+
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dictionary learning for integrative, multimodal and scalable single-cell analysis

Abstract

Mapping single-cell sequencing profiles to comprehensive reference datasets provides a powerful alternative to unsupervised analysis. However, most reference datasets are constructed from single-cell RNA-sequencing data and cannot be used to annotate datasets that do not measure gene expression. Here we introduce ‘bridge integration’, a method to integrate single-cell datasets across modalities using a multiomic dataset as a molecular bridge. Each cell in the multiomic dataset constitutes an element in a ‘dictionary’, which is used to reconstruct unimodal datasets and transform them into a shared space. Our procedure accurately integrates transcriptomic data with independent single-cell measurements of chromatin accessibility, histone modifications, DNA methylation and protein levels. Moreover, we demonstrate how dictionary learning can be combined with sketching techniques to improve computational scalability and harmonize 8.6 million human immune cell profiles from sequencing and mass cytometry experiments. Our approach, implemented in version 5 of our Seurat toolkit (http://www.satijalab.org/seurat), broadens the utility of single-cell reference datasets and facilitates comparisons across diverse molecular modalities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Integrating across modalities with molecular bridges.
Fig. 2: Mapping scATAC-seq data onto scRNA-seq references.
Fig. 3: Robustness and benchmarking analysis for bridge integration.
Fig. 4: Using dictionary learning for massively scalable integration.
Fig. 5: ‘Community-scale’ integration of sequencing and cytometry immune datasets.

Similar content being viewed by others

Data availability

We used publicly available datasets in this work. Download locations for each dataset are listed in the Supplementary Methods and Supplementary Tables. Azimuth references are available for download at http://azimuth.hubmapconsortium.org.

Code availability

Bridge integration and atomic sketch integration are implemented as part of the Seurat R package. In this work, we also make use of the Signac and Azimuth packages. All are freely available as open-source software at the following websites: https://github.com/satijalab/seurat, https://github.com/timoast/signac and https://github.com/satijalab/azimuth.

We include two vignettes describing the ‘bridge integration’ and ‘atomic sketch integration’ procedures as Supplementary Notes with this manuscript.

References

  1. Kent, W. J. BLAT—the BLAST-like alignment tool. Genome Res. 12, 656–664 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Langmead, B., Trapnell, C., Pop, M. & Salzberg, S. L. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 10, R25 (2009).

    PubMed  PubMed Central  Google Scholar 

  3. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25, 1754–1760 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Hao, Y. et al. Integrated analysis of multimodal single-cell data. Cell 184, 3573–3587 (2021).

  5. Kang, J. B. et al. Efficient and precise single-cell reference atlas mapping with Symphony. Nat. Commun. 12, 5890 (2021).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  6. Kiselev, V. Y., Yiu, A. & Hemberg, M. scmap: projection of single-cell RNA-seq data across data sets. Nat. Methods 15, 359–362 (2018).

    CAS  PubMed  Google Scholar 

  7. Domínguez Conde, C. et al. Cross-tissue immune cell analysis reveals tissue-specific features in humans. Science 376, eabl5197 (2022).

  8. Xu, C. et al. Probabilistic harmonization and annotation of single-cell transcriptomics data with deep generative models. Mol. Syst. Biol. 17, e9620 (2021).

    PubMed  PubMed Central  Google Scholar 

  9. Lotfollahi, M. et al. Mapping single-cell data to reference atlases by transfer learning. Nat. Biotechnol. 40, 121–130 (2022).

    CAS  PubMed  Google Scholar 

  10. Regev, A. et al. The human cell atlas. eLife 6, e27041 (2017).

    PubMed  PubMed Central  Google Scholar 

  11. Hu, B. C. The human body at cellular resolution: the NIH Human Biomolecular Atlas Program. Nature 574, 187–192 (2019).

    ADS  Google Scholar 

  12. Tabula Muris Consortium et al. Single-cell transcriptomics of 20 mouse organs creates a Tabula Muris. Nature 562, 367–372 (2018).

