+
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The history and future of resting-state functional magnetic resonance imaging

Abstract

Since the discovery of resting-state functional connectivity in the human brain, this neuroimaging approach has revolutionized the study of neural architecture. Once considered noise, the functional significance of spontaneous low-frequency fluctuations across large-scale brain networks has now been investigated in more than 25,000 publications. In this Review, we provide a historical overview and thoughts regarding potential future directions for resting-state functional MRI (rsfMRI) research, highlighting the most informative analytic approaches that have been developed to reveal the brain’s intrinsic spatiotemporal organization. We review the collaborative efforts that have led to the widespread use of rsfMRI in neuroscience, with an emphasis on methodological innovations that have been made possible by contributions from electrical and biomedical engineering, physics, mathematics and computer science. We focus on key theoretical and methodological advances that will be necessary for further progress in the field, highlighting the need for further integration with new developments in whole-brain computational modelling, more sophisticated approaches to brain–behaviour mapping, greater mechanistic insights from concurrent measurement of neurophysiology, and greater appreciation of the problem of generalization failure in machine learning applications. We propose that rsfMRI has the potential for even greater clinical relevance when it is fully integrated with population neuroscience and global health initiatives in the service of precision psychiatry.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Timeline of key events in the history of rsfMRI.
Fig. 2: Reproducible large-scale functional brain networks.
Fig. 3: rsfMRI data analysis workflow.
Fig. 4: Machine learning and precision psychiatry.

Similar content being viewed by others

References

  1. Golanov, E. V., Yamamoto, S. & Reis, D. J. Spontaneous waves of cerebral blood flow associated with a pattern of electrocortical activity. Am. J. Physiol. 266, R204–R214 (1994).

    CAS  PubMed  Google Scholar 

  2. Hudetz, A. G., Roman, R. J. & Harder, D. R. Spontaneous flow oscillations in the cerebral cortex during acute changes in mean arterial pressure. J. Cereb. Blood Flow Metab. 12, 491–499 (1992). This paper systematically investigates spontaneous oscillations in the cerebral cortex using laser Doppler flow imaging during physiological perturbations in mean arterial pressure.

    Article  CAS  PubMed  Google Scholar 

  3. Vern, B. A., Schuette, W. H., Leheta, B., Juel, V. C. & Radulovacki, M. Low-frequency oscillations of cortical oxidative metabolism in waking and sleep. J. Cereb. Blood Flow Metab. 8, 215–226 (1988).

    Article  CAS  PubMed  Google Scholar 

  4. Berger, H. Über das Elektrenkephalogramm des Menschen. Archiv für Psychiatrie und Nervenkrankheiten 87, 527–570 (1929).

    Article  Google Scholar 

  5. Friston, K. Functional and effective connectivity in neuroimaging: a synthesis. Hum. Brain Mapp. 2, 56–78 (1994). This paper provides a conceptual framework of functional and effective connectivity in neuroimaging as approaches for understanding how different brain regions interact and influence one another.

    Article  Google Scholar 

  6. Biswal, B., Yetkin, F. Z., Haughton, V. M. & Hyde, J. S. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn. Reson. Med. 34, 537–541 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Biswal, B., Hudetz, A. G., Yetkin, F. Z., Haughton, V. M. & Hyde, J. S. Hypercapnia reversibly suppresses low-frequency fluctuations in the human motor cortex during rest using echo–planar MRI. J. Cereb. Blood Flow Metab. 17, 301–308 (1997). This paper demonstrates using fMRI that hypercapnia reversibly suppresses low-frequency fluctuations and functional connectivity in the motor cortex at rest.

    Article  CAS  PubMed  Google Scholar 

  8. Mason, M. F. et al. Wandering minds: the default network and stimulus-independent thought. Science 315, 393–395 (2007).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Murphy, K., Birn, R. M. & Bandettini, P. A. Resting-state fMRI confounds and cleanup. Neuroimage 80, 349–359 (2013).

    Article  PubMed  Google Scholar 

  10. Snyder, A. Z. & Raichle, M. E. A brief history of the resting state: the Washington University perspective. Neuroimage 62, 902–910 (2012).

    Article  PubMed  Google Scholar 

  11. Bolt, T., Anderson, M. L. & Uddin, L. Q. Beyond the evoked/intrinsic neural process dichotomy. Netw. Neurosci. https://doi.org/10.1162/NETN_a_00028 (2018). This paper proposes an integrated view of brain activity that emphasizes the continuous interplay between externally driven and internally generated neural dynamics.

