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Osteoarthritisis the third most rapidly growing health condition associated with
disability, after dementia and diabetes'. By 2050, the total number of patients with
osteoarthritis is estimated to reach 1 billion worldwide. As no disease-modifying
treatments exist for osteoarthritis, a better understanding of disease aetiopathology
isurgently needed. Here we perform a genome-wide association study meta-analyses
across up to 489,975 cases and 1,472,094 controls, establishing 962 independent
associations, 513 of which have not been previously reported. Using single-cell
multiomics data, we identify signal enrichment in embryonic skeletal development
pathways. We integrate orthogonal lines of evidence, including transcriptome,
proteome and epigenome profiles of primary joint tissues, and implicate 700 effector
genes. Within these, we find rare coding-variant burden associations with effect

sizes that are consistently higher than common frequency variant associations.

We highlight eight biological processes in which we find convergent involvement of
multiple effector genes, including the circadian clock, glial-cell-related processes and
pathways with an established role in osteoarthritis (TGF3, FGF, WNT, BMP and retinoic
acid signalling, and extracellular matrix organization). We find that 10% of the effector

genes express a protein that is the target of approved drugs, offering repurposing
opportunities, which can accelerate translation.

Osteoarthritis is one of the most rapidly increasing health conditions
globally, and among the leading causes of disability and pain'. The
global burden of osteoarthritis has reached a staggering 595 million
individuals, representing a notable 132% increase in prevalence since
19907 The total number of patients with osteoarthritis has been esti-
mated to reach 1billion worldwide by 20502 Despite the enormous
societal and public health burden of osteoarthritis, no effective
disease-modifying treatments exist. It is therefore imperative to
enhance our understanding of the biological processes leading to
disease development to accelerate translation.
Osteoarthritisisacomplex disease, caused by aninterplay between
environmental and genetic risk factors. Previous genome-wide asso-
ciation studies (GWASSs) have led to the identification of around 150
risk variants, mediated through effector genes involved in various
pathways>. Here we conducted a large-scale GWAS meta-analysis
across 1,962,069 individuals, achieving a 2.64-fold increase in effec-
tive sample size compared with the next largest GWAS?. We com-
bine the genetic findings with functional genomics evidence from
osteoarthritis-relevant tissues and identify effector genes that converge
onkey biological processes underpinning disease development, gen-
erating insights into targets for focused therapeutic interventions.

Study overview

We have performed alarge multi-ancestry GWAS meta-analysis for oste-
oarthritis, combining 87 datasets across 489,975 cases and 1,472,094
controls, with an effective sample size 0f 1,470,467 individuals (Meth-
odsand Supplementary Table1).Itincludes 87.31% individuals of Euro-
pean (EUR) ancestry, 7.09% East Asian (EAS) ancestry, 3.08% African
American (AFR) ancestry, 1.09% South Asian (SAS) ancestry, 0.91%

Hispanic (HIS) ancestry and 0.53% with mixed ancestry (ADM) (Sup-
plementary Tables 1and 2). Inaddition to osteoarthritis at any joint as
anoverarching disease phenotype, we performed joint-specific GWAS
meta-analyses on the basis of the joint affected (Methods).

Genetic architecture of osteoarthritis

We identified 962 independent osteoarthritis associations at the
study-wide significance threshold of P< 1.3 x 107 (175 for osteoarthritis
atanysite, 151 for hip osteoarthritis, 146 for knee osteoarthritis, 131 for
hip and/or knee osteoarthritis, 4 for spine osteoarthritis, 14 for hand
osteoarthritis, 7 for finger osteoarthritis, 5 for thumb osteoarthritis,
136 for total hip replacement, 92 for total knee replacement and 101
for total joint replacement) (Fig. 1, Supplementary Figs. 1-3 and Sup-
plementary Table 3), some of which overlap across phenotypes. The
majority of these (513 out of 962) are conditionally independent of
any previously reported risk variant for any osteoarthritis phenotype
(Supplementary Tables 3 and 4). Of the 962 variants, 339 are unique
and conditionally independent across all osteoarthritis phenotypes
(236 newly reported here) (Methods).

The 962 independently associated variants map to 286 genomic loci
(176 newly reported here). Of the 110 previously reported loci, 44 have a
newlyreported, independent osteoarthritis-associated variant (Meth-
odsand Supplementary Tables 3 and 4). Most loci (86%) contain asingle
independent signal, with the remainder encompassing between 2 and
5independentsignals perlocus. 95% of the associated variants have a
minor allele frequency (MAF) of >5% with small to modest effects (odds
ratios (OR), 1.016-1.186). Forty-nine signals are driven by low-frequency
variants (MAF,1-5%; OR,1.044-1.279) (Fig.1and Supplementary Fig.1).
We performed GWAS meta-analysis within four ancestry groups

A list of authors and their affiliations appears at the end of the paper.

Nature | Vol 641 | 29 May 2025 | 1217


https://doi.org/10.1038/s41586-025-08771-z
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-025-08771-z&domain=pdf

Article

ALLOA
.  FINGER
HAND

e HIP
- HIPKNEE

OR
°
o

VEP

e 0.0025
b XN ® (0.0050
. ® 0.0075

T T T
0.50 0.75 1.00

Risk-allele frequency

T
0 0.25

Fig.1| The genetic architecture of osteoarthritis. Meta-analysis-based odds
ratios of the 962 index variants as afunction of their risk-allele frequency, and
phenotypic variance explained (VEP) for each variantindicated by the size

of eachcircle. Each colour corresponds to an osteoarthritis phenotype:
osteoarthritis at any site (ALLOA), hip osteoarthritis (HIP), knee osteoarthritis
(KNEE), hip and/or knee osteoarthritis (HIPKNEE), spine osteoarthritis (SPINE),
hand osteoarthritis (HAND), finger osteoarthritis (FINGER), thumb
osteoarthritis (THUMB), total hip replacement (THR), total knee replacement
(TKR) and total hip and/or knee replacement (total joint replacement, TJR).

(EAS, AFR, SAS, HIS) and did not detect ancestry-specific study-wide
significant associations. We also did not find any additional signals
whenrestricting the GWAS meta-analysis to studies in which osteoar-
thritis had been defined based on imaging. We find high correlation
between associations when comparing GWAS with and without the
inclusion of self-reported osteoarthritis (Methods, Supplementary
Figs.4-6 and Supplementary Note).

In addition to the 339 unique signals from the main analyses, we
find 3 newly reported female-specific associations and 1 male-specific
association with significant differences in effect size between sexes
(Phec < 0.0125) that did not reach genome-wide significance in the com-
bined sex analysis (Methods and Supplementary Tables 5 and 6).

We evaluated the predictive potential of genetic risk scores (GRSs)
inindependent datasets (Methods). For the osteoarthritis pheno-
typestested, no analysis reached anareaunder the receiver operating
characteristic curve (AUC) over 80%. The best-performing GRS was
obtained for hip osteoarthritis (AUC, 58.6%) (Supplementary Table 7).
We found thatincluding body-massindex (BMI) inthe GRS modelled to
improvementsin prediction (for example, hip osteoarthritisincluding
BMIAUC, 66%).