    ADS  Google Scholar 

  13. Buenrostro, J. D. et al. Single-cell chromatin accessibility reveals principles of regulatory variation. Nature 523, 486–490 (2015).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  14. Cusanovich, D. A. et al. Multiplex single cell profiling of chromatin accessibility by combinatorial cellular indexing. Science 348, 910–914 (2015).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  15. Clark, S. J. et al. Genome-wide base-resolution mapping of DNA methylation in single cells using single-cell bisulfite sequencing (scBS-seq). Nat. Protoc. 12, 534–547 (2017).

    CAS  PubMed  Google Scholar 

  16. Wu, S. J. et al. Single-cell CUT&Tag analysis of chromatin modifications in differentiation and tumor progression. Nat. Biotechnol. 39, 819–824 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Bartosovic, M., Kabbe, M. & Castelo-Branco, G. Single-cell CUT&Tag profiles histone modifications and transcription factors in complex tissues. Nat. Biotechnol. 39, 825–835 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Bendall, S. C. et al. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332, 687–696 (2011).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  19. Stuart, T. et al. Comprehensive integration of single-cell data. Cell 177, 1888–1902 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Barkas, N. et al. Joint analysis of heterogeneous single-cell RNA-seq dataset collections. Nat. Methods 16, 695–698 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Welch, J. D. et al. Single-cell multi-omic integration compares and contrasts features of brain cell identity. Cell 177, 1873–1887 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Lara-Astiaso, D. et al. Immunogenetics. Chromatin state dynamics during blood formation. Science 345, 943–949 (2014).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  23. Chen, S., Lake, B. B. & Zhang, K. High-throughput sequencing of the transcriptome and chromatin accessibility in the same cell. Nat. Biotechnol. 37, 1452–1457 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Ma, S. et al. Chromatin potential identified by shared single-cell profiling of RNA and chromatin. Cell 183, 1103–1116 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Zhu, C. et al. An ultra high-throughput method for single-cell joint analysis of open chromatin and transcriptome. Nat. Struct. Mol. Biol. 26, 1063–1070 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhu, C. et al. Joint profiling of histone modifications and transcriptome in single cells from mouse brain. Nat. Methods 18, 283–292 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Xiong, H., Luo, Y., Wang, Q., Yu, X. & He, A. Single-cell joint detection of chromatin occupancy and transcriptome enables higher-dimensional epigenomic reconstructions. Nat. Methods 18, 652–660 (2021).

    CAS  PubMed  Google Scholar 

  28. Luo, C. et al. Single nucleus multi-omics identifies human cortical cell regulatory genome diversity. Cell Genomics 2, 100107 (2022).

  29. Clark, S. J. et al. scNMT-seq enables joint profiling of chromatin accessibility DNA methylation and transcription in single cells. Nat. Commun. 9, 781 (2018).

    PubMed  PubMed Central  ADS  Google Scholar 

  30. Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Chung, H. et al. Joint single-cell measurements of nuclear proteins and RNA in vivo. Nat. Methods 18, 1204–1212 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Chen, A.F. et al. NEAT-seq: simultaneous profiling of intra-nuclear proteins, chromatin accessibility and gene expression in single cells. Nat. Meth.ods 19, 547–553 (2022).

  33. Elad, M. & Aharon, M. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15, 3736–3745 (2006).

    MathSciNet  PubMed  ADS  Google Scholar 

  34. Rams, M. & Conrad, T. O. F. Dictionary learning allows model-free pseudotime estimation of transcriptomic data. BMC Genomics 23, 56 (2022).

    PubMed  PubMed Central  Google Scholar 

  35. Ramirez, I., Sprechmann, P. & Sapiro, G. in 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition 3501–3508 (IEEE, 2010).

  36. Zhang, Q. & Li, B. in 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition 2691–2698 (IEEE, 2010).

  37. Aharon, M., Elad, M. & Bruckstein, A. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54, 4311–4322 (2006).

    ADS  Google Scholar 

  38. Korsunsky, I. et al. Fast, sensitive and accurate integration of single-cell data with Harmony. Nat. Methods 16, 1289–1296 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Haghverdi, L., Lun, A. T. L., Morgan, M. D. & Marioni, J. C. Batch effects in single-cell RNA-sequencing data are corrected by matching mutual nearest neighbors. Nat. Biotechnol. 36, 421–427 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hie, B., Bryson, B. & Berger, B. Efficient integration of heterogeneous single-cell transcriptomes using Scanorama. Nat. Biotechnol. 37, 685–691 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Lopez, R., Regier, J., Cole, M. B., Jordan, M. I. & Yosef, N. Deep generative modeling for single-cell transcriptomics. Nat. Methods 15, 1053–1058 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Belkin, M. & Niyogi, P. Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15, 1373–1396 (2003).