  12. Thomason, M. E. et al. Cross-hemispheric functional connectivity in the human fetal brain. Sci. Transl. Med. 5, 173ra24 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Shen, H. H. Resting-state connectivity. Proc. Natl Acad. Sci. USA 112, 14115–14116 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vincent, J. L. et al. Intrinsic functional architecture in the anaesthetized monkey brain. Nature 447, 83–86 (2007). This study used rsfMRI in anaesthetized monkeys to demonstrate the intrinsic functional architecture of the brain even in the absence of conscious awareness.

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Raichle, M. E. et al. A default mode of brain function. Proc. Natl Acad. Sci. USA 98, 676–682 (2001).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  16. Greicius, M. D., Krasnow, B., Reiss, A. L. & Menon, V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl Acad. Sci. USA 100, 253–258 (2003).

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Seeley, W. W. et al. Dissociable intrinsic connectivity networks for salience processing and executive control. J. Neurosci. 27, 2349–2356 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Damoiseaux, J. S. et al. Consistent resting-state networks across healthy subjects. Proc. Natl Acad. Sci. USA 103, 13848–13853 (2006).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. De Luca, M., Beckmann, C. F., De Stefano, N., Matthews, P. M. & Smith, S. M. fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage 29, 1359–1367 (2006).

    Article  PubMed  Google Scholar 

  20. Power, J. D. et al. Functional network organization of the human brain. Neuron 72, 665–678 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Yeo, B. T. T. et al. The organization of the human cerebral cortex estimated by intrinsic functional connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

    Article  PubMed  Google Scholar 

  22. Dosenbach, N. U., Fair, D. A., Cohen, A. L., Schlaggar, B. L. & Petersen, S. E. A dual-networks architecture of top-down control. Trends Cogn. Sci. 12, 99–105 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Uddin, L. Q., Thomas Yeo, B. T. & Spreng, R. Towards a universal taxonomy of macro-scale functional human brain networks. Brain Topogr. 32, 926–942 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Smith, S. M. et al. Correspondence of the brain’s functional architecture during activation and rest. Proc. Natl Acad. Sci. USA. 106, 13040–13045 (2009).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fox, M. D. et al. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc. Natl Acad. Sci. USA. 102, 9673–9678 (2005). This paper demonstrates that the human brain is intrinsically organized into dynamic, anticorrelated functional networks, with the default and task-positive networks displaying opposing activity patterns during rest, suggesting a fundamental principle of brain organization.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Fransson, P. Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum. Brain Mapp. 26, 15–29 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hampson, M., Driesen, N. R., Skudlarski, P., Gore, J. C. & Constable, R. T. Brain connectivity related to working memory performance. J. Neurosci. 26, 13338–13343 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kelly, A. M., Uddin, L. Q., Biswal, B. B., Castellanos, F. X. & Milham, M. P. Competition between functional brain networks mediates behavioral variability. Neuroimage 39, 527–537 (2008).

    Article  PubMed  Google Scholar 

  29. Chang, S. E., Lenartowicz, A., Hellemann, G. S., Uddin, L. Q. & Bearden, C. E. Variability in cognitive task performance in early adolescence is associated with stronger between-network anticorrelation and future attention problems. Biol. Psychiatry Glob. Open Sci. 3, 948–957 (2023). This study demonstrates that variability in cognitive task performance during early adolescence is linked to stronger anticorrelations between brain networks, and that these brain network interactions predict attention-related issues.

    Article  PubMed  Google Scholar 

  30. Marek, S. et al. Reproducible brain-wide association studies require thousands of individuals. Nature 603, 654–660 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cosío-Guirado, R. et al. A comprehensive systematic review of fMRI studies on brain connectivity in healthy children and adolescents: current insights and future directions. Dev. Cogn. Neurosci. 69, 101438 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Uddin, L. Q. Bring the noise: reconceptualizing spontaneous neural activity. Trends Cogn. Sci. 24, 734–746 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Finn, E. S. et al. Functional connectome fingerprinting: identifying individuals using patterns of brain connectivity. Nat. Neurosci. 18, 1664–1671 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang, J. et al. What have we really learned from functional connectivity in clinical populations? Neuroimage 242, 118466 (2021).

    Article  PubMed  Google Scholar 

  35. Deco, G., Jirsa, V. K. & McIntosh, A. R. Resting brains never rest: computational insights into potential cognitive architectures. Trends Neurosci. 36, 268–274 (2013).

