+
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The shaping of terrestrial planets by late accretions

Abstract

Terrestrial planets—Mercury, Venus, Earth and Mars—formed by the accretion of smaller objects. The Earth was probably the latest terrestrial planet to form and reached about 99% of its final mass within about 60–100 Myr after condensation of the first solids in the Solar System. This Review examines the disproportionate role of the last approximately 1% of planetary growth, or late accretion, in controlling the long-term evolution of the Earth and other terrestrial planets. Late accretion may have been responsible for shaping Earth’s distinctive geophysical and chemical properties and generating pathways conducive to prebiotic chemistry. Differences in the late accretion of a planet may provide a rationale for interpreting the distinct properties of Venus and Earth (for example, tectonism, atmospheric composition, water content), the surface dichotomy of Mars and the high core-to-silicate mass ratio of Mercury. Large collisions and ensuing processes are likely to occur and modulate the evolution of rocky exoplanets as well, and they should be considered in our quest to find Earth-like worlds.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation of the impactor populations for the terrestrial planets during late accretion.
Fig. 2: Late accretions of Earth, the Moon and Mars.
Fig. 3: Large-scale terrestrial impacts.
Fig. 4: Timescales of various impact-driven processes.
Fig. 5: Schematic illustration of the main consequences of late accretion impacts.

Similar content being viewed by others

References

  1. Youdin, A. N. & Goodman, J. Streaming instabilities in protoplanetary disks. Astrophys. J. 620, 459–469 (2005).

    Article  ADS  Google Scholar 

  2. Johansen, A. et al. Rapid planetesimal formation in turbulent circumstellar disks. Nature 448, 1022–1025 (2007).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Simon, J. B., Armitage, P. J., Li, R. & Youdin, A. N. The mass and size distribution of planetesimals formed by the streaming instability. I. The role of self-gravity. Astrophys. J. 822, 55 (2016).

    Article  ADS  Google Scholar 

  4. Kokubo, E. & Ida, S. Formation of protoplanets from planetesimals in the solar nebula. Icarus 143, 15–27 (2000).

    Article  ADS  Google Scholar 

  5. Levison, H. F., Kretke, K. A. & Duncan, M. J. Growing the gas-giant planets by the gradual accumulation of pebbles. Nature 524, 322–324 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Johansen, A. et al. A pebble accretion model for the formation of the terrestrial planets in the Solar System. Sci. Adv. 7, eabc0444 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  7. Woo, J. M. Y., Morbidelli, A., Grimm, S. L., Stadel, J. & Brasser, R. Terrestrial planet formation from a ring. Icarus 396, 115497 (2023).

    Article  Google Scholar 

  8. Wang, H. et al. Lifetime of the solar nebula constrained by meteorite paleomagnetism. Science 355, 623–627 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Canup, R. M. & Asphaug, E. Origin of the Moon in a giant impact near the end of the Earth’s formation. Nature 412, 708–712 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Barboni, M. et al. Early formation of the Moon 4.51 billion years ago. Sci. Adv. 3, e1602365 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  11. Greer, J. et al. 4.46 Ga zircons anchor chronology of lunar magma ocean. Geochem. Perspect. Lett. 27, 49–53 (2023).

    Article  Google Scholar 

  12. Dauphas, N. & Pourmand, A. Hf–W–Th evidence for rapid growth of Mars and its status as a planetary embryo. Nature 473, 489–492 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Morbidelli, A. et al. The timeline of the lunar bombardment: revisited. Icarus 305, 262–276 (2018).

    Article  ADS  CAS  Google Scholar 

  14. Brasser, R., Werner, S. C. & Mojzsis, S. J. Impact bombardment chronology of the terrestrial planets from 4.5 Ga to 3.5 Ga. Icarus 338, 113514 (2020).

    Article  CAS  Google Scholar 

  15. Nesvorný, D., Roig, F. V. & Deienno, R. The role of early giant-planet instability in terrestrial planet formation. Astron. J 161, 50 (2021).

    Article  ADS  Google Scholar 

  16. Walker, R. J. Highly siderophile elements in the Earth, Moon and Mars: update and implications for planetary accretion and differentiation. Geochemistry 69, 101–125 (2009).

    Article  CAS  Google Scholar 

  17. Neukum, G. & Ivanov, B. A. in Hazards Due to Comets and Asteroids (eds Gehrels, T., Matthews, M. S. & Schumann, A. M.) 359–416 (Univ. Arizona Press, 1994). A seminal work on the development of lunar crater chronologies.

  18. Stöffler, D. & Ryder, G. in Chronology and Evolution of Mars (eds Kallenbach, R., Geiss, J. & Hartmann, W. K.) 9–54 (Springer, 2001).

  19. Nemchin, A. A. et al. Ages of lunar impact breccias: limits for timing of the Imbrium impact. Geochemistry 81, 125683 (2021).

    Article  CAS  Google Scholar 

  20. Trowbridge, A. J., Johnson, B. C., Freed, A. M. & Melosh, H. J. Why the lunar South Pole-Aitken Basin is not a mascon. Icarus 352, 113995 (2020).

    Article  Google Scholar 

  21. Garrick-Bethell, I. et al. Troctolite 76535: a sample of the Moon’s South Pole-Aitken basin? Icarus 338, 113430 (2020).

    Article  CAS  Google Scholar 

  22. Joy, K. H. et al. Evidence of a 4.33 billion year age for the Moon’s South Pole–Aitken basin. Nat. Astron. 9, 55–65 (2025).

    Article  CAS  PubMed  Google Scholar 

  23. Marchi, S. et al. Delayed and variable late Archaean atmospheric oxidation due to high collision rates on Earth. Nat. Geosci. 14, 827–831 (2021).

    Article  ADS  CAS  Google Scholar 

  24. Gomes, R., Levison, H. F., Tsiganis, K. & Morbidelli, A. Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature 435, 466–469 (2005). An integrated approach to study impact rates on the Moon resulting from planetary instabilities.

