 
studies (for example, n = 1,939 from the BBJ study39 and n = 141 WGS 
data from 62), and was higher in number and population specificity 
compared to the imputation panel used in our previous transcrip-
tomics study of the JCTF20, which consisted of WGS data from 1,037 
Japanese samples63 plus those from the 1000 Genomes Project. We 
expected potential bias because the disease-ascertained nature of 
the WGS data in the reference panel was relatively low, as we observed 
an improvement in the eQTL fine-mapping results when compared to 
using the previous reference panel (Supplementary Fig. 1), suggest-
ing a major benefit of a larger sample size and population specificity 
(Supplementary Note).

We lifted over the hg19 genotypes to hg38 using the Genome 
Analysis Toolkit (GATK) LiftoverVcf tool, and filtered out those without 
unique mapping. For the downstream QTL calling and fine-mapping 
analyses, we applied additional filtering based on the minor allele 
count (MAC) and imputation quality, while using a relatively lenient 
threshold (MAC > 2 and imputation R2 > 0.6). The loose threshold 
setting was based on recent simulation-based observations38 that 
fine-mapping benefits more from including low-frequency variants 
even with a relatively limited quality, and was validated with functional 
enrichment analyses (although warning us that low-frequency variants 
could be slightly enriched for false positives; Supplementary Fig. 2i–l 
and Supplementary Note).

RNA-seq was performed using the NovaSeq 6000 platform (Illumina)  
with paired end reads (read length of 100 bp), using the S4 Reagent Kit 
(200 cycles). Plasma protein expression was measured using the Olink 
Explore 3072 platform. The QC steps are described in the next sections.

eQTL and sQTL fine-mapping
We followed our previous pipeline for eQTL calling in principle, which 
is based on the GTEx pipeline and described in detail in 20. To quantify 
mRNA expression, RNA-seq data were first aligned to the hg38 human 

reference genome using STAR v.2.5.3a. Transcripts were quantified 
using RSEM v.1.3.0. The following criteria were applied for sample 
QC: 0.5 × 108 < number of mapped reads < 3 × 108, mapping rate > 0.97, 
intergenic rate <0.05, rRNA rate <0.05, base mismatch rate <0.005 and 
intersample correlation deviation measure > −15 (the threshold was 
slightly different from the GTEx pipeline or our previous pipeline to fit 
the observed data distribution; Supplementary Fig. 22). mRNA expres-
sion was then trimmed mean of M component (TMM)-normalized while 
low-expression data were filtered out as in the GTEx pipeline. An eQTL 
call was performed using fastQTL, including 60 PEER factors, sex and 
five genotype principal components as covariates. Potential variations 
originating from technical factors, such as RNA integrity number, were 
thought to be captured by the PEER factors (Supplementary Fig. 23). 
Performing eQTL mapping for each disease severity stratum and com-
bining the test statistics using a fixed effects model yielded generally 
consistent results (Supplementary Fig. 24).

Fine-mapping of eQTLs and other QTLs was performed based 
on our previous pipeline (that is, using FINEMAP v.1.3.1 and susieR 
v.0.11.43 with default parameters, where the inputs were the summary 
statistics and in-sample covariate-adjusted LD matrix), with two minor 
changes. First, we changed the number of single effects in the SuSiE 
model from ten to five, to be consistent with the default parameter 
in FINEMAP. This change in number led to slightly conservative but 
largely consistent results, as previously observed in ref. 20. Second, 
we performed fine-mapping of all genes regardless of their minimum 
P value (whereas in a previous version20, we restricted this to genes 
with a minimum P < 5 × 10−8), as we had a larger sample size and higher 
power. This could result in a small but limited number of false positives 
(described in detail in ref. 64). Throughout the article, we report PIP 
as the minimum of the output from FINEMAP and SuSiE, and define 
putative causal QTLs as PIP greater than 0.9.