Signal enrichmentin skeletal cell types

To determine whether early development of skeletal tissues con-
tributes to the risk of osteoarthritis later in life, we investigated the
enrichment of GWAS signals in cell types associated with skeletal
development through functional GWAS (fGWAS). We performed the
analysis for 30 different cell types using single-cell multiomics data
(ATAC and RNA-seq) from the human skeletal development atlas®,
spanning 5-11 weeks after conception (Fig. 2, Methods and Supple-
mentary Table 8).
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Inthe chondrogenesis lineage, we observed significant enrichment
(false discovery rate (FDR) < 0.1) for mature, hypertrophic, articular
and DLK1-expressing chondrocytes for all of the tested osteoarthritis
phenotypes, consistent with cartilage being the primary affected tissue.
Chondrocytes with high cell cycle activity were also enriched for all
phenotypes except for finger osteoarthritis. Moreover, more immature
celltypesincluding chondrocyte progenitors and early GDFS express-
ing interzone chondrocytes were enriched for total hip replacement,
and chondrocyte progenitors were also enriched for hip osteoarthritis.
In the osteogenesis lineages, we observed significant enrichment for
mature osteocytes (total hip replacement, hip osteoarthritis and finger
osteoarthritis), osteoblast (total hip replacement and hip osteoarthri-
tis) and perichondrium (hip osteoarthritis).

The osteoblast enrichment associated with hip and finger osteoar-
thritis may be linked to bone morphology, as structural abnormali-
ties in femoral head formation can lead to irregular joint surfaces
or improper joint congruity, increasing the risk of mechanical over-
loading, and contributing to osteoarthritis development. Geometric
parameters of the hip are known to be associated with osteoarthri-
tis*¢, and developmental dysplasia of the hip often leads to osteoar-
thritis, with research showing shared genetic risk factors between
the two conditions, including associations with GDFS and COL1IAI"®.
Finger-length patterns in combination with elevated androgen levels
during development have also been linked with osteoarthritis®. The
fGWAS results therefore suggest a role of bone development in the
pathogenesis of hip and finger osteoarthritis manifesting in later stages
of life and implicates particular transcriptomic and epigenetic cell
states.

We find enrichment in total hip replacement and hip osteoarthritis
genetic associations with tenocytes. Tendons are vital to the trans-
mission of force and stabilization of the musculoskeletal system. Hip
tendon samples from patients with osteoarthritis demonstrate agreater
degree of fibrosis, non-collagenous change and calcium depositionin
the extracellular matrix (ECM) compared with samples from patients
with femoral neck fractures'®, consistent with periarticular tendinopa-
thy. Similar tendinopathy is found at other osteoarthritis-susceptible
joints2, Our findings indicate that tendon development is also
associated with hip osteoarthritis and is more likely related to late-
stage osteoarthritis, suggesting that the developmental biology of
secondary stabilizers of the joint contributes to the causal pathway in
osteoarthritis.

Fine mapping of causal variants

Toidentify potential causal variants at the associated loci, we created,
ateachsignal, aset of variants that are predicted with 95% probability
toincludea causal variant, called credible sets (Methods and Supple-
mentary Note). The number of variantsin a credible set ranged from
1to 247 (mean 23 variants) with 75 credible sets containing a single
variant and 149 credible sets containing less than 3 variants (Supple-
mentary Tables 9 and 10). A total of 328 credible sets mapped entirely
within the transcript of asingle gene, strongly indicating that gene as
causal. Most credible-set variants were predicted to be non-coding
(57% were intronic and 17% intergenic). In total, 81 coding credible-set
variants were missense, 1 was a stop gain variant (in VIT) and 1 was a
splice acceptor variant. On the basis of 3D chromatininteraction data
that we generated in primary osteoarthritis chondrocytes (Methods),
187 credible-set variants overlap promoters, 2,149 overlap enhanc-
ers and 814 reside within an enhancer that loops to a promoter. We
performed transcription factor enrichment analysis (Methods) and
identified 1,585 credible-set variants that both reside within gene
regulatory regions and affect a transcription-factor-binding motifin
osteoblast or chondrogenic cells (344 unique transcription factors;
Supplementary Tables 11 and 12, Supplementary Fig. 7 and Supple-
mentary Note).
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Fig.2|Signal enrichmentincell types associated with skeletal development.
fGWAS enrichment for osteoarthritisin 30 cell states of the skeletal development
atlas. Significance (FDR < 0.1) and effect size (log-transformed OR, log[OR])
areindicated by colour and dotssize, respectively. InterzoneChon, interzone
chondrocytes; PAX7"" Chon, PAX7-expressing chondrocytes; ChondroProl,
chondrocyte progenitors; CyclingChon, chondrocytes with high cell cycle
activity; ArticularChonl, articular chondrocytes with high TRPV4 and VEGFA
expression; ArticularChon2, articular chondrocytes with high EPYC and low SOX9

Identification of effector genes

To identify genes that are very likely to be causal for osteoarthritis
(effector genes), we integrated data across 24 orthogonal lines of
evidence to score each of the 8,785 genes residing within the 286
genomic risk loci (Methods, Extended Data Fig. 1and Supplementary
Tables13-19). Weidentified 700 unique effector genes with ascore of
>3, mappingto over 88% of loci (Supplementary Table 20). We find that
70locicontainasingle effector gene, while the majority (70%) contain
more than one gene with at least three orthogonal lines of evidence
pointing to its involvement. The highest-scoring effector gene, with
11lines of evidence in support of its involvement, is ALDHIA2, a gene
previously implicated in osteoarthritis®.

We found that mouse and human musculoskeletal and pain pheno-
types, chondrocyte HiC and differential chondrocyte methylation are
thelines of evidence with relatively higher information contributions
(Methods, Supplementary Tables 13,21 and 22, Supplementary Fig. 8,
Extended Data Fig. 2 and Supplementary Note).

Deleterious rare variant burdens

We assessed the association between loss of function (LOF) variants
in the 700 effector genes and osteoarthritis using gene burden tests.
To this end, we aggregated the association of all rare LOF variants
in these genes (<2% frequency total) (Methods and Supplementary
Tables 23-25) and identified nine study-wide significant associations
(P<7.1x107) with 5genes (ADAMTSL3, VIT, COL27A1,IL11 and PMVK),
of which the burdens of ADAMTSL3 and VIT on hip osteoarthritis and
total hip replacement are genome-wide significant (P< 2.5x107¢). The
risk of disease was increased for LOF variantsin these genes. When we
incorporated missense (MIS) in addition to LOF variants (LOF + MIS) in
theburdentests, weidentified ADAMTSL3, VIT, IL11, THBS3, ADAMTS6,
SPRY2and COLGALT2associated with osteoarthritis, of which associa-
tion of ADAMTSL3with hip osteoarthritis and /L11 with total hip replace-
ment are genome-wide significant. LOF + MIS variants in ADAMTSé,
SPRY2 and COLGALT2 are protective against osteoarthritis, whereas
aggregation of these variantsin ADAMTSL3, VIT, IL11 and THBS3 confer
risk of osteoarthritis. The direction of effects was consistent in both
models for all effector genes. Common non-coding sequence vari-
ants associated with osteoarthritis phenotypes present concordant

expression; DLK1"8" Chon, DLK1-expressing chondrocytes; HypertrophicChon,
hypertrophic chondrocytes; MaturingChon, maturing chondrocytes; LimbMes,
early limb mesenchyme cells; Perichondrium, perichondrial osteoblast
progenitors; MatureOsteocyte, osteocytes; FibroPRO1/2, fibroblast progenitors;
SynFIB, synovial fibroblasts; DermFIB1/2, dermal fibroblasts; TENO, tenocytes;
PAX7"Myo, PAX7-expressing myocytes; MYH3"Myo, MYH3 expressing
myocytes; PERI, pericytes; PerineuralFIB, perineural fibroblasts; HIC1" Mes,
HICI-expressing mesenchymal cells.