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Day, J. M. D., Brandon, A. D. & Walker, R. J. Highly siderophile elements in Earth, Mars, the Moon, and asteroids. Rev. Mineral. Geochem. 81, 161–238 (2016). This paper presents a comprehensive review on the highly siderophile element budgets of terrestrial bodies and their implications for planetary formation processes.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Glass, B. P. & Simonson, B. M. Distal Impact Ejecta Layers: A Record of Large Impacts in Sedimentary Deposits (Springer, 2013). A fundamental resource about impact spherule layers.

  27. Johnson, B. C. et al. Spherule layers, crater scaling laws, and the population of ancient terrestrial impactors. Icarus 271, 350–359 (2016).

    Article  ADS  Google Scholar 

  28. Bottke, W. et al. Linking the collisional history of the main asteroid belt to its dynamical excitation and depletion. Icarus 179, 63–94 (2005).

    Article  ADS  CAS  Google Scholar 

  29. Bottke, W. F., Walker, R. J., Day, J. M. D., Nesvorny, D. & Elkins-Tanton, L. Stochastic late accretion to Earth, the Moon, and Mars. Science 330, 1527–1530 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Deienno, R., Izidoro, A., Nesvorný, D. & Bottke, W. F. Size-frequency distribution of S-complex implanted asteroids. In Asteroids, Comets, Meteors Conference 2023 (LPI Contrib. No. 2851) https://www.hou.usra.edu/meetings/acm2023/pdf/2549.pdf (2023).

  31. Nesvorný, D. et al. Formation of lunar basins from impacts of leftover planetesimals. Astrophys. J. Lett. 941, L9 (2022). This work presents some of the most successful simulations of terrestrial planet formation so far.

    Article  ADS  Google Scholar 

  32. Liu, S. T. et al. The synergetic effect of the potential Procellarum and the South-Pole Aitken impact on the formation of the lunar nearside-farside asymmetries. In 54th Lunar and Planetary Science Conference 2023 (LPI Contrib. No. 2806) https://www.hou.usra.edu/meetings/lpsc2023/pdf/1251.pdf (2023).

  33. Ballantyne, H. A. et al. Investigating the feasibility of an impact-induced Martian dichotomy. Icarus 392, 115395 (2023).

    Article  Google Scholar 

  34. Nimmo, F., Kleine, T. & Morbidelli, A. Tidally driven remelting around 4.35 billion years ago indicates the Moon is old. Nature 636, 598–602 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Benz, W., Slattery, W. L. & Cameron, A. G. W. The origin of the Moon and the single-impact hypothesis I. Icarus 66, 515–535 (1986). The first modern attempt, to our knowledge, to simulate the formation of the Moon from a giant impact.

    Article  ADS  Google Scholar 

  36. Canup, R. M. Dynamics of lunar formation. Annu. Rev. Astron. Astrophys. 42, 441–475 (2004).

    Article  ADS  Google Scholar 

  37. Asphaug, E. Similar-sized collisions and the diversity of planets. Geochemistry 70, 199–219 (2010).

    Article  CAS  Google Scholar 

  38. Stewart, S. T. & Leinhardt, Z. M. Collisions between gravity-dominated bodies. II. The diversity of impact outcomes during the end stage of planet formation. Astrophys. J. 751, 32 (2012).

    Article  ADS  Google Scholar 

  39. Genda, H., Brasser, R. & Mojzsis, S. J. The terrestrial late veneer from core disruption of a lunar-sized impactor. Earth Planet. Sci. Lett. 480, 25–32 (2017).

    Article  ADS  CAS  Google Scholar 

  40. Kegerreis, J. A. et al. Planetary giant impacts: convergence of high-resolution simulations using efficient spherical initial conditions and SWIFT. Mon. Not. R. Astron. Soc. 487, 5029–5040 (2019).

    Article  ADS  CAS  Google Scholar 

  41. Nakajima, M. et al. Scaling laws for the geometry of an impact-induced magma ocean. Earth Planet. Sci. Lett. 568, 116983 (2021).

    Article  CAS  Google Scholar 

  42. Raymond, S. N., Schlichting, H. E., Hersant, F. & Selsis, F. Dynamical and collisional constraints on a stochastic late veneer on the terrestrial planets. Icarus 226, 671–681 (2013).

    Article  ADS  Google Scholar 

  43. Marinova, M. M., Aharonson, O. & Asphaug, E. Mega-impact formation of the Mars hemispheric dichotomy. Nature 453, 1216–1219 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  44. Andrews-Hanna, J. C., Zuber, M. T. & Banerdt, W. B. The Borealis basin and the origin of the martian crustal dichotomy. Nature 453, 1212–1215 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  45. Nimmo, F., Hart, S. D., Korycansky, D. G. & Agnor, C. B. Implications of an impact origin for the martian hemispheric dichotomy. Nature 453, 1220–1223 (2008).

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Jutzi, M. SPH calculations of asteroid disruptions: the role of pressure dependent failure models. Planet. Space Sci. 107, 3–9 (2015).

    Article  ADS  Google Scholar 

  47. Emsenhuber, A., Jutzi, M. & Benz, W. SPH calculations of Mars-scale collisions: the role of the equation of state, material rheologies, and numerical effects. Icarus 301, 247–257 (2018).

    Article  ADS  Google Scholar 

  48. Itcovitz, J. P., Rae, A. S. P., Davison, T. M., Collins, G. S. & Shorttle, O. The distribution of impactor core material during large impacts on Earth-like planets. Planet. Sci. J. 5, 90 (2024).

    Article  Google Scholar 

  49. Chou, C.-L., Fractionation of siderophile elements in the earth’s upper mantle. In Proc. 9th Lunar and Planetary Science Conference 219–230 (Lunar and Planetary Institute, 1978).