    Article  CAS  PubMed  Google Scholar 

  36. Uddin, L. Q., Castellanos, F. X. & Menon, V. Resting state functional brain connectivity in child and adolescent psychiatry: where are we now?. Neuropsychopharmacology 50, 196–200 (2025).

    Article  Google Scholar 

  37. Mitra, A., Snyder, A. Z., Blazey, T. & Raichle, M. E. Lag threads organize the brain’s intrinsic activity. Proc. Natl Acad. Sci. USA 112, E2235–E2244 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  38. Matsui, T., Murakami, T. & Ohki, K. Transient neuronal coactivations embedded in globally propagating waves underlie resting-state functional connectivity. Proc. Natl Acad. Sci. USA 113, 6556–6561 (2016).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Abbas, A. et al. Quasi-periodic patterns contribute to functional connectivity in the brain. Neuroimage 191, 193–204 (2019). This study demonstrates that quasi-periodic patterns are a key contributor to functional connectivity in the brain and provide a dynamic mechanism that helps explain the variability and organization of ICNs.

    Article  PubMed  Google Scholar 

  40. Gu, Y. et al. Brain activity fluctuations propagate as waves traversing the cortical hierarchy. Cereb. Cortex 31, 3986–4005 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Raut, R. V. et al. Global waves synchronize the brain’s functional systems with fluctuating arousal. Sci. Adv. 7, eabf2709 (2021).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  42. Bolt, T. et al. A parsimonious description of global functional brain organization in three spatiotemporal patterns. Nat. Neurosci. 25, 1093–1103 (2022).

    Article  CAS  PubMed  Google Scholar 

  43. Greene, A. S., Gao, S., Scheinost, D. & Constable, R. T. Task-induced brain state manipulation improves prediction of individual traits. Nat. Commun. 9, 2807 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  44. Matthews, P. M. & Jezzard, P. Functional magnetic resonance imaging. J. Neurol. Neurosurg. Psychiatry 75, 6–12 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Glover, G. H. Overview of functional magnetic resonance imaging. Neurosurg. Clin. N. Am. 22, 133–139 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Horovitz, S. G. et al. Decoupling of the brain’s default mode network during deep sleep. Proc. Natl Acad. Sci. USA 106, 11376–11381 (2009). This study demonstrates that functional connectivity within the default mode network is significantly reduced during slow-wave sleep, suggesting that deep sleep disrupts the coordinated activity of this network.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kiviniemi, V. et al. Slow vasomotor fluctuation in fMRI of anesthetized child brain. Magn. Reson. Med. 44, 373–378 (2000).

    Article  CAS  PubMed  Google Scholar 

  48. Peltier, S. J. et al. Functional connectivity changes with concentration of sevoflurane anesthesia. Neuroreport 16, 285–288 (2005).

    Article  CAS  PubMed  Google Scholar 

  49. Lu, H. et al. Rat brains also have a default mode network. Proc. Natl Acad. Sci. USA 109, 3979–3984 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  50. Gozzi, A., Schwarz, A., Crestan, V. & Bifone, A. Drug-anaesthetic interaction in phMRI: the case of the psychotomimetic agent phencyclidine. Magn. Reson. Imaging 26, 999–1006 (2008).

    Article  CAS  PubMed  Google Scholar 

  51. Logothetis, N. K., Pauls, J., Augath, M., Trinath, T. & Oeltermann, A. Neurophysiological investigation of the basis of the fMRI signal. Nature 412, 150–157 (2001).

    Article  ADS  CAS  PubMed  Google Scholar 

  52. Scholvinck, M. L., Maier, A., Ye, F. Q., Duyn, J. H. & Leopold, D. A. Neural basis of global resting-state fMRI activity. Proc. Natl Acad. Sci. USA 107, 10238–10243 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  53. Schulz, K. et al. Simultaneous BOLD fMRI and fiber-optic calcium recording in rat neocortex. Nat. Methods 9, 597–602 (2012).