directions of effect with gene-burden association results of genes in
their vicinity, with the exception of variants near THBS3 and PMVK;
thesetwo genesareat the same locus (around 300 kb apart). Notably,
none of the above burden associations are driven by a single variantin
any of the cohorts (Supplementary Table 25).

We found LOF burdens for genes at the same loci as those identified
inthe common variant analysis for the same phenotypes and for differ-
ent phenotypes (for example, ADAMTSL3 and total hip replacement,
PMVK and knee osteoarthritis, and SPRY2 and hand osteoarthritis). We
alsodetected LOF burdens for different genes at the same locus (PMVK
and THBS3).For the same phenotype, the effect sizesin the LOF burden
analysis are consistently larger compared with those identified in the
common variant analysis, except for VIT, for which they are the same.

Biological Insights

Weidentify eightinterconnected biological pathways thatare enriched
for effector genes, the majority of which are newly reported here
(Table 1, Methods, Supplementary Note, Supplementary Tables 13
and 26-29 and Extended Data Fig. 3; a detailed description of these
pathways and the role of the effector genes is provided in the Supple-
mentary Note). We find that the biological processes with the highest
number of effector genes, such as ECM and WNT signalling, show higher
levels of osteoarthritis heritability explained (Supplementary Fig. 9).

Retinoic acid signalling

Theretinoicacid signalling pathway (Extended DataFig. 4) is associated
with the highest-scoring effector gene, ALDH1A2. ALDH1A2 catalyses
the synthesis of all-trans retinoic acid (ATRA), which theninteracts with
retinoicacid and retinoid acid receptors, regulating the expression of
multiple genes with fundamental roles in skeletal patterning and dif-
ferentiation'", as well as organ and limb development'®". CYP26BI is
involvedinthe degradation of ATRA, thereby controllingits availability.
The balance of synthesis and degradation of ATRA is important for
receptor interactions, and depletion or excess of ATRA can resultin
developmental abnormalities®.

TGFp signalling

TGF signalling (Extended Data Fig. 5) is intricately involved in the
pathogenesis of osteoarthritis throughiits effects on chondrocyte and
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Table 1| Distribution of effector genes across the eight highlighted pathways

Pathway n effector nnovel effector n effector genes targeted Median n of risk loci carried by patientsin the
genes genes by approved drugs UKBB/MVP

ALLOA KNEE HIP
Retinoic acid signalling 4 3 0 4/4 m”n m”n
TGFR signalling 28 19 6 21/22 9IMm 16/15
BMP signalling 33 28 3 32/31 12/13 15/14
WNT signalling 57 49 5 44/43 15/16 24/24
FGF signalling 20 15 3 1717 8/8 nm
ECM assembly and organization 61 48 18 39/38 18/18 21/21
Circadian rhythm 20 18 6 14/14 7/7 5/5
Glial-cell-related pathways 39 35 10 31/31 1213 1717

UKBB, UK Biobank; MVP, Million Veteran Program.

osteoblast differentiation, skeletal development, cartilage and bone
formation, inflammation, ECM remodelling, osteophyte and synovial
tissue changes, and interactions with other signalling pathways, such
as BMP. The identified effector genes traverse all aspects of TFGp sig-
nalling (Extended DataFig. 5). We find that TGFB1 and SMAD6 demon-
strate allelicimbalance insubchondral bone (Methods, Supplementary
Table 27 and Supplementary Fig. 10) and that the osteoarthritis risk
allele of rs146652543 is associated with decreased expression of TGFBI.
We also identify decreased protein abundance of TGFf1in degraded
comparedwithintact osteoarthritis cartilage (Supplementary Table 13).
The hip osteoarthritis risk-increasing allele of rs2469081 is associ-
ated with decreased expression of SMAD6, a newly identified signal.
Furin plasma protein quantitative trait loci (pQTLs) colocalize with
osteoarthritis signals on chromosome 15 (rs1894401) (Methods and
Supplementary Table 28).

BMP signalling

BMP signalling has animportant role in many organs and tissues dur-
ing early embryogenesis (dorsoventral and anteroposterior axis for-
mation), and in postnatal homeostasis. The role of BMP signalling in
skeletal development and maintenance is well established, with alack
or excess of BMP signalling giving rise to skeletal abnormalities. Muta-
tions and/or deletion of the effector genes BMP2, BMP6, BMPRIB, GDF6
and GDFS5 have been associated with brachydactyly (BMP2, BMPR1B
and GDF5)¥?, joint deformities and osteoarthritis (GDF5)*, reduc-
tion in long bone size (BMP6)*, joint defects (GDFS and GDF6) and
severe chondrodysplasia (BMP2)**. The mechanisms of involvement
of BMP signalling with osteoarthritis pathology are complex, rang-
ing from embryonic and developmental changes to those that occur
throughoutlife, such as cartilage homeostasis, osteophyte formation
and subchondral bone changes.

WNT signalling

WNT signalling has an important function in bone and cartilage
metabolism and a well-established role in osteoarthritis®. Two of
the effector genes involved in this pathway are WNT family members
(WNT3 and WNT5a), both newly reported here, and the remaining
genes are involved in modulation of the WNT signalling pathway.
WNT signalling has an essential role in embryonic development
and homeostasis of bone and cartilage. Dysregulated WNT signal-
ling can contribute to various aspects of osteoarthritis pathology,
including cartilage degradation, subchondral bone changes, synovial
inflammation and osteophyte formation. We find that the hip
osteoarthritis risk allele of rs77601616 is associated with increased
expression of SFRP4, located at a locus newly discovered here, in
subchondral bone (Methods, Supplementary Table 27 and Supple-
mentary Fig.10).
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Fibroblast growth factor signalling

Members of the fibroblast growth factor (FGF) pathway have beenimpli-
cated in the pathogenesis of osteoarthritis through skeletal develop-
ment, bone and cartilage homeostasis, and also through inflammation
and angiogenesis. Five of the effector genes involved in FGF signalling
arekey FGF pathway members (FGFI, FGF18, FGFR3, FGFR4 and FGFRLI).
FGFs have animportant role in tissue regeneration and repair and are
integral to cell differentiation, proliferation, apoptosis, metabolism,
morphogenesis and tissue healing. Two FGF-related pathways involve
afurther 18 effector genes: FGFR3 signallingin chondrocyte prolifera-
tionand terminal differentiation (10 effector genes), and osteoarthritic
chondrocyte hypertrophy (16 effector genes) (Supplementary Table 29
and Supplementary Fig. 11). Mutations in FGFR3are known to give rise to
achondroplasias®. Osteoarthritic chondrocyte hypertrophy is associ-
ated with dysregulation of FGF, hypoxia and angiogenesis?.