    Google Scholar 

  43. Granja, J. M. et al. Single-cell multiomic analysis identifies regulatory programs in mixed-phenotype acute leukemia. Nat. Biotechnol. 37, 1458–1465 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Luecken, M. D. et al. in 35th Conference on Neural Information Processing Systems Datasets and Benchmarks Track (Round 2) (NeurIPS, 2021).

  45. Villani, A. C. et al. Single-cell RNA-seq reveals new types of human blood dendritic cells, monocytes, and progenitors. Science 356, eaah4573 (2017).

    PubMed  PubMed Central  Google Scholar 

  46. See, P. et al. Mapping the human DC lineage through the integration of high-dimensional techniques. Science 356, eaag3009 (2017).

    PubMed  PubMed Central  Google Scholar 

  47. Paul, F. et al. Transcriptional heterogeneity and lineage commitment in myeloid progenitors. Cell 163, 1663–1677 (2015).

    CAS  PubMed  Google Scholar 

  48. Zheng, S., Papalexi, E., Butler, A., Stephenson, W. & Satija, R. Molecular transitions in early progenitors during human cord blood hematopoiesis. Mol. Syst. Biol. 14, e8041 (2018).

    PubMed  PubMed Central  Google Scholar 

  49. Ashuach, T., Gabitto, M. I., Jordan, M. I. & Yosef, N. MultiVI: deep generative model for the integration of multi-modal data. Preprint at bioRxiv https://doi.org/10.1101/2021.08.20.457057 (2021).

  50. Gong, B., Zhou, Y. & Purdom, E. Cobolt: integrative analysis of multimodal single-cell sequencing data. Genome Biol. 22, 351 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Luo, C. et al. Single-cell methylomes identify neuronal subtypes and regulatory elements in mammalian cortex. Science 357, 600–604 (2017).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  52. Bakken, T. E. et al. Comparative cellular analysis of motor cortex in human, marmoset and mouse. Nature 598, 111–119 (2021).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  53. Hie, B., Cho, H., DeMeo, B., Bryson, B. & Berger, B. Geometric sketching compactly summarizes the single-cell transcriptomic landscape. Cell Syst. 8, 483–493 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  54. DeMeo, B. & Berger, B. Hopper: a mathematically optimal algorithm for sketching biological data. Bioinformatics 36, i236–i241 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Hicks, S. C., Liu, R., Ni, Y., Purdom, E. & Risso, D. mbkmeans: fast clustering for single cell data using mini-batch k-means. PLoS Comput. Biol. 17, e1008625 (2021).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  56. Clarkson, K. L. & Woodruff, D. P. Low-rank approximation and regression in input sparsity time. JACM 63, 1–45 (2017).

    MathSciNet  Google Scholar 

  57. Schiller, H. B. et al. The Human Lung Cell Atlas: a high-resolution reference map of the human lung in health and disease. Am. J. Respir. Cell Mol. Biol. 61, 31–41 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Svensson, V., da Veiga Beltrame, E. & Pachter, L. A curated database reveals trends in single-cell transcriptomics. Database 2020, baaa073 (2020).

    PubMed  PubMed Central  Google Scholar 

  59. Plasschaert, L. W. et al. A single-cell atlas of the airway epithelium reveals the CFTR-rich pulmonary ionocyte. Nature 560, 377–381 (2018).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  60. Tian, Y. et al. Single-cell immunology of SARS-CoV-2 infection. Nat. Biotechnol. 40, 30–41 (2022).