sQTL calling and fine-mapping were also performed mainly based 
on the previous pipeline (that is, the splicing level was quantified using 
LeafCutter v.0.2.7 and 15 PEER factors were included) with the changes 
described above and the following additional modifications to reduce 
possible false positive calls due to noisy annotation-free splice variant 
quantification: (1) we defined the cis-window to be ±0.1 Mb from the 
center of the intron cluster; and (2) we omitted several additional filters 
from the GTEx pipeline (WASP and z-score-based filtering). Instead, 
we applied an additional stringent filtering step after nominal sQTL 
calling, which filtered out intron clusters with a minimum P > 5 × 10−8, 
analogous to our eQTL fine-mapping in a smaller sample20.

pQTL fine-mapping
The Olink Explore 3072 platform quantifies the expression of each 
protein in a normalized scale (normalized protein expression (NPX)). 
As measuring proteins was separated into three batches for logistical 
reasons, we bridge-normalized the NPX values using the OlinkAn-
alyze R package65, using 16 intersecting samples as bridging samples. 
The distribution of COVID-19 severity was similar between batches 
(Supplementary Fig. 4). To be consistent with the eQTL fine-mapping 
pipeline and other major pQTL studies using Olink data, we further 
inverse-normal transformed the bridge-normalized NPX matrix. Sam-
ples with QC warning flags were removed. We did not apply additional 
sample QC after confirming that there were no outlier and major batch 
effects in the first two principal component spaces (Supplementary 
Fig. 4) after bridge normalization. Although we observed a high per-
centage of measurements below the LOD for a subset of genes, we fol-
lowed the guideline on the Olink website (see ‘How is LOD estimated 
for Olink Explore 3072/384’ and ‘Explore HT and what is recommended 
downstream usage?’ at https://olink.com/faq) and did not explicitly 
remove or adjust those entries. We instead evaluated the potential 
effect of samples below the LOD post hoc and found no major bias 
introduced by the inclusion of samples below the LOD (Supplementary 
Fig. 21 and Supplementary Note).

http://www.nature.com/naturegenetics
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The gene names from the Olink platform were converted into 
canonical gene names and Ensembl gene IDs based on gencode v.30. 
For the assays corresponding to multiple gene names separated by an 
underbar ‘_’ (for example, CGB3_CGB5_CGB8), we empirically split the 
entry into multiple entries with an identical value (in the case above, we 
interpreted that three proteins, CGB3, CGB5 and CGB8, had the same 
measurement value). Small numbers of genes where any gene name 
alias in GeneCards (https://www.genecards.org/) did not match the 
gene name in gencode v.30 were excluded from the analysis. When 
a gene name was mapped to multiple Ensembl IDs, we exploded the 
matrix and included all the Ensembl IDs separately. When multiple 
measurements (either multiple gene names or assays) were mapped to 
an Ensembl ID, we collapsed the measurements by taking the mean. In 
all such cases, the differences between measurements were minimal, 
limiting the bias introduced by this step (Supplementary Fig. 4).

After creating the protein expression matrix as described above, 
QTL calling and fine-mapping were performed according to the same 
steps as in eQTL fine-mapping (that is, sex, five genotype principal com-
ponents and 60 PEER factors aimed at capturing sample-to-sample tech-
nical variation, each recalculated within the genotype and expression 
matrix), except that the step corresponding to filtering the genes based 
on TPM and the number of samples with nonzero TPM did not exist. Thus, 
2,932 proteins were included in QTL calling. We acknowledge the slight 
difference in the number of unique proteins measured compared to a 
recent large-scale analysis using the same Olink Explore 3072 platform, 
such as the UKB PPP, because of minor differences in the data processing 
step, as described above. The biological properties of these 2,932 genes 
compared to all coding genes; for example, enrichment in inflamma-
tory functions, as noted on their website (https://olink.com/products/
olink-explore-3072-384) are summarized in Supplementary Fig. 25.