  50. Marchi, S., Canup, R. M. & Walker, R. J. Heterogeneous delivery of silicate and metal to the Earth by large planetesimals. Nat. Geosci. 11, 77–81 (2018). This paper was the first, to our knowledge, to suggest that the total late-accreted mass on Earth can substantially exceed the traditional value of 0.5% Earth mass, based on the systematics of smoothed-particle hydrodynamics simulations.

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Citron, R. I. & Stewart, S. T. Large impacts onto the early Earth: planetary sterilization and iron delivery. Planet. Sci. J. 3, 116 (2022).

    Article  CAS  Google Scholar 

  52. Deguen, R., Landeau, M. & Olson, P. Turbulent metal–silicate mixing, fragmentation, and equilibration in magma oceans. Earth Planet. Sci. Lett. 391, 274–287 (2014).

    Article  ADS  CAS  Google Scholar 

  53. Landeau, M. et al. Metal-silicate mixing by large Earth-forming impacts. Earth Planet. Sci. Lett. 564, 116888 (2021).

    Article  CAS  Google Scholar 

  54. Lavorel, G. & Le Bars, M. Sedimentation of particles in a vigorously convecting fluid. Phys. Rev. E 80, 046324 (2009).

    Article  ADS  CAS  Google Scholar 

  55. Korenaga, J. & Marchi, S. Vestiges of impact-driven three-phase mixing in the chemistry and structure of Earth’s mantle. Proc. Natl Acad. Sci. USA 120, e23091811120 (2023). This paper was the first, to our knowledge, to suggest the possibility of three-phase dynamics as a consequence of large late accretion impacts and its critical role in the mantle highly siderophile element budget.

    Article  Google Scholar 

  56. Maier, W. D. et al. Progressive mixing of meteoritic veneer into the early Earth’s deep mantle. Nature 460, 620–623 (2009).

    Article  ADS  CAS  Google Scholar 

  57. Puchtel, I. S., Blichert-Toft, J., Touboul, M. & Walker, R. J. 182W and HSE constraints from 2.7 Ga komatiites on the heterogeneous nature of the Archean mantle. Geochim. Cosmochim. Acta 228, 1–26 (2018).

    Article  ADS  CAS  Google Scholar 

  58. van de Löcht, J. et al. Earth’s oldest mantle peridotites show entire record of late accretion. Geology 46, 199–202 (2018).

    Article  ADS  Google Scholar 

  59. Reimink, J. R. et al. Tungsten isotope composition of Archean crustal reservoirs and implications for terrestrial μ182W evolution. Geochem. Geophys. Geosyst. 21, e2020GC009155 (2020).

    Article  ADS  CAS  Google Scholar 

  60. Garnero, E. J., McNamara, A. K. & Shim, S.-H. Continent-sized anomalous zones with low seismic velocity at the base of Earth’s mantle. Nat. Geosci. 9, 481–488 (2016).

    Article  ADS  CAS  Google Scholar 

  61. Mundl, A. et al. Tungsten-182 heterogeneity in modern ocean island basalts. Science 356, 66–69 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  62. Mundl-Petermeier, A. et al. Anomalous 182W in high 3He/4He ocean island basalts: fingerprints of Earth’s core? Geochim. Cosmochim. Acta 271, 194–211 (2020).

    Article  ADS  CAS  Google Scholar 

  63. Yuan, Q. et al. Moon-forming impactor as a source of Earth’s basal mantle anomalies. Nature 623, 95–99 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  64. Rizo, H. et al. 182W evidence for core-mantle interaction in the source of mantle plumes. Geochem. Perspect. Lett. 11, 6–11 (2019).

    Article  Google Scholar 

  65. Yoshino, T., Makino, Y., Suzuki, T. & Hirata, T. Grain boundary diffusion of W in lower mantle phase with implications for isotopic heterogeneity in oceanic island basalts by core-mantle interactions. Earth Planet. Sci. Lett. 530, 115887 (2020).

    Article  CAS  Google Scholar 

  66. Ferrick, A. L. & Korenaga, J. Long-term core–mantle interaction explains W-He isotope heterogeneities. Proc. Natl Acad. Sci. USA 120, e2215903120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Korenaga, J. & Marchi, S. Core-mantle chemical interaction via convection within thermochemical piles. Geochem. Perspect. Lett. 32, 34–38 (2024).

    Article  Google Scholar 

  68. Marchi, S., Rufu, R. & Korenaga, J. Long-lived volcanic resurfacing of Venus driven by early collisions. Nat. Astron. 7, 1180–1187 (2023).

    Article  ADS  Google Scholar 

  69. Zahnle, K. et al. Emergence of a habitable planet. Space Sci. Rev. 129, 35–78 (2007).

    Article  ADS  CAS  Google Scholar 

  70. Miyazaki, Y. & Korenaga, J. A wet heterogeneous mantle creates a habitable world in the Hadean. Nature 603, 86–90 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  71. Solomatov, V. S. Scaling of temperature- and stress-dependent viscosity convection. Phys. Fluids 7, 266–274 (1995). This study was the first, to our knowledge, to delineate the regime of stagnant lid convection based on an elegant scaling analysis on the modes of mantle convection.

    Article  ADS  CAS  Google Scholar 

  72. Reese, C. C., Solomatov, V. S. & Moresi, L.-N. Non-Newtonian stagnant lid convection and magmatic resurfacing on Venus. Icarus 139, 67–80 (1999).

    Article  ADS  Google Scholar 

  73. Le Feuvre, M. & Wieczorek, M. A. Nonuniform cratering of the terrestrial planets. Icarus 197, 291–306 (2008).

    Article  ADS  Google Scholar 

  74. Bottke,W. F. et al. On asteroid impacts, crater scaling laws, and a proposed younger surface age for Venus. In 47th Lunar and Planetary Science Conference https://www.hou.usra.edu/meetings/lpsc2016/pdf/2036.pdf (2016).