ECM

Among the 61 effector genes associated with ECM assembly and organi-
zation, 14 are collagens, 3 are proteoglycans, 12 are glycoproteins, 6 are
ECM secreted factors, 7 are ECM regulators and 1is an ECM-affiliated
protein. The majority of the ECM in healthy articular cartilage is com-
posed of aggrecan, encoded by ACAN, and collagentype I, encoded by
COL2A1,bothnewlyreported effector genes. Mutationsin both COL2A1
and ACANgiverise to types of spondyloepiphyseal dysplasia character-
ized by premature osteoarthritis?®. During osteoarthritis progression,
the balance between the aggrecan content (which provides the ability
to withstand compression and absorb shocks) and collagen content
(which provides tensile strength) is critical. Changes in ECM content
can give rise to reduced mechanical strength, lack of elasticity and
increased susceptibility to damage. We find further support for the
involvement of COL2A1 for the association signal at rs11168351, which
colocalizes with COL2A1 plasma pQTLs (Supplementary Table 28). The
pericellular matrix, which surrounds the chondrocyte and modulates
the environment, is enriched for collagen type VI (COL6) and perle-
can (HSPG2). COL6 is encoded by six genes, two of which are effector
genes (COL6AI and COL6A2). Mutations in COL6A1/2 are associated
with various myopathies®. Mutations in HSPG2, whichis also an effec-
torgene, giverise to Schwartz-Jampel syndrome type1, characterized
by myotonia and chondrodysplasia®. Two genes involved in the ECM
also harbour LOF burdens (COLGALT2 and COL27A1). The LOF + MIS
burdens in COLGALT2 are protective against osteoarthritis (Supple-
mentary Table 23). COLGALT2 encodes an enzyme thatis involvedin the
post-translational glycosylation of collagens and proteins containing
collagen domains. Differential allelic expression imbalance between
intact and degraded cartilage has shown that lower expression of
COLGALT2is protective for osteoarthritis®. In osteoarthritic cartilage,



therisk allele of rs11583641 was associated with increased expression
of COLGALT2 mediated through decreased methylation®’. Mechanisti-
cally, over-glycosylation may result in weakened integrity of collagen
fibrilsand decreased resilience of the cartilage. The risk of disease was
increased for LOF variantsin COL27A1, whichis afibril-forming collagen
witharoleinthe transition of cartilage to bone during skeletogenesis.
COL27A1has been shown to be regulated by SOX9 (an effector gene).
Mutationsin COL27A1 are associated with Steel syndrome, character-
ized by short stature, hip dislocation and scoliosis®*?*.

Circadianrhythm

The circadian rhythm has not been genomically linked with osteoar-
thritis, although a few studies have established a role for circadian
clocksin articular cartilage in regulating pathways related to tissue
ageing, degeneration and osteoarthritis. It has alsobeen demonstrated
that chronic circadian misalignment may accelerate tissue ageing
and ECM degradation. Furthermore, changes in tissue stiffness, for
example during ageing, canimpair circadian clock function® . A sub-
population of chondrocytes has also been shown to have increased
expression of circadian-related genes (PERI and SIRTI)*. Disruptions
to circadian rhythms may affect the ability of bone and joint tissues
torepair and regenerate. Morning joint stiffness can occur due to
circadianvariations, and age-related changesin sleeping patterns can
decrease the amplitude of circadian rhythms. Circadian rhythms can
also influence pain perception and sensitivity*, and the absorption,
distribution and metabolism of drugs. Circadian-related pain percep-
tion has been observed in individuals with osteoarthritis of the knee
and hand***, Effector genes implicated in this biological process are
corecircadian clock components (CLOCK,ARNTL and NR1D1), involved
in clock entrainment, orchestration, sleeping patterns, transcrip-
tion of clock genes, circadian oscillations and/or clock-controlled
autophagy in bone metabolism (Extended Data Fig. 6 and Supple-
mentary Fig. 12). We find that GFPT1, linked with clock entrainment,
demonstrates allelicimbalance in subchondral bone; and that the
hip osteoarthritis risk allele of rs6546511is associated with increased
GFPTI expression (Methods, Supplementary Table 27 and Supplemen-
tary Fig.10). We also find a decrease in PTGS1in degraded compared
withinintact osteoarthritis-affected chondrocytes (Supplementary
Table13).

Glial-cell-related pathways

Glial cells provide structural and functional support to neurons, regu-
late the extracellular environment and have crucial roles inimmune
defence and repair processes within the nervous system. The 39 effector
genes associated with glial cells traverse multiple cellular processes
such as cell differentiation, regulation, migration and development.
Glial cells may have a multifaceted role in the pathophysiology of
osteoarthritis, influencing immune response, neuroinflammation,
neuronal plasticity, peripheral and central sensitization. Strategies
aimed at modulating glial-mediated mechanisms could provide new
therapeutic options for alleviating pain and inflammation associated
with osteoarthritis.

Drug targets

We identify 473 approved drugs that target the protein product of 69
effector genes, of which 5 (7.2%) have been previously associated with
apain phenotype (Methods and Supplementary Tables 13,30 and 31).
Over half of these genes (37) are members of one or more of the eight
highlighted pathways (Table 1and Supplementary Note). Genetically
informed selection of patients carrying risk alleles mapping to path-
ways targeted by drugs has the potential to pave the way for person-
alized medicine and the smart design of clinical trials going forward
(Table1, Supplementary Tables 32 and 33, Extended Data Figs. 7,8 and
Supplementary Note).

CYP26BI of the retinoic pathway is involved in the degradation of
ATRA, thereby controllingits availability, and is inhibited by taralazole,
whichis currently undergoing a proof-of-concept trial to treat patients
with base of thumb osteoarthritis before surgery (https://www.isrctn.
com/ISRCTN16717773).

FGF18, a high-affinity ligand for FGFR3 and amember of the FGF path-
way, is currently being investigated in clinical trials for osteoarthritis,
in which sprifermin (human recombinant FGF18) injected into joints
has shown promising resultsin terms ofimproving cartilage thickness
and reducing symptoms of osteoarthritis over a 5-year follow-up in
patients with knee osteoarthritis*.

There are six effector genes that are linked with the TGF3 pathway
(TGFBI1, COL1A2, COL3A1, TNF, PRKCZ and ITGB3), for which their
protein is the target of at least one approved drug (Supplementary
Table30). These drugs are used to treata variety of conditions:involving
theimmune system and inflammation, abnormalities of connective tis-
sue and Dupuytren’s contracture, myocardial infarction and recurrent
thrombophlebitis, neoplasms and anaemia.