pQTL replication
The UKB PPP data were downloaded from the Synapse portal (https://
www.synapse.org/#!Synapse:syn51365301). We matched each canoni-
cal gene name as in gencode v.30 and the variant ID in hg19 to perform 
the comparison. For the effect size concordance analysis, pQTLs with 
P > 0.05 in the UKB PPP dataset were not included for simplicity. The 
ARIC8 data (the full summary statistics and PIPs) were kindly shared by 
the authors (http://nilanjanchatterjeelab.org/pwas/). We matched the 
Ensembl gene IDs based on gencode v.30 and the variant IDs in hg38, 
removed any unmatched entries and performed the comparison. For 
the EPIC-Norfolk study, we downloaded the supplementary data from 
ref. 9 and matched the Ensembl gene IDs and the variant IDs (lifted to 
hg38). For the mass spectrometry-derived pQTL data, we downloaded 
the supplementary data from ref. 15 (Supplementary Data 3, summary 
of identified pQTLs) and matched them on the variant ID (lifted to hg38). 
As the mass spectrometry data did not directly nominate the affected 
genes, we matched the variant ID alone and assumed that the gene with 
the most significant cis-pQTL effect in our dataset was the affected gene 
to make the comparison. Different prefiltering strategies could contrib-
ute to the differences in replication rate, deeming our comparison of 
the replication rate between cohorts as semiquantitative.

mRNA-specific and protein-specific eQTL fine-mapping
To investigate the mRNA-specific or protein-specific expression of 
QTLs, we focused on 998 samples and 2,211 genes with both QC-passed 
mRNA and protein expression measurements. Normalization was 
reperformed within this reduced sample-by-gene matrix, for mRNA 
and protein expression separately. For each normalized mRNA (or 
protein) expression datum, linear regression using protein (or mRNA) 
expression of the same gene as the only variable was performed to 
calculate the regression coefficient. The mRNA (or protein) expres-
sion data where the linear effect of protein (or mRNA) were regressed 
out using the model described above were used as the mRNA-specific 
or protein-specific expression matrix. QTL calling and fine-mapping 

were performed in the same manner as described by others (that is, 
preparing the same set of covariates in the QTL calling and with the 
same parameter setting in the fine-mapping algorithm).

Targeted trans-eQTL and trans-pQTL calling
We first focused on the common lead pQTLs (variants with the lowest 
pQTL P value for each gene, minor allele frequency > 0.01) and tested their 
genome-wide pQTL effects (Bonferroni-corrected P = 0.05/4,569,247, 
where 4,569,247 is 1,569 common lead variants times 2,932 genes and 
minus 31,061 cis-variant–gene pairs within a 5-Mb distance to the TSS) 
using tensorQTL, including the same set of covariates as in cis-pQTL  
mapping. Both the lead pQTLs and corresponding random control 
variants were filtered to minor allele frequency >0.01 for consistency.

When focusing on the genetic variation in classical HLA genes to 
test genome-wide trans-eQTL and trans-pQTL effects, DEEP*HLA66 was 
used to impute HLA alleles for the 998 samples with both mRNA and 
protein measurements. We focused on 144 four-digit alleles passing 
QC (imputation R2 > 0.7 and minor allele frequency > 0.01) mainly on 
classical HLA genes (HLA-A, HLA-B, HLA-C, DRB1, DQA1, DQB1, DPA1, 
DPB1 and MICA). tensorQTL was used to test the trans-effect (defined 
by >5 Mb distance between the center of the MHC region and the gene 
TSS) of each of the four-digit alleles on genome-wide mRNA and pro-
tein expression. For each of the HLA genes, the minimum P value over 
all the four-digit alleles were displayed in a Miami plot; those passing 
a suggestive P < 1 × 10−5 threshold were annotated. The MHC region 
(defined as chr6:25726063–33400644) was not included in the cis-QTL 
fine-mapping analyses because of their high complexity leading to 
lower mapping quality (that is, while we controlled any biases due to a 
difference in LD structure by focusing on the same set of 998 samples, 
we left the fine-mapping of causal variants within HLA, whether in cis 
or trans, on mRNA or protein expression, as future work).