  75. Parmentier, E. M. & Hess, P. C. Chemical differentiation of a convecting planetary interior: consequences for a one plate planet such as Venus. Geophys. Res. Lett. 19, 2015–2018 (1992).

    Article  ADS  Google Scholar 

  76. Turcotte, D. L. An episodic hypothesis for Venusian tectonics. J. Geophys. Res. Planets 98, 17061–17068 (1993).

    Article  ADS  Google Scholar 

  77. Moresi, L. & Solomatov, V. Mantle convection with a brittle lithosphere: thoughts on the global tectonic styles of the Earth and Venus. Geophys. J. Int. 133, 669–682 (1998).

    Article  ADS  Google Scholar 

  78. Armann, M. & Tackley, P. J. Simulating the thermochemical magmatic and tectonic evolution of Venus’s mantle and lithosphere: two-dimensional models. J. Geophys. Res. Planets 117, E12003 (2012).

    Article  ADS  Google Scholar 

  79. Smrekar, S. E., Davaille, A. & Sotin, C. Venus interior structure and dynamics. Space Sci. Rev. 214, 88 (2018).

    Article  ADS  Google Scholar 

  80. Wilhelms, D. E. & Squyers, S. W. The Martian hemispheric dichotomy may be due to a giant impact. Nature 309, 138–140 (1984).

    Article  ADS  Google Scholar 

  81. Frey, H. & Schultz, R. A. Large impact basins and the mega-impact origin for the crustal dichotomy on Mars. Geophys. Res. Lett. 15, 229–232 (1988).

    Article  ADS  Google Scholar 

  82. Zhong, S. & Zuber, M. T. Degree-1 mantle convection and the crustal dichotomy on Mars. Earth Planet. Sci. Lett. 189, 75–84 (2001).

    Article  ADS  CAS  Google Scholar 

  83. Roberts, J. H. & Zhong, S. Degree-1 convection in the Martian mantle and the origin of the hemispheric dichotomy. J. Geophys. Res. Planets 111, E06013 (2006).

    Article  ADS  Google Scholar 

  84. Elkins-Tanton, L. T., Hess, P. C. & Parmentier, E. M. Possible formation of ancient crust on Mars through magma ocean processes. J. Geophys. Res. Planets 110, E12S01 (2005).

    Article  ADS  Google Scholar 

  85. Thiriet, M., Michaut, C., Breuer, D. & Plesa, A.-C. Hemispheric dichotomy in lithospheric thickness on Mars caused by differences in crustal structure and composition. J. Geophys. Res. Planets 123, 823–848 (2018).

    Article  ADS  Google Scholar 

  86. Bonnet Gibet, V., Michaut, C., Wieczorek, M. & Lognonne, P. A positive feedback between crustal thickness and melt extraction for the origin of the Martian dichotomy. J. Geophys. Res. Planets 127, e2022JE007472 (2022).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  87. Citron, R. I., Manga, M. & Tan, E. A hybrid origin of the Martian crustal dichotomy: degree-1 convection antipodal to a giant impact. Earth Planet. Sci. Lett. 491, 58–66 (2018).

    Article  ADS  CAS  Google Scholar 

  88. Roberts, J. H., Lillis, R. J. & Manga, M. Giant impacts on early Mars and the cessation of the Martian dynamo. J. Geophys. Res. Planets 114, E04009 (2009).

    Article  ADS  Google Scholar 

  89. Marchi, S., Walker, R. J. & Canup, R. M. A compositionally heterogeneous martian mantle due to late accretion. Sci. Adv. 6, eaay2338 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  90. Smith, D. E. et al. Gravity field and internal structure of Mercury from MESSENGER. Science 336, 214–217 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  91. Zolotov, M. Y. et al. The redox state, FeO content, and origin of sulfur-rich magmas on Mercury. J. Geophys. Res. Planets 118, 138–146 (2013).

    Article  ADS  CAS  Google Scholar 

  92. Frank, E. A. et al. Evaluating an impact origin for Mercury’s high-magnesium region. J. Geophys. Res. Planets 122, 614–632 (2017).

    Article  ADS  CAS  Google Scholar 

  93. Cartier, C. & Wood, B. J. The role of reducing conditions in building Mercury. Elements 15, 39–45 (2019).

    Article  ADS  Google Scholar 

  94. Benz, W. et al. The origin of Mercury. Space Sci. Rev. 132, 189–202 (2007).

    Article  ADS  CAS  Google Scholar 

  95. Clement, M. S., Chambers, J. E., Kaib, N. A., Raymond, S. N. & Jackson, A. P. Mercury’s formation within the early instability scenario. Icarus 394, 115445 (2023).

    Article  Google Scholar 

  96. Ebel, D. S. & Stewart, S. T. in Mercury: The View after MESSENGER (eds Solomon, S. C., Nittler, L. R. & Anderson, B. J.) 497–515 (Cambridge Univ. Press, 2018).

  97. Gabriel, T. S. J. & Cambioni, S. The role of giant impacts in planet formation. Annu. Rev. Earth Planet. Sci. 51, 671–695 (2023).

    Article  ADS  CAS  Google Scholar 

  98. Roberts, J. H. & Arkani-Hamed, J. Impact heating and coupled core cooling and mantle dynamics on Mars. J. Geophys. Res. Planets 119, 729–744 (2014).

    Article  ADS  Google Scholar 

  99. Gillmann, C., Golabek, G. J. & Tackley, P. J. Effect of a single large impact on the coupled atmosphere-interior evolution of Venus. Icarus 268, 295–312 (2016).