  54. Chen, T.-W. et al. Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499, 295–300 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  55. Marvin, J. S. et al. An optimized fluorescent probe for visualizing glutamate neurotransmission. Nat. Methods 10, 162–170 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Sun, F. et al. A genetically encoded fluorescent sensor enables rapid and specific detection of dopamine in flies, fish, and mice. Cell 174, 481–496.e19 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Patriarchi, T. et al. Ultrafast neuronal imaging of dopamine dynamics with designed genetically encoded sensors. Science 360, eaat4422 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Feng, J. et al. A genetically encoded fluorescent sensor for rapid and specific in vivo detection of norepinephrine. Neuron 102, 745–761.e8 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Gong, Y. et al. High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor. Science 350, 1361–1366 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tian, L. et al. Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat. Methods 6, 875–881 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Mitra, A. et al. Spontaneous infra-slow brain activity has unique spatiotemporal dynamics and laminar structure. Neuron 98, 297–305.e6 (2018). This paper demonstrates that infra-slow brain activity has distinct spatiotemporal dynamics and is organized in specific layers of the brain.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Gozzi, A. & Zerbi, V. Modeling brain dysconnectivity in rodents. Biol. Psychiatry 93, 419–429 (2023).

    Article  PubMed  Google Scholar 

  63. Drew, P. J. et al. Ultra-slow oscillations in fMRI and resting-state connectivity: neuronal and vascular contributions and technical confounds. Neuron 107, 782–804 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Cole, D. M., Smith, S. M. & Beckmann, C. F. Advances and pitfalls in the analysis and interpretation of resting-state FMRI data. Front. Syst. Neurosci. 4, 8 (2010).

    PubMed  PubMed Central  Google Scholar 

  65. Karunakaran, K., Wolfer, M. & Biswal, B. B. in Brain Network Dysfunction in Neuropsychiatric Illness (eds Diwadkar, V. A. & Eickhoff, S. B.) 45–74 (2021).

  66. Uddin, L. Q. Mixed signals: on separating brain signal from noise. Trends Cogn. Sci. 21, 405–406 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Chen, J. E. et al. Resting-state ‘physiological networks’. Neuroimage 213, 116707 (2020). This paper introduces the concept of physiological networks and demonstrates that ICNs reflect patterns of physiological processes, such as heart rate and respiration, that are intertwined with neuronal activity and can influence interpretations of functional connectivity.

    Article  PubMed  Google Scholar 

  68. Bolt, T. et al. Autonomic physiological coupling of the global fMRI signal. Nat. Neurosci. https://doi.org/10.1038/s41593-025-01945-y (2025).

  69. Power, J. D., Barnes, K. A., Snyder, A. Z., Schlaggar, B. L. & Petersen, S. E. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59, 2142–2154 (2012).

    Article  PubMed  Google Scholar 

  70. Parkes, L., Fulcher, B., Yücel, M. & Fornito, A. An evaluation of the efficacy, reliability, and sensitivity of motion correction strategies for resting-state functional MRI. Neuroimage 171, 415–436 (2018).

    Article  PubMed  Google Scholar 

  71. Ciric, R. et al. Mitigating head motion artifact in functional connectivity MRI. Nat. Protoc. 13, 2801–2826 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Power, J. D., Plitt, M., Laumann, T. O. & Martin, A. Sources and implications of whole-brain fMRI signals in humans. Neuroimage 146, 609–625 (2017).

    Article  PubMed  Google Scholar 

  73. Li, J. et al. Topography and behavioral relevance of the global signal in the human brain. Sci. Rep. 9, 14286 (2019). This paper demonstrates that the global signal, which is often treated as noise, is spatially organized and linked to behavioural states, suggesting that it carries meaningful information about the brain.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  74. Nomi, J. S. et al. Systematic cross-sectional age-associations in global fMRI signal topography. Imaging Neurosci. https://doi.org/10.1162/imag_a_00101 (2024).

  75. Saad, Z. S. et al. Trouble at rest: how correlation patterns and group differences become distorted after global signal regression. Brain Connect. 2, 25–32 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Murphy, K. & Fox, M. D. Towards a consensus regarding global signal regression for resting state functional connectivity MRI. Neuroimage 154, 169–173 (2017). This paper discusses the ongoing debate about GSR and reviews the arguments for and against applying GSR.

    Article  PubMed  Google Scholar 

  77. Yan, C.-G., Wang, X.-D., Zuo, X.-N. & Zang, Y.-F. DPABI: Data Processing & Analysis for (Resting-State) Brain Imaging. Neuroinformatics 14, 339–351 (2016).

    Article  PubMed  Google Scholar 

  78. Whitfield-Gabrieli, S. & Nieto-Castanon, A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2, 125–141 (2012).

    Article  PubMed  Google Scholar 

  79. Nichols, T. E. et al. Best practices in data analysis and sharing in neuroimaging using MRI. Nat. Neurosci. 20, 299–303 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Dafflon, J. et al. A guided multiverse study of neuroimaging analyses. Nat. Commun. 13, 3758 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  81. Laumann, T. O. & Snyder, A. Z. Brain activity is not only for thinking. Curr. Opin. Behav. Sci. 40, 130–136 (2021).