SOST antagonizesboth WNT and BMP signalling. Its encoded protein
(sclerostin) isinhibited by romosozumab, amonoclonal anti-sclerostin
antibody, used to increase bone mass and treat osteoporosis. Four
additional WNT signalling genes, PSMBS, TGFB1,PSMC3and COL6A1, are
targeted by approved drugs, with the latter also a part of the ECM and
glial cell pathway.

Eighteen effector genesinvolved in the ECM have proteins that are
thetarget of approved drugs (Supplementary Table 30). Two approved
drugs (ocriplasmin and collagenase clostridium histolyicum) target
ten of the collagen effector genes and are licenced for abnormalities
of connective tissue, macular degeneration and Dupuytren’s con-
tracture among other indications. For osteoarthritis, the target site
here might be the joint capsule or synovium, rather than the articular
cartilage.

Agonists of the glucocorticoid receptor, the gene product of NR3Cl1,
amember of both the circadian clock and glial cell pathways, are
approved for osteoarthritis pain relief, due to its anti-inflammatory
ability. Using anindividual’s circadian rhythm may improve outcomes
by maximizing therapeutic efficacy, decreasing adverse effects and
personalizing disease management accordingly. Indeed, the effi-
cacy in the treatment of osteoarthritis pain with the non-steroidal
anti-inflammatory drugindomethacin has been shown to be contingent
onthe timing of drug administration®. Indomethacin, among other 44
approved drugs, targets PTGS1, also known as COX1. Treatment with
naproxen (one of the approved drugs) suppressed PTGS1 expression
in synovial tissue, inhibited the migratory and invasive capabilities
of osteoarthritis synoviocytes and increased their apoptosis rate**.

Discussion

Osteoarthritis is one of the leading causes of disability and pain
worldwide'. The societal and public health burden of osteoarthritis
is enormous and is accompanied by substantial multimorbidity* and
significant cost. For example, inthe US alone, the total costs attributed
to osteoarthritis averaged US$486.4 billion annually*¢, and in Europe
the respective annual costs for knee and hip osteoarthritis are up to
€817 billion*. No effective disease-modifying treatments exist for
osteoarthritis. A better understanding of the biological processes
leading to disease development is therefore urgently needed to
improve the lives of the staggering number of people with osteoarthritis
worldwide.

Here we conducted a GWAS meta-analysis for osteoarthritis with a
substantial step-up in sample size and power (2.76-fold increase inthe
number of patients with osteoarthritis included compared with the
nextlargest GWAS?). Although we have achieved animprovementin the
genetic diversity of contributing populations (87% European ancestry
compared with 97% in the next largest GWAS®), there is a clear need to
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continue effortsinidentifying and including cohorts that better reflect
genetic diversity globally. In this study, we did not achieve the power
required to glean whether non-EUR ancestry-specific signals exist.

Osteoarthritis exhibits discordance between structural changes and
symptoms. We find no additional signals when restricting the analy-
ses to imaging-based disease definitions only, although this could
be ascribed to relatively lower power. Sensitivity analyses confirm
previous reports on the suitability of using self-report in osteoarthritis
for genetic studies*®. We also acknowledge the complexities in differ-
entiating spinal osteoarthritis from other structural abnormalities,
such as disc disease and compressive neuropathies. In this work, all
four spine osteoarthritis signals demonstrate associations with other
osteoarthritis joint phenotypes. Going forward, comparative studies
with more precise diagnostic criteria are warranted.

Our findings provide insights into the genetic architecture of dis-
ease, with 70% of the unique study-wide significant variants and 62% of
locinot having been reported previously. In addition to these, mainly
common-frequency, modest-effect variant associations, we identify
rare coding-variant burdens with consistently higher effect sizes.
Here we have restricted the LOF burden analysis to effector genes at
common-variantloci.Moving forward, and with increasing sequencing
data availability, it appears likely that we will identify additional loci
using LOF burden analysis that are not captured by common variation.
Such analyses may identify novel genes and pathways with more pro-
found effects at the protein level for therapeutic targeting.

By generating and integrating molecular profile data in primary
osteoarthritis tissue and incorporating additional lines of evidence,
coupled with a deep literature dive, we identify 700 effector genes,
increasing the number of effector genes for osteoarthritis by an order
of magnitude, and provide insights into the biology of disease. Mus-
culoskeletal and pain phenotypes, along with chondrocyte data, are
thelines of evidence with relatively higher information contributions.
We identify signal enrichment in embryonic skeletal development
pathways and highlight eight biological processes in which we find
convergence of effector genes. The overlap of genes across multiple
biological processes, suggests that these pathways interact to affect
osteoarthritis development and progression.

We find that risk allele carriage is pervasive across patients with
osteoarthritis for all eight biological processes, potentially facilitat-
ing patient selection for clinical trials.

Drug targets supported by human genetics evidence are 2.6 times
morelikely to progress further in clinical trials and gain approval*. We
find that approximately 10% of the effector genes express a protein that
is the target of approved drugs. Identification of genetic evidence of
osteoarthritis risk for targets of already approved drugs opens up an
opportunity for repurposing of these drugs for osteoarthritis, which
can greatly accelerate the translation pathway. Likewise, prolonged
use of some of these drugs may also increase the risk of osteoarthritis,
depending on the directionality of effects.

In conclusion, our findings demonstrate the value of integrating
large-scale GWAS meta-analysis with functional genomics data across
relevant disease tissues to enhance our understanding of complex dis-
ease aetiopathology. Going forward, congruent with the aspiration of
enhancing genetic diversity inthe GWAS meta-analysis, the generation
of functional genomics data from global populations across relevant
disease tissues is highly warranted*’. The arising insights can spur clini-
cal translation pathways to achieve an improvement in quality of life
for the hundreds of millions of individuals affected by osteoarthri-
tis currently left without anything but symptomatic treatment with
modest effect.
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Methods

Cohorts, phenotypes and genotypes

We conducted a GWAS meta-analysis combining up to 87 GWAS sum-
mary statistics in 11 osteoarthritis phenotypes; osteoarthritis at any
site, hip osteoarthritis, knee osteoarthritis, hip and/or knee osteoar-
thritis, spine osteoarthritis, hand osteoarthritis, finger osteoarthritis,
thumb osteoarthritis and end-stage osteoarthritis defined by total
hip replacement (THR), total knee replacement (TKR) and total hip
and/or knee replacement (TJR) (Supplementary Tables 1and 2 and
Supplementary Note).

Toevaluate the classificationaccuracy of self-reported disease status,
we performed a sensitivity analysis for osteoarthritis at any site exclud-
ing the 27 GWASs that contain self-reported osteoarthritis. We further
expanded the analysis by performing the UKBB GWAS for osteoarthritis
at any site by excluding individuals with self-reported disease status
(Supplementary Figs. 5and 6 and Supplementary Note).

Toinvestigate the discordance between structural and symptomatic
osteoarthritis, we performed a sensitivity meta-analysis restricting
to cohorts with phenotypes based only on imaging for osteoarthritis
at any site. The sensitivity meta-analysis includes 5 GWASs from the
HKDDDPC, RIKEN and Rotterdam studies 1, 2 and 3, totalling a maxi-
mum of 6,816 cases and 9,624 controls (Supplementary Fig. 4 and Sup-
plementary Note).