    Article  ADS  Google Scholar 

  100. Padovan, S., Tosi, N., Plesa, A.-C. & Ruedas, T. Impact-induced changes in source depth and volume of magmatism on Mercury and their observational signatures. Nat. Commun. 8, 1945 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  101. Sleep, N. H. & Lowe, D. R. Physics of crustal fracturing and chert dike formation triggered by asteroid impact, ~3.26 Ga, Barberton greenstone belt, South Africa. Geochem. Geophys. Geosyst. 15, 1054–1070 (2014). This paper points to an intriguing connection between late accretion impacts and surface tectonics based on geological observations and geophysical arguments.

    Article  ADS  Google Scholar 

  102. O’Neill, C., Marchi, S., Zhang, S. & Bottke, W. Impact-driven subduction on the Hadean Earth. Nat. Geosci. 10, 793–797 (2017).

    Article  ADS  Google Scholar 

  103. O’Neill, C., Marchi, S., Bottke, W. & Fu, R. The role of impacts on Archaean tectonics. Geology 48, 174–178 (2020).

    Article  ADS  Google Scholar 

  104. Karato, S. & Wu, P. Rheology of the upper mantle: a synthesis. Science 260, 771–778 (1993).

    Article  ADS  CAS  PubMed  Google Scholar 

  105. Bercovici, D., Tackley, P. J. & Ricard, Y. in Treatise on Geophysics 2nd edn, Vol. 7 (ed. Schubert, G.) 271–318 (Elsevier, 2015).

  106. Korenaga, J. Plate tectonics and surface environment: role of the oceanic upper mantle. Earth-Sci. Rev. 205, 103185 (2020).

    Article  Google Scholar 

  107. Melosh, H. J. & Vickery, A. M. Impact erosion of the primordial atmosphere of Mars. Nature 338, 487–489 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  108. Ahrens, T. J. Impact erosion of terrestrial planetary atmospheres. Annu. Rev. Earth Planet. Sci. 21, 525–555 (1993).

    Article  ADS  CAS  Google Scholar 

  109. Genda, H. & Abe, Y. Survival of a proto-atmosphere through the stage of giant impacts: the mechanical aspects. Icarus 164, 149–162 (2003).

    Article  ADS  Google Scholar 

  110. Genda, H. & Abe, Y. Enhanced atmospheric loss on protoplanets at the giant impact phase in the presence of oceans. Nature 433, 842–844 (2005).

    Article  ADS  CAS  PubMed  Google Scholar 

  111. Lock, S. J. & Stewart, S. T. Atmospheric loss in giant impacts depends on preimpact surface conditions. Planet. Sci. J. 5, 28 (2024).

    Article  Google Scholar 

  112. Svetsov, V. V. Atmospheric erosion and replenishment induced by impacts of cosmic bodies upon the Earth and Mars. Solar Syst. Res. 41, 28–41 (2007).

    Article  ADS  CAS  Google Scholar 

  113. de Niem, D., Kührt, E., Morbidelli, A. & Motschmann, U. Atmospheric erosion and replenishment induced by impacts upon the Earth and Mars during a heavy bombardment. Icarus 221, 495–507 (2012).

    Article  ADS  Google Scholar 

  114. Morbidelli, A. et al. Source regions and timescales for the delivery of water to the Earth. Meteorit. Planet. Sci. 35, 1309–1320 (2000).

    Article  ADS  CAS  Google Scholar 

  115. Albarede, F. Volatile accretion history of the terrestrial planets and dynamic implications. Nature 461, 1227–1233 (2009).

    Article  ADS  CAS  PubMed  Google Scholar 

  116. Alexander, C. M. O. et al. The provenances of asteroids, and their contributions to the volatile inventories of the terrestrial planets. Science 337, 721–723 (2012).

    Article  ADS  CAS  PubMed  Google Scholar 

  117. Marty, B. The origins and concentrations of water, carbon, nitrogen and noble gases on Earth. Earth Planet. Sci. Lett. 313-314, 56–66 (2012).

    Article  ADS  CAS  Google Scholar 

  118. Wang, Z. & Becker, H. Ratios of S, Se and Te in the silicate Earth require a volatile-rich late veneer. Nature 499, 328–331 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  119. Joiret, S., Raymond, S. N., Avice, G. & Clement, M. S. Crash Chronicles: relative contribution from comets and carbonaceous asteroids to Earth’s volatile budget in the context of an Early Instability. Icarus 414, 116032 (2024).

    Article  CAS  Google Scholar 

  120. Warren, P. H. Stable-isotopic anomalies and the accretionary assemblage of the Earth and Mars: a subordinate role for carbonaceous chondrites. Earth Planet. Sci. Lett. 311, 93–100 (2011).

    Article  ADS  CAS  Google Scholar 

  121. Kruijer, T. S., Burkhardt, C., Budde, G. & Kleine, T. Age of Jupiter inferred from the distinct genetics and formation times of meteorites. Proc. Natl Acad. Sci. USA 114, 6712–6716 (2017).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kruijer, T. S., Kleine, T. & Borg, L. E. The great isotopic dichotomy of the early Solar System. Nat. Astron. 4, 32–40 (2020).

    Article  ADS  Google Scholar 

  123. Burkhardt, C. et al. Terrestrial planet formation from lost inner solar system material. Sci. Adv. 7, eabj7601 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  124. Varas-Reus, M. I., König, S., Yierpan, A., Lorand, J.-P. & Schoenberg, R. Selenium isotopes as tracers of a late volatile contribution to Earth from the outer Solar System. Nat. Geosci. 12, 779–782 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  125. Fischer-Gödde, M. et al. Ruthenium isotope vestige of Earth’s pre-late-veneer mantle preserved in Archaean rocks. Nature 579, 240–244 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  126. Dauphas, N. The isotopic nature of the Earth’s accreting material through time. Nature 541, 521–524 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  127. Bermingham, K. R., Worsham, E. A. & Walker, R. J. New insights into Mo and Ru isotope variation in the nebula and terrestrial planet accretionary genetics. Earth Planet. Sci. Lett. 487, 221–229 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  128. Worsham, E. A. & Thorsten, K. Late accretionary history of Earth and Moon preserved in lunar impactites. Sci. Adv. 7, eabh2837 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  129. Marty, B. Meteoritic noble gas constraints on the origin of terrestrial volatiles. Icarus 381, 115020 (2022).