    Article  Google Scholar 

  82. Barttfeld, P. et al. Signature of consciousness in the dynamics of resting-state brain activity. Proc. Natl Acad. Sci. USA 112, 887–892 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  83. Gonzalez-Castillo, J., Kam, J. W. Y., Hoy, C. W. & Bandettini, P. A. How to interpret resting-state fMRI: ask your participants. J. Neurosci. 41, 1130–1141 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Birn, R. M. et al. The influence of physiological noise correction on test–retest reliability of resting-state functional connectivity. Brain Connect. 4, 511–522 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Birn, R. M. et al. The effect of scan length on the reliability of resting-state fMRI connectivity estimates. Neuroimage 83, 550–558 (2013).

    Article  PubMed  Google Scholar 

  86. Calhoun, V. D., Miller, R., Pearlson, G. & Adalı, T. The chronnectome: time-varying connectivity networks as the next frontier in fMRI data discovery. Neuron 84, 262–274 (2014). This paper introduces addresses time-varying functional connectivity using fMRI and argues that studying these dynamic networks is important for understanding disorders and cognitive processes.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Hutchison, R. M. et al. Dynamic functional connectivity: promise, issues, and interpretations. Neuroimage 80, 360–378 (2013).

    Article  PubMed  Google Scholar 

  88. Specht, K. Current challenges in translational and clinical fMRI and future directions. Front. Psychiatry 10, 924 (2019).

    Article  PubMed  Google Scholar 

  89. Lurie, D. J. et al. Questions and controversies in the study of time-varying functional connectivity in resting fMRI. Netw. Neurosci. 4, 30–69 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Uddin, L. Q. Salience processing and insular cortical function and dysfunction. Nat. Rev. Neurosci. 16, 55–61 (2015).

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  91. Corbetta, M., Patel, G. & Shulman, G. L. The reorienting system of the human brain: from environment to theory of mind. Neuron 58, 306–324 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Uddin, L. Q. et al. Controversies and progress on standardization of large-scale brain network nomenclature. Netw. Neurosci. 7, 864–905 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Vanderwal, T., Eilbott, J. & Castellanos, F. X. Movies in the magnet: naturalistic paradigms in developmental functional neuroimaging. Dev. Cogn. Neurosci. 36, 100600 (2019).

    Article  PubMed  Google Scholar 

  94. Finn, E. S. Is it time to put rest to rest? Trends Cogn. Sci. 25, 1021–1032 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Makowski, C. et al. Leveraging the Adolescent Brain Cognitive Development Study to improve behavioral prediction from neuroimaging in smaller replication samples. Cereb. Cortex 34, bhae223 (2024).

    Article  PubMed  Google Scholar 

  96. Spisak, T., Bingel, U. & Wager, T. D. Multivariate BWAS can be replicable with moderate sample sizes. Nature 615, E4–E7 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gratton, C., Nelson, S. M. & Gordon, E. M. Brain–behavior correlations: two paths toward reliability. Neuron 110, 1446–1449 (2022).

    Article  CAS  PubMed  Google Scholar 

  98. Ward, H. B. et al. Robust brain correlates of cognitive performance in psychosis and its prodrome. Biol. Psychiatry 97, 139–147 (2025).

    Article  CAS  PubMed  Google Scholar 

  99. Pagani, M., Gutierrez-Barragan, D., de Guzman, A. E., Xu, T. & Gozzi, A. Mapping and comparing fMRI connectivity networks across species. Commun. Biol. 6, 1238 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Ma, Z., Zhang, Q., Tu, W. & Zhang, N. Gaining insight into the neural basis of resting-state fMRI signal. Neuroimage 250, 118960 (2022).

    Article  PubMed  Google Scholar 

  101. Tsai, P.-J. et al. Converging structural and functional evidence for a rat salience network. Biol. Psychiatry 88, 867–878 (2020).

    Article  CAS  PubMed  Google Scholar 

  102. Lu, H. & Yang, Y. Leveraging large-scale brain networks in rats to understand neurological and psychiatric disorders in humans. Neuropsychopharmacology 50, 337–338 (2025).

    Article  Google Scholar 

  103. Hadjiabadi, D. H. et al. Brain tumors disrupt the resting-state connectome. Neuroimage Clin. 18, 279–289 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Hyder, F. & Rothman, D. L. Advances in imaging brain metabolism. Annu. Rev. Biomed. Eng. 19, 485–515 (2017).