ieQTL and ipQTL calling
COVID-19 severity ieQTL calling (ieQTL calling) was performed accord-
ing to the pipeline described previously in ref. 20. Briefly, we used 
COVID-19 severity classified into four levels as the interaction term, 
kept all the other terms such as principal components and PEER fac-
tors, and used tensorQTL to obtain the P value from the likelihood 
ratio test. ipQTL calling was performed in a similar fashion. Results 
were largely consistent when excluding age from the covariates  
(Supplementary Fig. 20); they were far from identical when testing for 
the interaction with age instead of COVID-19 phenotype, suggesting 
that the inclusion of age was not introducing bias and that the COVID-19 
interaction effects were not simply driven by shifts in age distribution 
(Supplementary Note). Samples with both RNA-seq and protein meas-
urements (n = 998) were used for ieQTL and ipQTL calling.

MPRA
Massively parallel reporter assay (MPRA) is a high-throughput method 
that allows quantification of variant effects by measuring the tran-
scriptional activity of many reporters inserted with different sequence 
elements. Our MPRA library contained 24,000 oligonucleotides, 
allowing us to test nearly 12,000 variants across the genome (that is, 
(24,000 − no. of controls)/2). While the library design is described in 
a separate manuscript in preparation, using K562 and HepG2 cells, 
we systematically tested variants with PIP > 0.1 in the previous eQTL 
fine-mapping from the JCTF20, PIP > 0.1 in the previous functionally 
informed fine-mapping of the GTEx whole-blood eQTLs60, and a small 
number of additional variants with possible phenotypic effects, while 
removing variants with an insertion and deletion length greater than 70.

The MPRA experiments were performed according to the steps 
in ref. 23. Briefly, the MPRA library was synthesized by Agilent, ampli-
fied using PCR, adding random barcodes and cloned into the pLS-SceI 
vector (no. 137725, Addgene). Sequence–barcode associations in the 
plasmid library were determined by sequencing using the NextSeq 

http://www.nature.com/naturegenetics
https://www.genecards.org/
https://olink.com/products/olink-explore-3072-384
https://olink.com/products/olink-explore-3072-384
https://www.synapse.org/amp;x00023;amp;x00021;Synapse:syn51365301
https://www.synapse.org/amp;x00023;amp;x00021;Synapse:syn51365301
http://nilanjanchatterjeelab.org/pwas/


Nature Genetics

Article https://doi.org/10.1038/s41588-024-01896-3

Mid Output 300 cycle kit. The plasmid library was packaged with len-
tivirus and infected into 2.8 million HepG2 or 10 million K562 cells 
at a multiplicity of infection of 50 and 10, respectively. For each cell 
line, three independent infections were performed to obtain three 
biological replicates. After 3 days, genomic DNA and total RNA were 
extracted using an AllPrep DNA/RNA Mini Kit (no. 80204, QIAGEN). 
Total RNA was reverse-transcribed to generate complementary DNA, 
using Superscript IV Reverse Transcriptase (Thermo Fisher Scientific). 
Integrated and transcribed barcodes were amplified with specific 
primers while incorporating the 16-bp unique molecular identifier and 
Illumina sequencing adapters. Barcodes were then sequenced using 
the NextSeq High Output 75 cycle kit.