GWAS summary statistics quality control and meta-analysis

We used a combination ofin-house scripts and EasyQC® (https://github.
com/hmgu-itg/Genetics-of-Osteoarthritis-2.0; Supplementary Fig. 3
and Supplementary Note) to perform quality control centrally for the
GWAS summary statistics in each cohort.

We used a fixed-effect inverse-variance-weighted meta-analysis
approach asimplemented in METAL® for the 11 osteoarthritis pheno-
types, by including amaximum of 87 GWAS summary statistics from 42
different cohorts, encompassing 5 major ancestry groups. Weincluded
genomic control correction unless this was already performed. After
meta-analysis, we excluded any variant that was only observedinasin-
gle GWAS and/or had MAF < 0.01, whichresulted in 14.7 to 24.3 million
variants depending on the phenotype (Supplementary Note).

Genome-wide significance threshold

We used P<1.3 x 1078 to declare genome-wide significance, as previ-
ously described?, to account for the effective number of independent
phenotypic traits. In brief, we first estimated the genetic correlation
matrix between the 11 osteoarthritis traits by using bivariate LD score
regression® with genome-wide meta-analysis summary statistics. This
method produces reasonably robust estimates of genetic correlation
whenthe samplesize of unrelated individualsis high®* by aiming to over-
come the limitations of the analysis, including (1) the tendency to be
higher than phenotypic correlations; and (2) the potential for inflated
estimates when heritability estimates are low. We then calculated the
effective number of independent traits (P) from the eigenvalues A,
of the correlation matrix®. For the P =11 osteoarthritis phenotypesin
this study, P.¢=4.6565.

P
Py=P- 3 [IA;>D(4;,- D]

i=1

Definingindependent signals and loci

To defineindependent signals, withinand across phenotypes, we used
athree-step approach; detailed are available at GitHub (https://github.
com/hmgu-itg/Genetics-of-Osteoarthritis-2.0). (1) For each phenotype,
we performed clumping using PLINK* together with a significance
threshold of P<1.3 x107%,2 Mb window around each index variants and
linkage disequilibrium (LD) threshold of 0.1. For the LD calculations,

we used UK Biobank (v.3) for all ancestries (https://www.ukbiobank.
ac.uk). (2) For each index variant in a given clump, we performed an
approximate stepwise model-selection procedure implemented by
CO0JOin GCTAY to establish whether index variants were independent
(Supplementary Note). (3) To define independent signals across pheno-
types, weincluded index variants from allindependent signals across
all phenotypes if they were within 1 Mb of each other. We performed
reciprocal approximate conditional analyses, implemented by COJO
in GCTAY. We considered signals independent if either signal condi-
tioned onthe otherhad P<1.3 x 1078, For each independent signal, we
selected alead variant as the variant with the most significant Pvalue
across all phenotypes.

To determine whether a signal was newly reported or previously
known, weincluded allindependent signals and all previously reported
variants (Supplementary Table 4 and Supplementary Note) and we
performed reciprocal approximate conditional analyses, implemented
by COJO in GCTAY. We considered signals to be newly reported if either
the signal or previously reported variant conditioned on the other
had P<1.3 x1078, After COJO analysis, we also required that each
genome-wide significantindependent signal should be internally vali-
datedin atleast one osteoarthritis phenotype. Internal validation was
defined as at least two GWASs having the same direction of risk effect
and nominally significant (P < 0.05). We defined a locus as follows: (1)
index variants separated by <1 Mb were grouped together in the same
locus; (2) we added 500 kb upstream and downstream of index variants
to define the final region of each locus. The loci that contained more
thanoneindex variants have been extended out to 500 kb beyond edge
variants. Ifalocus contained a variant that was previously reported for
osteoarthritis, the locus was considered to be known.

Genetic architecture

Phenotypic variance explained. We estimated the phenotypic
variance explained by the 962 independently associated variants as
afunction of the effect size and the risk-allele frequency (Fig. 1 and
Supplementary Fig.1). The phenotypic variance explained by a variant
is In(OR)? x 2 x RAF x (1 - RAF), where In(OR) is the natural logarithm
of the OR of the variant in the meta-analysis, and RAF is its weighted
risk-allele frequency across all cohorts.

Chromosome X meta-analysis. For the chromosome X non-
pseudoautosomal region, we performed the GWAS in men and women
separately. Moreover, for those cohorts without their own reference
panel thatimputed to the Haplotype Reference Consortium (HRC), we
applied anadditionallevel of quality control to ensure only good-quality
genotypes were included (Supplementary Note).

Sex-differentiated meta-analysis. We carried out a sex-differentiated
analysis toidentify any sex-specific variants inaddition to the variants
identified in the sex-combined meta-analysis, potentially missed due
todifferencesin effects between male and female individuals (magni-
tude and/or direction). We used GWAMA®®* (https://genomics.ut.ee/
en/tools), which provides four different Pvalues: single-sex, combined,
heterogeneity (P;..), and differentiated (P). In the sex-differentiated
analysis, male and female individuals are analysed separately in each
GWAS. The male- and female-specific allelic effect estimates are ob-
tained by afixed-effects meta-analysis, and tested for association with
the trait, allowing for sex-differentiation using ng. By contrast, in the
sex-combined analysis, male and female individuals are analysed com-
bined in each GWAS, ambivalent to sex. Combined allelic effect esti-
mates are obtained from afixed-effects meta-analysis, weighted by the
inverse variance, and tested for association with the trait. We defined
asignificant sex-differentiated association on the basis of the following
criteria, all of which must be satisfied: a significant association with
one osteoarthritis phenotype in at least one single sex (P< 1.3 x10°%)
and a significant sex-differentiated P value (Py¢<1.3x107%) and a
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significant heterogeneity Pvalue (P, < 0.0125). If the direction of effect
between male and female individuals is opposite, we additionally requ-
ired the association to be present in one sex and at least nominally
significantin the opposite directionin the other sex, to ensure that the
observed differencein effectis not due to chance or power differences.
We defined the independent signals using the three-step approachin
COJOandrequired that they beinternally validated (as defined above).
The P, significance was determined according to the number of
newly identified sex-specific variants (n = 4), which are independent
of the previously reported variants and the main analysis variants
(Supplementary Table 5). To identify potential effector genes for the
sex-specific signals, we performed fine-mapping and produced 95%
credible sets for all 4 signals; each set contained the lead variant (Sup-
plementary Table 6 and Supplementary Note).

Non-European-ancestry-specific signals. We performed a fixed-
effect inverse-variance-weighted meta-analysis using METAL in five
ancestry groups separately (European, African, Hispanic, East Asian
and South Asian), and for sensitivity analysis, we also performed meta-
analysis of these data using Han and Eskin’s random-effects model
(RE2)*°implemented in METASOFT (http://genetics.cs.ucla.edu/meta_
jemdoc/). None of the variants in the non-European-ancestry-specific
meta-analysis reached study-wide significance (P<1.3 x107%).