    CAS  PubMed  Google Scholar 

  61. Lee, J. S. & Shin, E. C. The type I interferon response in COVID-19: implications for treatment. Nat. Rev. Immunol. 20, 585–586 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Wilk, A. J. et al. A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nat. Med. 26, 1070–1076 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  63. COvid-19 Multi-omics Blood ATlas (COMBAT) Consortium. A blood atlas of COVID-19 defines hallmarks of disease severity and specificity. Cell 185, 916–938.e58 (2022).

  64. Rudensky, A. Y. Regulatory T cells and Foxp3. Immunol. Rev. 241, 260–268 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  65. Thimme, R. et al. Increased expression of the NK cell receptor KLRG1 by virus-specific CD8 T cells during persistent antigen stimulation. J. Virol. 79, 12112–12116 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Kurioka, A. et al. MAIT cells are licensed through granzyme exchange to kill bacterially sensitized targets. Mucosal Immunol. 8, 429–440 (2015).

    CAS  PubMed  Google Scholar 

  67. Bjorklund, A. K. et al. The heterogeneity of human CD127+ innate lymphoid cells revealed by single-cell RNA sequencing. Nat. Immunol. 17, 451–460 (2016).

    PubMed  Google Scholar 

  68. Tabula Sapiens Consortium. The Tabula Sapiens: A multiple-organ, single-cell transcriptomic atlas of humans. Science 376, eabl4896 (2022).

  69. Han, X. et al. Construction of a human cell landscape at single-cell level. Nature 581, 303–309 (2020).

    CAS  PubMed  ADS  Google Scholar 

  70. Li, H. et al. Fly Cell Atlas: A single-nucleus transcriptomic atlas of the adult fruit fly. Science 375, eabk2432 (2022).

  71. Plant Cell Atlas Consortium et al. Vision, challenges and opportunities for a Plant Cell Atlas. eLife 10, e66877 (2021).

    Google Scholar 

  72. Lareau, C. A. et al. Droplet-based combinatorial indexing for massive-scale single-cell chromatin accessibility. Nat. Biotechnol. 37, 916–924 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Datlinger, P. et al. Ultra-high-throughput single-cell RNA sequencing and perturbation screening with combinatorial fluidic indexing. Nat. Methods 18, 635–642 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Goltsev, Y. et al. Deep profiling of mouse splenic architecture with CODEX multiplexed imaging. Cell 174, 968–981 (2018).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Li, Z. et al. Single-cell lipidomics with high structural specificity by mass spectrometry. Nat. Commun. 12, 2869 (2021).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  76. Capolupo, L. et al. Sphingolipid control of fibroblast heterogeneity revealed by single-cell lipidomics. Preprint at bioRxiv https://doi.org/10.1101/2021.02.23.432420 (2021).

  77. Barshan, E., Ghodsi, A., Azimifar, Z. & Jahromi, M. Z. Supervised principal component analysis: visualization, classification and regression on subspaces and submanifolds. Pattern Recognit. 44, 1357–1371 (2011).

    ADS  Google Scholar 

  78. Woodruff, D. P. Sketching as a tool for numerical linear algebra. Preprint at https://doi.org/10.48550/arXiv.1411.4357 (2014).

  79. Levine, J. H. et al. Data-driven phenotypic dissection of AML reveals progenitor-like cells that correlate with prognosis. Cell 162, 184–197 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Charikar, M., Chen, K. & Farach-Colton, M. in International Colloquium on Automata, Languages, and Programming 693–703 (Springer, 2002).

  81. Li, P., Hastie, T. J. & Church, K. W. in Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining 287–296 (Association for Computing Machinery, 2006).

  82. Siddharth, R. & Aghila, G. RandPro—a practical implementation of random projection-based feature extraction for high dimensional multivariate data analysis in R. SoftwareX 12, 100629 (2020).

    Google Scholar 

  83. Hafemeister, C. & Satija, R. Normalization and variance stabilization of single-cell RNA-seq data using regularized negative binomial regression. Genome Biol. 20, 296 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Persad, S. et al. SEACells infers transcriptional and epigenomic cellular states from single-cell genomics data. Nat. Biotechnol., 1–12 (2023).