MPRAflow23 was used to associate the barcodes to individual 
200-bp sequences and to count the number of DNA and RNA reads 
(Supplementary Fig. 26). After filtering noisy barcodes with fewer 
than five DNA counts in a replicate, as well as noisy variants with fewer 
than five total barcode–replicate pairs in reference or alternative 
alleles, we aggregated all barcode counts for each sequence across 
replicates and defined the allelic effect of each variant as log2((total 
RNA count/total DNA count in alt)/(total RNA count/total DNA count 
in ref)). We then performed permutation-based significance tests to 
obtain the P value for each variant and used the Benjamini–Hochberg 
method to estimate the FDR. Variants passing an FDR threshold of 
0.01 were defined as tier 1 EMVars; other variants passing an FDR 
threshold of 0.1 were defined as tier 2 EMVars. As described in detail 
in the Supplementary Note, our analysis was based on a simplified 
model where RNA count follows a Poisson distribution with 
λ = α × (DNA count), where the translation rate α  is a function of the 
200-bp sequence alone.

As shown in Extended Data Fig. 2c,d, we did not observe a major 
difference in enrichment level between K562 and HepG2 cells, even 
though K562 cells are physiologically more relevant to blood, suggest-
ing that the effect of culturability, transduction efficiency and other 
methodological details could differ depending on cell type.

Defining shared and specific QTLs
To investigate shared and distinct QTL effects on mRNA and protein 
expression, we calculated the product of the eQTL and pQTL PIP (recal-
culated using the identical set of n = 998 samples for each of the inter-
secting n = 2,211 genes) to define the CLPP. As eQTL and pQTL calling 
from identical samples were nonindependent, we deemed this CLPP 
assignment as conservative, and thus took different thresholds to 
declare (single-variant-level) colocalization: CLPP ≥ 0.9 for ‘colocal-
izing QTLs’ and CLPP ≥ 0.1 for ‘possibly colocalizing QTLs’. We deem 
how to set the threshold to declare colocalization as an open problem, 
although as analyzed in the Results section, using different thresholds 
did not qualitatively change the results.

When performing coloc, we turned the P values into Bayes factors 
assuming a single causal variant per gene and calculated the PP.H1 
to PP.H4 with the default prior probability setting described in their 
manuscript67. When performing SuSiE-coloc, we calculated the PP.H1 
to PP.H4 for each combination of pure mRNA and protein QTL cred-
ible sets in a gene and let the maximum PP.H4 be the colocalization 
probability for a gene. (We did not relax the purity filter for credible 
sets, which could result in slightly conservative results compared to 
their original implementation.) For the main results, we did not use 
canonical colocalization67 because we observed more than one causal 
eQTL or pQTL effect in each. SuSiE-coloc68 was also not chosen as our 
main method because we aimed to also use the results from FINEMAP. 
We took the minimum PIPs from SuSiE and FINEMAP, resulting in a 
slightly more conservative CLPP estimation than using one of the two 
(Supplementary Fig. 13i).

mRNA-specific QTLs were defined as those with a protein-adjusted 
eQTL PIP ≥ 0.9 and CLPP < 0.01 (CLPP as described above); protein-specific 
QTLs were defined as mRNA-adjusted pQTL PIP ≥ 0.9 and CLPP < 0.01.

Functional enrichment
Variant Effect Predictor (VEP) v.108 was used to annotate the vari-
ant–gene pairs with several functional annotations. Instead of using 
the canonical ‘most severe consequence’, which could be tagged by 
the effect on other genes, we parsed the annotation at the unit of the 
variant–gene pairs to be more specific. When multiple annotations 
were included, we did not filter to the most severe ones canonically; 
thus, each variant–gene pair could be positive for more than one 
annotation. Protein-specific annotations were obtained as BED files 
from UniProt through the UCSC Genome Browser. We used pybed-
tools to check whether a variant intersected with each specific protein 
annotation.