Genetic risk score analyses. We derived GRSs for osteoarthritis of
the knee, hip, hip and/or knee, hand, finger, thumb, THR, TKR, and
TJR and performed validation in the Million Veteran Program (MVP)
(Supplementary Note and Supplementary Table 7). The MVP did not
contribute to the joint-specific meta-analysis and is therefore aninde-
pendent validation set for the GRS.

Signal enrichment in cell types associated with skeletal devel-
opment. Functional GWAS analysis® was applied to identify disease-
relevant cell types as described in detail previously® (https://github.
com/natsuhiko/PHM). In brief, the association statistics (log[OR] and
standard errors) were converted into approximate Bayes factors
using the Wakefield approach®. After defining a cis-regulatory region
of 1Mb centred at the transcription start site (TSS) for each gene, the
Bayes factors of variants existing in each cisregion were weighted and
averaged by a prior probability (an exponential function of TSS proxi-
mity), which was estimated from the distance distribution of regulatory
interactions®*. Finally, the likelihood of an fGWAS model was given by
the averaged Bayes factors across all genes multiplied by the feature-
level prior probability. The latter was obtained from alinear combina-
tion of cell-type-specific expression and the averaged expression across
all cell types as a baseline. The maximum-likelihood estimator of the
effect size for the cell-type-specific expression was used to compute
the enrichment of each cell type.

Full summary statistics from the GWAS were used to test knee osteo-
arthritisand TKR GWAS signals against single-cell knee tissue data, hip
osteoarthritisand THR against hip tissue data, and finger osteoarthritis
against datafromallappendicular tissues. For results presentation, the
30 cell types from single-cell multiome data were grouped into three
different categories: those involved in chondrogenesis (9 cell types),
osteogenesis (4 cell types) and all other cell lineages* (17 cell types)
(Fig.2 and Supplementary Table 8).

Fine-mapping. For each independent signal and each phenotype,
we included all variants within 1 Mb around the lead variant. GWAS
summary statistics quality control was performed using kriging_rss
from susieR package® (v.0.12.27, R v.4.2.1%°); we used this function to
calculate, based on the observed Zscores, the expected Zscore and
its variance; we then detected possible outliers using standardized
differences between the observed Zscore and the expected value, at
the significance level 0.05, corrected for multiple testing using the

Bonferronimethod. Fine-mapping of the GWAS summary statistics was
performed using susie_rss function from the susieR package® (v.0.12.27,
Rv.4.2.1°). For the fine-mapping, we set the maximum number of causal
variants to 10 and a purity threshold of 0.1 to determine 95% credible
sets of potentially causal variants. External LD matrices were computed
using PLINK (v.1.9) on the imputed genotypes from UK Biobank data
(v.3) of all ancestries. Out of a total of 962 independent variants, 913
were assigned a credible set, of which 855 contained the lead variant
(Supplementary Table 9).

Biological insights

Identification of effector genes and variants. The main challenge
here and in any GWAS is to pinpoint the likely causal variants and the
biological effects and mechanisms through which they have arole
in disease. To this end, we integrated multiple orthogonal statistical
and functional methods to identify effector genes. We considered
24 supporting lines of information, including variant information,
functional genomics and database searches (Extended Data Fig.1and
Supplementary Note). To assess whether certain lines of evidence are
more informative than others, we conducted sensitivity analyses at
both the variant and gene levels, along with heritability analyses (Sup-
plementary Tables13,21and 22, Supplementary Fig. 8, Extended Data
Fig.2and Supplementary Note). For the additional four sex-specific sig-
nals, we considered variant consequence, fine-mapping withina gene
transcript, active promoter, human and mouse musculoskeletal and
pain/neuronal phenotype searches as the rest of the supporting lines
were performed with males and females combined. We consider newly
reported effector genes to be those that were not identified previously>.
We use the termidentify inreference to effector genes toindicate that
these genes areimplicated as having arole in osteoarthritis.

Pathway analysis. We carried out pathway over-representation analysis
with the 700 effector genes. We performed pathway analyses using
different thresholds as inclusion criteria for genes from scores of 3
and above, up to scores of 7 and upwards (Supplementary Table 26,
Extended Data Fig. 3 and Supplementary Note).

Subchondral bone allelic imbalance. Allelic expression imbalance
was determined using RNA-sequencing data of macroscopically pre-
served subchondral bone of 24 patients who underwent total joint
replacement surgery due to osteoarthritis (RAAK-study, granted by
the medical ethics committee of Leiden University Medical Center,
P08.239/P19.013) (Supplementary Note, Supplementary Table 27 and
Supplementary Fig.10).

Colocalization with plasma pQTL. We performed colocalization of the
osteoarthritis associations with associations with variations in protein
levelsinplasma (plasmapQTL) using the coloc software package imple-
mentedinR¥. For plasma pQTL analysis, we used the dataset described
previously®s, which tested for the association of 58 million sequence
variants with levels of 2,941 proteins, measured by Olink Explore 3072,
in plasma samples from 46,218 individuals of British or Irish ancestry
included in the UK Biobank dataset. Using summary statistics for the
osteoarthritis phenotypes (excluding the UK Biobank datasets) and
the plasma pQTL, thatis, effects and Pvalues, we calculated Bayes fac-
tors foreach of the variantsin the associated regions tor the two traits
and used colocto calculate posterior probability for two hypotheses:
(1) that the association with osteoarthritis phenotypes and plasma
pQTLareindependent signals (PP3); and (2) that the association with
osteoarthritis phenotypes and plasma pQTL are dueto ashared signal
(PP4) (Supplementary Table 28 and Supplementary Note).

LOF burden analysis. We used the variant effect predictor (VEP)® to
predict the consequences of the variants sequenced in each dataset.
We classified as high-impact variants those predicted as start-lost,
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stop-gain, stop-lost, splice donor, splice acceptor or frameshift, collec-
tively called LOF variants. We filtered out LOF variants predicted by the
Loss-Of-Function Transcript Effect Estimator”® (LOFTEE; https://github.
com/konradjk/loftee) not to be likely to be truly LOF (for example, near
the end of the transcript) and used only high-confidence LOF variants.

We classified as moderate-impact variants (MIS) those missense
variants predicted with LOF by at least one of the following predic-
tion methods: MetaSVM, MetaLR” or CADD”* (combined annotation
dependent depletion) with a phred score of >25, using variants available
in dbNSFP (v.4.1c)”. We further included indels of moderate impact
without any filtering.