  85. Adams, T. S. et al. Single-cell RNA-seq reveals ectopic and aberrant lung-resident cell populations in idiopathic pulmonary fibrosis. Sci. Adv. 6, eaba1983 (2020).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  86. Bischoff, P. et al. Single-cell RNA sequencing reveals distinct tumor microenvironmental patterns in lung adenocarcinoma. Oncogene 40, 6748–6758 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Chua, R. L. et al. COVID-19 severity correlates with airway epithelium–immune cell interactions identified by single-cell analysis. Nat. Biotechnol. 38, 970–979 (2020).

    CAS  PubMed  Google Scholar 

  88. Delorey, T.M. et al. COVID-19 tissue atlases reveal SARS-CoV-2 pathology and cellular targets. Nature 595, 107-113 (2021).

  89. Deprez, M. et al. A single-cell atlas of the human healthy airways. Am. J. Respir. Crit. Care Med. 202, 1636–1645 (2020).

    CAS  PubMed  Google Scholar 

  90. Eraslan, G. et al. Single-nucleus cross-tissue molecular reference maps toward understanding disease gene function. Science 376, eabl4290 (2022).

  91. Habermann, A. C. et al. Single-cell RNA sequencing reveals profibrotic roles of distinct epithelial and mesenchymal lineages in pulmonary fibrosis. Sci. Adv. 6, eaba1972 (2020).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  92. Lukassen, S. et al. SARS-CoV-2 receptor ACE2 and TMPRSS2 are primarily expressed in bronchial transient secretory cells. EMBO J. 39, e105114 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Madissoon, E. et al. scRNA-seq assessment of the human lung, spleen, and esophagus tissue stability after cold preservation. Genome Biol. 21, 1 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Mayr, C.H. et al. Integrative analysis of cell state changes in lung fibrosis with peripheral protein biomarkers. EMBO Mol. Med. 13, e12871 (2021).

  95. Melms, J. C. et al. A molecular single-cell lung atlas of lethal COVID-19. Nature 595, 114–119 (2021).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  96. Morse, C. et al. Proliferating SPP1/MERTK-expressing macrophages in idiopathic pulmonary fibrosis. Eur. Respir. J. 54, 1802441 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. Reyfman, P. A. et al. Single-cell transcriptomic analysis of human lung provides insights into the pathobiology of pulmonary fibrosis. Am. J. Respir. Crit. Care Med. 199, 1517–1536 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  98. Travaglini, K. J. et al. A molecular cell atlas of the human lung from single-cell RNA sequencing. Nature 587, 619–625 (2020).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  99. Wang, A. et al. Single-cell multiomic profiling of human lungs reveals cell-type-specific and age-dynamic control of SARS-CoV2 host genes. eLife 9, e62522 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Watanabe, N. et al. Anomalous epithelial variations and ectopic inflammatory response in chronic obstructive pulmonary disease. Am. J. Respir. Cell Mol. Biol. 67, 708–719 (2022).

  101. Wauters, E. et al. Discriminating mild from critical COVID-19 by innate and adaptive immune single-cell profiling of bronchoalveolar lavages. Cell Res. 31, 272–290 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Arunachalam, P. S. et al. Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans. Science 369, 1210–1220 (2020).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  103. Combes, A. J. et al. Global absence and targeting of protective immune states in severe COVID-19. Nature 591, 124–130 (2021).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  104. Lee, J. S. et al. Immunophenotyping of COVID-19 and influenza highlights the role of type I interferons in development of severe COVID-19. Sci. Immunol. 5, eabd1554 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Ren, X. et al. COVID-19 immune features revealed by a large-scale single-cell transcriptome atlas. Cell 184, 1895–1913 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Schulte-Schrepping, J. et al. Severe COVID-19 is marked by a dysregulated myeloid cell compartment. Cell 182, 1419–1440 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. Silvin, A. et al. Elevated calprotectin and abnormal myeloid cell subsets discriminate severe from mild COVID-19. Cell 182, 1401–1418 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. Stephenson, E. et al. Single-cell multi-omics analysis of the immune response in COVID-19. Nat. Med. 27, 904–916 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Su, Y. et al. Multi-omics resolves a sharp disease-state shift between mild and moderate COVID-19. Cell 183, 1479–1495 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  110. Yao, C. et al. Cell-type-specific immune dysregulation in severely ill COVID-19 patients. Cell Rep. 34, 108943 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Yu, K. et al. Dysregulated adaptive immune response contributes to severe COVID-19. Cell Res. 30, 814–816 (2020).