    Article  CAS  PubMed  Google Scholar 

  105. Herman, P., Sanganahalli, B. G., Blumenfeld, H., Rothman, D. L. & Hyder, F. Quantitative basis for neuroimaging of cortical laminae with calibrated functional MRI. Proc. Natl Acad. Sci. USA 110, 15115–15120 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  106. Wise, R. G., Ide, K., Poulin, M. J. & Tracey, I. Resting fluctuations in arterial carbon dioxide induce significant low frequency variations in BOLD signal. Neuroimage 21, 1652–1664 (2004).

    Article  PubMed  Google Scholar 

  107. Gati, J. S., Menon, R. S., Ugurbil, K. & Rutt, B. K. Experimental determination of the BOLD field strength dependence in vessels and tissue. Magn. Reson. Med. 38, 296–302 (1997).

    Article  CAS  PubMed  Google Scholar 

  108. Bandettini, P. A. & Wong, E. C. A hypercapnia-based normalization method for improved spatial localization of human brain activation with fMRI. NMR Biomed. 10, 197–203 (1997).

    Article  CAS  PubMed  Google Scholar 

  109. Kannurpatti, S. S. & Biswal, B. B. Detection and scaling of task-induced fMRI-BOLD response using resting state fluctuations. Neuroimage 40, 1567–1574 (2008). This paper demonstrates the use of resting-state fluctuations in fMRI signals to detect and scale task-induced BOLD responses, which offers improved detection and interpretation of fMRI BOLD signals during cognitive tasks.

    Article  PubMed  Google Scholar 

  110. Liu, P. et al. Cerebrovascular reactivity mapping using intermittent breath modulation. Neuroimage 215, 116787 (2020).

    Article  PubMed  Google Scholar 

  111. Deco, G., Tononi, G., Boly, M. & Kringelbach, M. L. Rethinking segregation and integration: contributions of whole-brain modelling. Nat. Rev. Neurosci. 16, 430–439 (2015). This paper reviews the balance between segregation and integration in brain function through the lens of whole-brain modelling.

    Article  CAS  PubMed  Google Scholar 

  112. Pathak, A., Roy, D. & Banerjee, A. Whole-brain network models: from physics to bedside. Front. Comput. Neurosci. 16, 866517 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Jirsa, V. K., Sporns, O., Breakspear, M., Deco, G. & McIntosh, A. R. Towards the virtual brain: network modeling of the intact and the damaged brain. Arch. Ital. Biol. 148, 189–205 (2010).

    CAS  PubMed  Google Scholar 

  114. Deco, G. & Kringelbach, M. L. Great expectations: using whole-brain computational connectomics for understanding neuropsychiatric disorders. Neuron 84, 892–905 (2014).

    Article  CAS  PubMed  Google Scholar 

  115. Khosla, M., Jamison, K., Ngo, G. H., Kuceyeski, A. & Sabuncu, M. R. Machine learning in resting-state fMRI analysis. Magn. Reson. Imaging 64, 101–121 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  116. Hong, S.-J. et al. Toward neurosubtypes in autism. Biol. Psychiatry 88, 111–128 (2020).

    Article  PubMed  Google Scholar 

  117. Uddin, L. Q., Dajani, D. R., Voorhies, W., Bednarz, H. & Kana, R. K. Progress and roadblocks in the search for brain-based biomarkers of autism and attention-deficit/hyperactivity disorder. Transl. Psychiatry 7, e1218 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Li, J. et al. Cross-ethnicity/race generalization failure of behavioral prediction from resting-state functional connectivity. Sci. Adv. 8, eabj1812 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Kopal, J., Uddin, L. Q. & Bzdok, D. The end game: respecting major sources of population diversity. Nat. Methods 20, 1122–1128 (2023).

    Article  CAS  PubMed  Google Scholar 

  120. Schumann, G. et al. Precision medicine and global mental health. Lancet Glob. Health 7, e32 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Gordon, E. M. et al. Precision functional mapping of individual human brains. Neuron 95, 791–807.e7 (2017). This paper presents a method for precision functional mapping of individual human brains and highlights how functional brain networks vary significantly across individuals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Poldrack, R. A. et al. Long-term neural and physiological phenotyping of a single human. Nat. Commun. 6, 8885 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  123. Yip, S. W. & Konova, A. B. Densely sampled neuroimaging for maximizing clinical insight in psychiatric and addiction disorders. Neuropsychopharmacology 47, 395–396 (2022).