    Article  CAS  Google Scholar 

  130. Grewal, D. S., Dasgupta, R., Sun, C., Tsuno, K. & Costin, G. Delivery of carbon, nitrogen, and sulfur to the silicate Earth by a giant impact. Sci. Adv. 5, eaau3669 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  131. Li, J., Bergin, E. A., Blake, G. A., Ciesla, F. J. & Hirschmann, M. M. Earth’s carbon deficit caused by early loss through irreversible sublimation. Sci. Adv. 7, eabd3632 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  132. Hirschmann, M. M., Bergin, E. A., Blake, G. A., Ciesla, F. J. & Li, J. Early volatile depletion on planetesimals inferred from C–S systematics of iron meteorite parent bodies. Proc. Natl Acad. Sci. USA 118, e2026779118 (2021). This paper demonstrates that volatile loss in growing planetesimals can start early based on the systematics of iron meteorite compositions.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Newcombe, M. E. et al. Degassing of early-formed planetesimals restricted water delivery to Earth. Nature 615, 854–857 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  134. Bower, D. J., Hakim, K., Sossi, P. A. & Sanan, P. Retention of water in terrestrial magma oceans and carbon-rich early atmospheres. Planet. Sci. J. 3, 93 (2022).

    Article  Google Scholar 

  135. Salvador, A. & Samuel, H. Convective outgassing efficiency in planetary magma oceans: insights from computational fluid dynamics. Icarus 390, 115265 (2023).

    Article  Google Scholar 

  136. Hirschmann, M. M. Magma ocean influence on early atmosphere mass and composition. Earth Planet. Sci. Lett. 341-344, 48–57 (2012).

    Article  ADS  CAS  Google Scholar 

  137. Gaillard, F. et al. Redox controls during magma ocean degassing. Earth Planet. Sci. Lett. 577, 117255 (2022).

    Article  CAS  Google Scholar 

  138. Sossi, P. A., Tollan, P. M. E., Badro, J. & Bower, D. J. Solubility of water in peridotite liquids and the prevalence of steam atmospheres on rocky planets. Earth Planet. Sci. Lett. 601, 117894 (2023).

    Article  CAS  Google Scholar 

  139. Abe, Y. Physical state of the very early Earth. Lithos 30, 223–235 (1993). This paper presents the first, to our knowledge, serious effort to characterize the very early surface environments of Earth and Venus by modelling the evolution of the coupled atmosphere–ocean–mantle system.

    Article  ADS  Google Scholar 

  140. Hamano, K., Abe, Y. & Genda, H. Emergence of two types of terrestrial planet on solidification of magma ocean. Nature 497, 607–610 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  141. Sleep, N. H. & Zahnle, K. Carbon dioxide cycling and implications for climate on ancient Earth. J. Geophys. Res. Planets 106, 1373–1399 (2001).

    Article  ADS  CAS  Google Scholar 

  142. Kadoya, S., Krissansen-Totton, J. & Catling, D. C. Probable cold and alkaline surface environment of the Hadean Earth caused by impact ejecta weathering. Geochem. Geophys. Geosyst. 21, e2019GC008734 (2020).

    Article  ADS  CAS  Google Scholar 

  143. Korenaga, J. Hadean geodynamics and the nature of early continental crust. Precambrian Res. 359, 106178 (2021).

    Article  CAS  Google Scholar 

  144. Maher, K. A. & Stevenson, D. J. Impact frustration of the origin of life. Nature 331, 612–614 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  145. Benner, S. A. et al. When did life likely emerge on Earth in an RNA-first process? ChemSystemsChem 2, e1900035 (2019).

    Article  Google Scholar 

  146. Sleep, N. H., Zahnle, K. J., Kasting, J. F. & Morowitz, H. J. Annihilation of ecosystems by large asteroid impacts on the early Earth. Nature 342, 139–142 (1989). This is the first study, to our knowledge, to quantitatively discuss the effects of impacts on early Earth.

    Article  ADS  CAS  PubMed  Google Scholar 

  147. Zahnle, K. J., Lupu, R., Catling, D. C. & Wogan, N. Creation and evolution of impact-generated reduced atmospheres of early Earth. Planet. Sci. J. 1, 11 (2020). This paper presents a comprehensive set of calculations to show that late accretion impacts can produce a long-lived transient reducing atmosphere.

    Article  CAS  Google Scholar 

  148. Wogan, N. F., Catling, D. C., Zahnle, K. J. & Lupu, R. Origin-of-life molecules in the atmosphere after big impacts on the early Earth. Planet. Sci. J. 4, 169 (2023).

    Article  CAS  Google Scholar 

  149. Miller, S. L. A production of amino acids under possible primitive Earth conditions. Science 117, 528–529 (1953).

    Article  ADS  CAS  PubMed  Google Scholar 

  150. McCollom, T. M. Miller-Urey and beyond: what have we learned about prebiotic organic synthesis reactions in the past 60 years? Annu. Rev. Earth Planet. Sci. 41, 207–229 (2013).

    Article  ADS  CAS  Google Scholar 

  151. Itcovitz, J. P. et al. Reduced atmospheres of post-impact worlds: the early Earth. Planet. Sci. J. 3, 115 (2022).

    Article  CAS  Google Scholar 

  152. Henningsen, E. L., Korenaga, J. & Marchi, S. Impact-driven redox stratification of Earth’s mantle. J. Geophys. Res. Solid Earth 130, e2024JB030817 (2025).

    Article  Google Scholar 

  153. Pham, L. B. S., Karatekin, O. & Dehant, V. Effects of impacts on the atmospheric evolution: comparison between Mars, Earth, and Venus. Planet. Space Sci. 59, 1087–1092 (2011).