    CAS  PubMed  Google Scholar 

  112. Zhu, L. et al. Single-cell sequencing of peripheral mononuclear cells reveals distinct immune response landscapes of COVID-19 and influenza patients. Immunity 53, 685–696 (2020).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. Haghverdi, L., Buettner, F. & Theis, F. J. Diffusion maps for high-dimensional single-cell analysis of differentiation data. Bioinformatics 31, 2989–2998 (2015).

    CAS  PubMed  Google Scholar 

  114. Qiu, X. et al. Reversed graph embedding resolves complex single-cell trajectories. Nat. Methods 14, 979–982 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  115. R Core Team. R: a language and environment for statistical computing (R Foundation for Statistical Computing, 2013).

  116. Bishop, C. M. & Nasrabadi, N. M. Pattern Recognition and Machine Learning, Vol. 4 (Springer, 2006).

  117. McCarthy, D. J., Campbell, K. R., Lun, A. T. & Wills, Q. F. Scater: pre-processing, quality control, normalization and visualization of single-cell RNA-seq data in R. Bioinformatics 33, 1179–1186 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Waltman, L. & Van Eck, N. J. A smart local moving algorithm for large-scale modularity-based community detection. Eur. Phys. J. B 86, 471 (2013).

    ADS  Google Scholar 

  119. Borner, K. et al. Anatomical structures, cell types and biomarkers of the Human Reference Atlas. Nat. Cell Biol. 23, 1117–1128 (2021).

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  120. Gloria Pryhuber, X.S. HuBMAP ASCT+B Tables. Lung v1.1 https://doi.org/10.48539/HBM323.SGDF.945 (2021).

  121. Korsunsky, I., Nathan, A., Millard, N. & Raychaudhuri, S. Presto scales Wilcoxon and auROC analyses to millions of observations. Preprint at bioRxiv https://doi.org/10.1101/653253 (2019).

Download references

Acknowledgements

We thank all members of the Satija Lab for thoughtful discussions related to this work. We thank A. Butler and H. Srivastava for assistance in identifying and locating scRNA-seq datasets from human lung and PBMCs. We acknowledge the Gottardo and Newell labs for publicly releasing a standardized compendium of human PBMC scRNA-seq datasets. This work was supported by the Chan Zuckerberg Initiative (EOSS-0000000082 and HCA-A-1704-01895 to R.S.) and the NIH (K99HG011489-01 to T.S.; K99CA267677 to A.S.; RM1HG011014-02, 1OT2OD026673- 01, DP2HG009623-01, R01HD096770 and R35NS097404 to R.S.).

Author information

Authors and Affiliations

Authors

Contributions

T.S., Y.H. and R.S. conceived the research. Y.H., T.S., M.H.K., S.C., P.H., A.H., A.S., G.M. and S.M. performed the computational analyses, supervised by C.F.-G. and R.S. Y.H., T.S. and R.S. wrote the manuscript, with input and assistance from all authors.

Corresponding author

Correspondence to Rahul Satija.

Ethics declarations

Competing interests

In the past 3 years, R.S. has worked as a consultant for Bristol-Myers Squibb, Regeneron and Kallyope and served as an SAB member for ImmunAI, Resolve Biosciences, Nanostring and the NYC Pandemic Response Lab. The other authors declare no competing interests.

Peer review

Peer review information

Nature Biotechnology thanks Rhonda Bacher and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8, Tables 1 and 2 and Notes 1 and 2.

Reporting Summary

Supplementary Tables 1 and 2

Supplementary Table 1. Summary of cross-modality integration benchmark results. Supplementary Table 2. scRNA lung and PBMC data acquisition sources.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, Y., Stuart, T., Kowalski, M.H. et al. Dictionary learning for integrative, multimodal and scalable single-cell analysis. Nat Biotechnol 42, 293–304 (2024). https://doi.org/10.1038/s41587-023-01767-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41587-023-01767-y

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载