Enrichment of a category C specific functional annotation given 
a bin B PIP was defined as the likelihood ratio compared to a random 
draw (that is, p(v ∈ C | v ∈ B) /p(v ∈ C)). The error bar denotes the s.e.m. 
of the numerator (that is, we assumed that the denominator contained 
a large number of variant–gene pairs and that the error could be trivial). 
Plots are often displayed in log-scale for visualization purposes. The 
colocalization enrichment score between our pQTL calling and eQTL 
calling in GTEx v.8 across 49 tissues (Fig. 2e) was calculated as follows: 
(1) We obtained variant–gene–tissue triads with PIP > 0.001 in GTEx 
v.8 (where the PIP was calculated with a uniform prior and the minimum 
of SuSiE and FINEMAP was taken, as described in ref. 60) and filtered 
out missense variants. We annotated the pQTL PIP in JCTF as a function 
of variant–gene while filling with zero when either the PIP was lower 
than 0.001 or missing in the JCTF. (2) Then, for each tissue T, we calcu-
lated the average of the CLPP, defined as the product of the eQTL and 
pQTL PIPs. Let this be UT. (3) We randomly selected the same number 
of variant–gene–tissue triads from tissues other than T and calculated 
the average CLPP. We repeated the process (that is, sampling the same 
number of variant–gene pairs excluding the tissue of interest and 
calculating the average CLPP) for 1,000 times (let these be VT,1, 
VT,2,.‥,VT,1000); (4) our point estimate of the enrichment score is the mean 
of UT divided by VT and the error bar is the 2.5–97.5% quantile.Although 
the estimation could be deflated as it does not distinguish between 
variants missing versus having a PIP below the 0.001 threshold, and 
the power was dependent on the sample size for each GTEx tissue, we 
expected to qualitatively characterize the different level of colocaliza-
tion between plasma proteome and each tissue.

Complex trait and disease analysis
BBJ and UKB fine-mapping data, described in detail in ref. 38, were 
downloaded from the National Bioscience Database Center (NBDC) 
Human Database (accession no. hum0197) and the Finucane lab 
(https://www.finucanelab.org/data). PIP enrichment was defined for 
each variant–gene–trait triad as the sum(PIPmolQTL × PIPtrait) (those with 
PIPtrait <0.001 were not included in this calculation; this had a minimal 
effect on the quantification); then, the maximum over genes was taken 
to obtain the per-variant scores. When the analysis was not 
trait-specific, or according to the trait category, the maximum over 
the traits in a category was taken. When visualizing the number of 
colocalizing genes per trait (Fig. 4a), we used a custom threshold of 
0.1 ≤ min(PIPmolQTL,PIPtrait), instead of using the CLPP, to allow compari-
son between shared versus specific QTLs (that is, for shared QTLs, the 
threshold was 0.1 ≤ min(PIPeQTL,PIPpQTL,PIPtrait)).

Negative expression correlation analysis
For the analysis of mRNA and protein QTL entanglement at the ABO 
locus, we selected five variants corresponding to the top PIP vari-
ants from two eQTL credible sets and two pQTL credible sets from 
SuSiE that were in LD, removing the ones with limited Bayes factors 
or far away from the variant of highest interest (=p1). When compar-
ing the QTL effect with and without controlling for the others, we 
restricted the analysis to n = 998 samples with both mRNA and protein 
measurements.
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Statistical analysis
All the statistical tests were two-sided. No adjustment was made for the 
reported P values unless it was clearly stated as ‘adjusted P value’. The 
error bars denote the s.e.m. unless noted otherwise. When showing 
enrichment, the enrichment error bar denotes the standard error of 
the numerator divided by the denominator.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
The summary statistics of the QTL analyses and the RNA-seq expres-
sion matrix are available at the NBDC Human Database (accession no. 
hum0343). The QTL summary statistics are also available at https://
japan-omics.jp/. Individual genotype data are available at the Euro-
pean Genome-phenome Archive (accession no. EGAS00001006284). 
Publicly available datasets used are: BBJ and UKB fine-mapping; 
NBDC Human Database (accession no. hum0197) and https://www.
finucanelab.org/data; the expression modifier score (https://www.
finucanelab.org/data); the GTEx cis-eQTL data (https://gtexportal.org/
home/datasets); the hg38 reference genome (https://hgdownload.soe.
ucsc.edu/goldenPath/hg38/); protein-specific annotations from Uni-
Prot, obtained through the UCSC Genome Browser (https://genome.
ucsc.edu/cgi-bin/hgTables); protein QTL data from the ARIC study 
(http://nilanjanchatterjeelab.org/pwas/); and protein QTL data from 
the UKB PPP study (https://www.synapse.org/#!Synapse:syn51365301).