    Article  PubMed  Google Scholar 

  124. Downar, J., Siddiqi, S. H., Mitra, A., Williams, N. & Liston, C. Mechanisms of action of TMS in the treatment of depression. Curr. Top. Behav. Neurosci. 66, 233–277 (2024).

    Article  PubMed  Google Scholar 

  125. Mitra, A., Raichle, M. E., Geoly, A. D., Kratter, I. H. & Williams, N. R. Targeted neurostimulation reverses a spatiotemporal biomarker of treatment-resistant depression. Proc. Natl Acad. Sci. USA 120, e2218958120 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Siddiqi, S. H. et al. Brain stimulation and brain lesions converge on common causal circuits in neuropsychiatric disease. Nat. Hum. Behav. 5, 1707–1716 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Cash, R. F. H. & Zalesky, A. Personalized and circuit-based transcranial magnetic stimulation: evidence, controversies, and opportunities. Biol. Psychiatry 95, 510–522 (2024).

    Article  PubMed  Google Scholar 

  128. Schaefer, A. et al. Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cereb. Cortex 28, 3095–3114 (2018).

    Article  PubMed  Google Scholar 

  129. Gordon, E. M. et al. Generation and evaluation of a cortical area parcellation from resting-state correlations. Cereb. Cortex 26, 288–303 (2016).

    Article  PubMed  Google Scholar 

  130. Kong, R. et al. A network correspondence toolbox for quantitative evaluation of novel neuroimaging results. Nat. Commun. 16, 2930 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. West, K. L. et al. BOLD hemodynamic response function changes significantly with healthy aging. Neuroimage 188, 198–207 (2019).

    Article  PubMed  Google Scholar 

  132. Lindquist, M. A., Meng Loh, J., Atlas, L. Y. & Wager, T. D. Modeling the hemodynamic response function in fMRI: efficiency, bias and mis-modeling. Neuroimage 45, S187–S198 (2009).

    Article  PubMed  Google Scholar 

  133. Yan, W., Rangaprakash, D. & Deshpande, G. Estimated hemodynamic response function parameters obtained from resting state BOLD fMRI signals in subjects with autism spectrum disorder and matched healthy subjects. Data Brief. 19, 1305–1309 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Bandettini, P. A. Neuronal or hemodynamic? Grappling with the functional MRI signal. Brain Connect. 4, 487–498 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Zang, Y., Jiang, T., Lu, Y., He, Y. & Tian, L. Regional homogeneity approach to fMRI data analysis. Neuroimage 22, 394–400 (2004).

    Article  PubMed  Google Scholar 

  136. Jiang, L. et al. Toward neurobiological characterization of functional homogeneity in the human cortex: regional variation, morphological association and functional covariance network organization. Brain Struct. Funct. 220, 2485–2507 (2015).

    Article  PubMed  Google Scholar 

  137. Jiang, L. & Zuo, X.-N. Regional homogeneity: a multimodal, multiscale neuroimaging marker of the human connectome. Neuroscientist 22, 486–505 (2016).

    Article  PubMed  Google Scholar 

  138. Beckmann, C. F., DeLuca, M., Devlin, J. T. & Smith, S. M. Investigations into resting-state connectivity using independent component analysis. Philos. Trans. R. Soc. B 360, 1001–1013 (2005). This paper used ICA applied to rsfMRI data to demonstrate the presence of multiple spatially independent brain networks without requiring predefined regions of interest.

    Article  Google Scholar 

  139. Huettel, S. A. Functional Magnetic Resonance Imaging (Sinauer Associates, 2004). This textbook introduces the physiological basis of fMRI and data analysis methods.

  140. Bullmore, E. & Sporns, O. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10, 186–198 (2009).

    Article  CAS  PubMed  Google Scholar 

  141. Bassett, D. S. & Sporns, O. Network neuroscience. Nat. Neurosci. 20, 353–364 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Rubinov, M. & Sporns, O. Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52, 1059–1069 (2010).

    Article  PubMed  Google Scholar 

  143. van den Heuvel, M. P. & Hulshoff Pol, H. E. Exploring the brain network: a review on resting-state fMRI functional connectivity. Eur. Neuropsychopharmacol. 20, 519–534 (2010). This paper reviews the use of rsfMRI to describe the intrinsic network organization of the brain in healthy individuals and in those with psychiatric and neurological disorders.

    Article  PubMed  Google Scholar 

  144. van den Heuvel, M. P., Stam, C. J., Boersma, M. & Hulshoff Pol, H. E. Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain. Neuroimage 43, 528–539 (2008).