    Article  ADS  CAS  Google Scholar 

  154. Schlichting, H. E., Sari, R. & Yalinewich, A. Atmospheric mass loss during planet formation: the importance of planetesimal impacts. Icarus 247, 81–94 (2015).

    Article  ADS  Google Scholar 

  155. Sinclair, C. A., Wyatt, M. C., Morbidelli, A. & Nesvorny, D. Evolution of the Earth’s atmosphere during Late Veneer accretion. Mon. Not. R. Astron. Soc. 499, 5334–5362 (2020). This modelling study suggests that volatile delivery and atmospheric removal by late accretion impacts can, despite their stochastic nature, compensate for each other to reproduce the present-day mass of Earth’s atmosphere.

    Article  ADS  Google Scholar 

  156. Miyazaki, Y. & Korenaga, J. Inefficient water degassing inhibits ocean formation on rocky planets: an insight from self-consistent mantle degassing models. Astrobiology 22, 713–734 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  157. Gillmann, C. et al. Dry late accretion inferred from Venus’s coupled atmosphere and internal evolution. Nat. Geosci. 13, 265–269 (2020).

    Article  ADS  CAS  Google Scholar 

  158. Segura, T. L., Toon, O. B., Colaprete, A. & Zahnle, K. Environmental effects of large impacts on Mars. Science 298, 1977–1980 (2002).

    Article  ADS  CAS  PubMed  Google Scholar 

  159. Segura, T. L., Toon, O. B. & Colaprete, A. Modeling the environmental effects of moderate-sized impacts on Mars. J. Geophys. Res. Planets 113, E11007 (2008).

    Article  ADS  Google Scholar 

  160. Segura, T. L., McKay, C. P. & Toon, O. B. An impact-induced, stable, runaway climate on Mars. Icarus 220, 144–148 (2012).

    Article  ADS  CAS  Google Scholar 

  161. Wordsworth, R. D. Atmospheric nitrogen evolution on Earth and Venus. Earth Planet. Sci. Lett. 447, 103–111 (2016).

    Article  ADS  CAS  Google Scholar 

  162. Kegerreis, J. A. et al. Atmospheric erosion by giant impacts onto terrestrial planets: a scaling law for any speed, angle, mass, and density. Astrophys. J. Lett. 901, L31 (2020).

    Article  ADS  CAS  Google Scholar 

  163. Marchi, S. et al. Widespread mixing and burial of Earth’s Hadean crust by asteroid impacts. Nature 511, 578–582 (2014). This paper presents the first, to our knowledge, quantitative model for the impact flux on the early Earth.

    Article  ADS  CAS  PubMed  Google Scholar 

  164. Collins, G. S., Melosh, H. J. & Ivanov, B. A. Modeling damage and deformation in impact simulations. Meteorit. Planet. Sci. 39, 217–231 (2004).

    Article  ADS  CAS  Google Scholar 

  165. Wiggins, S. E., Johnson, B. C., Bowling, T. J., Melosh, H. J. & Silber, E. A. Impact fragmentation and the development of the deep lunar megaregolith. J. Geophys. Res. Planets 124, 941–957 (2019).

    Article  ADS  Google Scholar 

  166. Wiggins, S. E., Johnson, B. C., Collins, G. S., Jay Melosh, H. & Marchi, S. Widespread impact-generated porosity in early planetary crusts. Nat. Commun. 13, 4817 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  167. Abramov, O. & Kring, D. A. Numerical modeling of impact‐induced hydrothermal activity at the Chicxulub crater. Meteorit. Planet. Sci. 42, 93–112 (2007).

    Article  ADS  CAS  Google Scholar 

  168. Abramov, O., Kring, D. A. & Mojzsis, S. J. The impact environment of the Hadean Earth. Geochemistry 73, 227–248 (2013).

    Article  CAS  Google Scholar 

  169. Marchi, S., Alexander, A., Trowbridge, A. & Koeberl, C. Impact‐generated permeability and hydrothermal circulation at the Vredefort impact structure, South Africa. Earth Space Sci. 11, e2023EA003065 (2024).

    Article  ADS  Google Scholar 

  170. Trowbridge, A. J., Marchi, S., Osinski, G. R. & Taron, J. M. Modeling of the impact‐generated hydrothermal system at the Haughton impact structure. J. Geophys. Res. Planets 129, e2023JE008267 (2024).

    Article  CAS  Google Scholar 

  171. Alexander, A. M., Marchi, S., Johnson, B. C., Wiggins, S. E. & Kring, D. A. Impact‐generated fragmentation, porosity, and permeability within the Chicxulub impact structure. Earth Space Sci. 11, e2023EA003383 (2024).

    Article  ADS  Google Scholar 

  172. Johnson, T. E. et al. Giant impacts and the origin and evolution of continents. Nature 608, 330–335 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  173. Kring, D. A. Environmental consequences of impact cratering events as a function of ambient conditions on Earth. Astrobiology 3, 133–152 (2003).

    Article  ADS  PubMed  Google Scholar 

  174. Osinski, G. R. et al. Impact-generated hydrothermal systems on Earth and Mars. Icarus 224, 347–363 (2013).

    Article  ADS  Google Scholar 

  175. Ehlmann, B. L. & Edwards, C. S. Mineralogy of the Martian surface. Annu. Rev. Earth Planet. Sci. 42, 291–315 (2014).

    Article  ADS  CAS  Google Scholar 

  176. Marzo, G. A. et al. Evidence for Hesperian impact-induced hydrothermalism on Mars. Icarus 208, 667–683 (2010).

    Article  ADS  CAS  Google Scholar 

  177. Sun, V. Z. & Milliken, R. E. Ancient and recent clay formation on Mars as revealed from a global survey of hydrous minerals in crater central peaks. J. Geophys. Res. Planets 120, 2293–2332 (2015).