Code availability
The code used in this study is available at https://github.com/Qingbo 
Wang/japan_covid_taskforce_multi_omics and has been deposited via 
Zenodo at https://doi.org/10.5281/zenodo.11169201 (ref. 69). The soft-
ware and tools used for data analysis and visualization are: DEEP*HLA 
v.1.0.0 (https://zenodo.org/record/4478902)70; fastQTL v.2.165 (http://
fastqtl.sourceforge.net); FINEMAP v.1.3.1 (http://www.christianbenner.
com/); GATK v.4.1.9.0 LiftoverVcf (https://gatk.broadinstitute.org/); 
the GTEx pipeline (https://github.com/broadinstitute/gtex-pipeline); 
LeafCutter v.0.2.7 (https://davidaknowles.github.io/leafcutter/index.
html); matplotlib v.3.3.4 (https://matplotlib.org); MPRAflow v.2.3.5 
(https://mpraflow.readthedocs.io/en/latest/index.html); NumPy v.1.20.1 
(https://numpy.org); OlinkAnalyze v.3.4.1 (https://cran.r-project.org/
web/packages/OlinkAnalyze/index.html); pandas v.1.1.4 (https://pandas.
pydata.org); pybedtools v.0.9.0 (https://daler.github.io/pybedtools/); 
PyWGCNA v.1.20.3 (https://github.com/mortazavilab/PyWGCNA); RSEM 
v.1.3.0 (https://deweylab.github.io/RSEM/); scikit-learn v.0.24.1 (https://
scikit-learn.github.io/stable); SciPy v.1.6.2 (https://scipy.org/); seaborn 
v.0.11.1 (https://seaborn.pydata.org); STAR v.2.5.3a and v.2.6.0 (https://
github.com/alexdobin/STAR); susieR v.0.11.43 (https://github.com/
stephenslab/susieR); tensorQTL v.1.0.5 (https://github.com/broadin-
stitute/tensorqtl); TwoSampleMR v.0.5.7 (https://mrcieu.github.io/
TwoSampleMR/articles/introduction.html); and VEP v.108 (https://asia.
ensembl.org/Homo_sapiens/Tools/VEP/).
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Extended Data Fig. 1 | Overview of the study. We performed mRNA expression 
QTL (eQTL) fine-mapping from 1,019 RNA-sequenced samples, pQTL fine-
mapping from 1,384 protein measured samples, as well as mRNA or protein 
specific QTL fine-mapping from 998 samples with both measures, all genotyped 

and processed in a single platform as part of the Japan COVID-19 Task Force20. 
Massive parallel reporter assay (MPRA) was performed for validation of a subset 
of fine-mapped eQTLs.
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Extended Data Fig. 2 | eQTL fine-mapping expanded. a. Comparison of the 
numbers of eQTLs in our dataset compared to the previous release. b. Functional 
score (the expression modifier score = EMS) enrichment in eQTLs along with 
the posterior inclusion probability (PIP). c. Percentage of expression modifying 
variants (emvars) experimentally validated in massive parallel reporter assay 

(MPRA). Tier 1 corresponds to FDR < 0.01 and tier 2 to FDR < 0.1. n in each  
bin = 7,418, 2,060, 685, 885 and 317 variants. d. Percentage of agreement between 
the direction of variant effects in eQTL or MPRA study. n in each bin = 7,418, 2,992 
and 955 variants.
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