    Article  PubMed  Google Scholar 

  145. Fornito, A., Zalesky, A. & Breakspear, M. Graph analysis of the human connectome: promise, progress, and pitfalls. Neuroimage 80, 426–444 (2013).

    Article  PubMed  Google Scholar 

  146. Canario, E., Chen, D. & Biswal, B. A review of resting-state fMRI and its use to examine psychiatric disorders. Psychoradiology 1, 42–53 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  147. Biswal, B. B. et al. Toward discovery science of human brain function. Proc. Natl Acad. Sci. USA 107, 4734–4739 (2010).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  148. Van Essen, D. C. et al. The WU-Minn Human Connectome Project: an overview. Neuroimage 80, 62–79 (2013).

    Article  PubMed  Google Scholar 

  149. Casey, B. J. et al. The Adolescent Brain Cognitive Development (ABCD) study: imaging acquisition across 21 sites. Dev. Cogn. Neurosci. 32, 43–54 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Di Martino, A. et al. The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol. Psychiatry 19, 659–667 (2014). This paper describes a grassroots data sharing effort involving pooling rsfMRI data from multiple sites performing studies of autism spectrum disorder.

    Article  PubMed  Google Scholar 

  151. HD-200 Consortium. The ADHD-200 Consortium: a model to advance the translational potential of neuroimaging in clinical neuroscience. Front. Syst. Neurosci. 6, 62 (2012).

    Google Scholar 

  152. Thompson, P. M. et al. ENIGMA and global neuroscience: a decade of large-scale studies of the brain in health and disease across more than 40 countries. Transl. Psychiatry 10, 100 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Dhamala, E., Yeo, B. T. T. & Holmes, A. J. One size does not fit all: methodological considerations for brain-based predictive modeling in psychiatry. Biol. Psychiatry 93, 717–728 (2023).

    Article  PubMed  Google Scholar 

  154. Milham, M. P. et al. Assessment of the impact of shared brain imaging data on the scientific literature. Nat. Commun. 9, 2818 (2018).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  155. Uddin, L. Q. Accessible computing platforms democratize neuroimaging data analysis. Nat. Methods 21, 754–755 (2024).

    Article  CAS  PubMed  Google Scholar 

  156. Renton, A. I. et al. Neurodesk: an accessible, flexible and portable data analysis environment for reproducible neuroimaging. Nat. Methods 21, 804–808 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Hayashi, S. et al. brainlife.io: a decentralized and open-source cloud platform to support neuroscience research. Nat. Methods 21, 809–813 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Kiar, G. et al. Align with the NMIND consortium for better neuroimaging. Nat. Hum. Behav. 7, 1027–1028 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Ricard, J. A. et al. Confronting racially exclusionary practices in the acquisition and analyses of neuroimaging data. Nat. Neurosci. 26, 4–11 (2023). This paper discusses racially exclusionary practices in neuroimaging research and emphasizes the need for more inclusive methodologies to more accurately reflect diverse populations and improving the generalizability of findings in neuroscience.

    Article  CAS  PubMed  Google Scholar 

  160. Brown, S. A. et al. Responsible use of population neuroscience data: Towards standards of accountability and integrity. Dev. Cogn. Neurosci. 72, 101466 (2025).

  161. Gao, P. et al. A Chinese multi-modal neuroimaging data release for increasing diversity of human brain mapping. Sci. Data 9, 286 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Tanaka, S. C. et al. A multi-site, multi-disorder resting-state magnetic resonance image database. Sci. Data 8, 227 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

B.B.B. is supported by R01 MH131335 from the National Institute of Mental Health, R01 AG085665 from the National Institute on Aging and RF1 NS124778 from the National Institute of Neurological Disorders and Stroke. L.Q.U. is supported by R21 HD111805 and R01 HD116691 from the National Institute of Child Health and Human Development and U24 DA041147 and U01 DA050987 from the National Institute on Drug Abuse. B.B.B. was on sabbatical from New Jersey Institute of Technology during the initial writing of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

B.B.B. and L.Q.U. wrote and revised the manuscript.

Corresponding authors

Correspondence to Bharat B. Biswal or Lucina Q. Uddin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Gustavo Deco, Marcus Raichle and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biswal, B.B., Uddin, L.Q. The history and future of resting-state functional magnetic resonance imaging. Nature 641, 1121–1131 (2025). https://doi.org/10.1038/s41586-025-08953-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-025-08953-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载