    Article  ADS  CAS  Google Scholar 

  178. Yen, A. S. et al. Formation of tridymite and evidence for a hydrothermal history at Gale crater, Mars. J. Geophys. Res. Planets 126, e2020JE006569 (2021).

    Article  ADS  Google Scholar 

  179. Black, B. A. & Marchi, S. Buoyant impact partial melts on ancient Mars. J. Geophys. Res. Planets 129, e2023JE008040 (2024).

    Article  ADS  Google Scholar 

  180. Hyodo, R., Genda, H. & Brasser, R. Modification of the composition and density of Mercury from late accretion. Icarus 354, 114064 (2021).

    Article  CAS  Google Scholar 

  181. Denevi, B. W. et al. The distribution and origin of smooth plains on Mercury. J. Geophys. Res. Planets 118, 891–907 (2013).

    Article  ADS  CAS  Google Scholar 

  182. Chapman, C. R. et al. in Mercury: The View after MESSENGER (eds Solomon, S. C., Nittler, L. R. & Anderson, B. J.) 217–248 (Cambridge Univ. Press, 2018).

  183. Marchi, S. et al. Global resurfacing of Mercury 4.0–4.1 billion years ago by heavy bombardment and volcanism. Nature 499, 59–61 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  184. Raymond, S. N. et al. An upper limit on late accretion and water delivery in the TRAPPIST-1 exoplanet system. Nat. Astron. 6, 80–88 (2021).

    Article  ADS  Google Scholar 

  185. Morrison, S. & Malhotra, R. Planetary chaotic zone clearing: destinations and timescales. Astrophys. J. 799, 41 (2015).

    Article  ADS  Google Scholar 

  186. Öpik, E. J. Collision probabilities with the planets and the distribution of interplanetary matter. Proc. R. Ir. Acad. A Math. Phys. Sci. 54, 165–199 (1951/1952).

    Google Scholar 

  187. Rampino, M. R. & Caldeira, K. The Goldilocks problem: climatic evolution and long-term habitability of terrestrial planets. Annu. Rev. Astron. Astrophys. 32, 83–114 (1994).

    Article  ADS  CAS  Google Scholar 

  188. Kasting, J. F. & Catling, D. Evolution of a habitable planet. Annu. Rev. Astron. Astrophys. 41, 429–463 (2003). This paper provides an accessible review of important concepts relevant to planetary habitability, with an emphasis on the role of the atmosphere.

    Article  ADS  CAS  Google Scholar 

  189. Kopparapu, R. K. et al. Habitable zones around main sequence stars: new estimates. Astrophys. J. 765, 131 (2013).

    Article  ADS  Google Scholar 

  190. Kite, E. S., Manga, M. & Gaidos, E. Geodynamics and rate of volcanism on massive Earth-like planets. Astrophys. J. 700, 1732–1749 (2009).

    Article  ADS  CAS  Google Scholar 

  191. Grott, M., Morschhauser, A., Breuer, D. & Hauber, E. Volcanic outgassing of CO2 and H2O on Mars. Earth Planet. Sci. Lett. 308, 391–400 (2011).

    Article  ADS  CAS  Google Scholar 

  192. O’Rourke, J. G. & Korenaga, J. Terrestrial planet evolution in the stagnant-lid regime: size effects and the formation of self-destabilizing crust. Icarus 221, 1043–1060 (2012).

    Article  ADS  Google Scholar 

  193. Stewart, S. T. et al. A hydrocode EOS for pyrolitic mantles and magma oceans. In 53rd Lunar and Planetary Science Conference https://www.hou.usra.edu/meetings/lpsc2022/pdf/1535.pdf (2022).

  194. Suer, T.-A. et al. Reconciling metal–silicate partitioning and late accretion in the Earth. Nat. Commun. 12, 2913 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  195. Steenstra, E. S. et al. Partitioning of Ru, Pd, Ag, Re, Pt, Ir and Au between sulfide-, metal- and silicate liquid at highly reduced conditions: implications for terrestrial accretion and aubrite parent body evolution. Geochim. Cosmochim. Acta 336, 15–32 (2022).

    Article  ADS  CAS  Google Scholar 

  196. Righter, K. et al. Highly siderophile element (HSE) abundances in the mantle of Mars are due to core formation at high pressure and temperature. Meteorit. Planet. Sci. 50, 604–631 (2015).

    Article  ADS  CAS  Google Scholar 

  197. Sleep, N. H. Asteroid bombardment and the core of Theia as possible sources for the Earth’s late veneer component. Geochem. Geophys. Geosyst. 17, 2623–2642 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  198. Korenaga, J. & Spencer, C. J. in Treatise on Geochemistry 3rd edn, Vol. 2 (eds Anbar, A. & Weis, D.) 699–727 (Elsevier Science, 2025).

  199. Grewal, D. S., Dasgupta, R. & Marty, B. A very early origin of isotopically distinct nitrogen in inner Solar System protoplanets. Nat. Astron. 5, 356–364 (2021).

    Article  ADS  Google Scholar 

  200. Zhu, M.-H. et al. Reconstructing the late-accretion history of the Moon. Nature 571, 226–229 (2019).

    Article  ADS  CAS  PubMed  Google Scholar 

  201. Nakajima, M. & Stevenson, D. J. Melting and mixing states of the Earth’s mantle after the Moon-forming impact. Earth Planet. Sci. Lett. 427, 286–295 (2015).

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful for the support from NASA SSERVI (80NSSC23M0176), NASA EW (80NSSC22K0635), NSF CSEDI (2102571 and 2102777) and NSF GLOW (2219463).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Simone Marchi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Kevin Zahnle and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marchi, S., Korenaga, J. The shaping of terrestrial planets by late accretions. Nature 641, 1111–1120 (2025). https://doi.org/10.1038/s41586-025-08970-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-025-08970-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载