We used logistic regression under an additive model to test for asso-
ciationbetween (1) LOF or (2) LOF + MIS gene burdens and phenotypes,
inwhichdisease status was the dependent variable and genotype counts
as theindependent variable, using a likelihood ratio test to compute
two-sided Pvalues. Individuals were coded 1if they carried any of the
LOF variants (LOF/LOF + MIS) with MAF < 2% and O otherwise. For the
analyses, we used software developed at deCODE Genetics™. We ana-
lysed these gene burden models in whole-genome sequencing (WGS)
data and thenimputed data for 211,690 patients with osteoarthritis
(osteoarthritis at any site), of which 54,513 had WGS, and 719,856 con-
trols, of which 148,488 had WGS, in the UK Biobank, Icelandic, Danish
and US Intermountain datasets™, and the FinnGen dataset for the LOF
model, and meta-analysed theresults. For Iceland, we included county
of birth, age, age squared, sex and an indicator function for the over-
lap of the lifetime of the individual with the time span of phenotype
collection as covariates to account for differences between cases and
controls. We used county of birth as a proxy covariate for the first prin-
cipal components (PCs) in our analysis because county of birth has
beenshown to bein concordance with the first PCin Iceland™. The UK,
Danish and US associations were adjusted for sex, age and the first 20,
12and 4 PCs, respectively. We used LD score regression intercepts® to
adjust the y*statistics and avoid inflation due to cryptic relatedness and
stratification, using aset of 1.1 million variants. Pvalues were calculated
from the adjusted x*results.

Meta-analysis was performed on the summary results fromIceland,
the UK, Denmark and the USA, when available, using a fixed-effects
inverse-variance-weighted method”, in which the datasets were allowed
to have different population frequencies for alleles and genotypes but
were assumed to have acommon OR and weighted with the inverse of
the variance of the effect estimate derived from the logistic regres-
sion. The FinnGen dataset was also included in the LOF model for the
VIT gene, no LOF variants were identified in the other genes. We set
a study-wise significance threshold at P< 7.1 x 107, accounting for
the 700 unique genes tested, whereas a genome-wide significance
threshold is considered for burden P< 2.5 x 107, accounting for the
approximately 20,000 genes in the genome.

Transcription factor enrichment. To determine whether any of the
variants in the credible set were localized in gene regulatory regions,
we used the ROADMAP ChromHMM data’®, predicting gene regulatory
regions (enhancers and promoters) in human mesenchymal stem-cell-
derived chondrocytes (E049) and primary osteoblasts (E127). We used
the ROADMAP-generated core 15-state chromatin state model, where
the following states were considered as gene regulatory: active TSS,
flanking active TSS, enhancers, genic enhancers, bivalent/poised
TSS, flanking bivalent/poised TSS/enhancer and bivalent enhancer.
Variants that localized in one of these gene regulatory regions were
also assessed if they affected a possible transcription-factor-binding
motif as predicted by Haploreg (v.4.2)”°%° (Supplementary Note and
Supplementary Tables 11,12 and 14).

Drug repurposing opportunities. To identify potential drug-
repurposing options from the effector gene list, we queried around
17,000 drug molecules and 21,087 protein targets (with UniProt and

Ensembl identifiers) from Open Targets® (https://platform.open-
targets.org/downloads). This dataset comprises 1,543 genes, of which
the protein products are the target of at least 1 drug, and 4,930 drugs
thattargetatleast1gene product.Forthe 700 effector genes, there were
652 approved drugs that target the protein of 70 unique genes. After
filtering out drugs that were withdrawn and that were not listed with
anindication, there are 473 drugs that target the protein of 69 unique
effector genes (Supplementary Table 30). Finally, we also investiga-
ted the similarities and differences between these effector genes and
thoseinlarge pain datasets (Supplementary Table 31and Supplemen-
tary Note).

Biological insights. With the increase in sample size, we detected 39
lociwith>1independent signal (13.5% of the loci have >1 additional sig-
nal) (Supplementary Table 3). The additional signals may well exert their
effects through the same or different effector gene as many loci have >1
effector genes we consider all effector genes as having a potential role
in osteoarthritis pathology. With the effector genes as a foundation,
our objective was to establish connections among the genes by using
multiple sources to identify pathways, networks and common themes
that link the effector genes, that could be used for drug targeting. We
ranked the 700 effector genes according to their score. We performed
literature searches to glean information regarding functionality and
associations between the effector genes (Supplementary Note). Finally,
we conducted genetic heritability analysis for each of the eight biologi-
cal processes identified with LDAK v.6 software®? (https://www.ldak.
org) by using summary statistics from the main meta-analysis of the
11 osteoarthritis phenotypes (Supplementary Fig. 9).

Ethics statement. Study-level ethics statements are provided in the
Supplementary Note.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

The data from the genome-wide summary statistics for each meta-
analysis generated in this study are publicly available at the downloads
page of the Musculoskeletal Knowledge Portal (https://msk.hugeamp.
org/downloads.html). Individual-level data canbe requested directly
from contributing studies, listed in Supplementary Table 2.

Code availability

Analyses were conducted using publicly available software: BCFtools
v.1.13 (https://samtools.github.io/bcftools/bcftools.html), CrossMap
v.0.5.4 (https://crossmap.readthedocs.io/en/latest/), EasyQC v.23.8,
5June 2020 (https://www.uni-regensburg.de/medizin/epidemiologie-
praeventivmedizin/genetische-epidemiologie/softwssare), GWAMA
v.2.2.2 (https://genomics.ut.ee/en/tools), METAL version released on
25 March 2011 (https://genome.sph.umich.edu/wiki/METAL_Docu-
mentation), METASOFT v.2.0.0 (15 February 2012; http://genetics.
cs.ucla.edu/meta_jemdoc/), PLINK v.1.9 (https://www.cog-genomics.
org/plink/1.9/), PLINK v.2.09 (https://www.cog-genomics.org/plink/
2.0/), R (https://www.R-project.org/), COJO in GCTA v.1.93.0beta
(https://yanglab.westlake.edu.cn/software/gcta/#CQJO), Func-
tional GWAS analysis (https://github.com/natsuhiko/PHM), BGEN
bgenix v.1.1.7, revision (https://www.biorxiv.org/content/10.1101/
308296v2), HiCLift (https://github.com/XiaoTaoWang/HiCLift),
GRNBoost2 algorithm in Scenic+ software (https://github.com/
aertslab/scenicplus), dbNFSFP v.4.1c (https://www.dbnsfp.org/home),
CADD (https://cadd.gs.washington.edu/), LDAK v.6 (https://www.ldak.
org). Analysis also included the following R packages: coloc v.5.2.2
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Lines of Evidence in Support of Effector Genes
Credible set coding variant has a moderate- or high-severity functional consequence
» All credible set variants reside within the transcript of a single gene
§
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>
c
_g Variant alters an active promoter histone mark relating to the gene
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@
Credible set variant resides in an enhancer region that loops to the promoter of a gene based on
high-throughput chromosome conformation capture data in primary osteoarthritis chondrocytes
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Extended DataFig.1|Lines ofevidence used to identify effector genes. Created in BioRender. Southam, L. (2025) https://BioRender.com/d58k400.
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Extended DataFig. 3| Gene Ontology over-represented pathwaysinvolved
inosteoarthritis pathogenesis. (a) Top 20 overrepresented pathways
enriched by effector genes with scoresacross3to 6 and all over-represented
pathways enriched by effector genes with score 7 (P.adjust was calculated by

two-tailed hypergeometric test and corrected by multiple testing of Benjamini-

Hochberg). The colourscalerepresents scaled adjusted P value. The exact
adjusted P values are provided in Supplementary Table 26. The bubble size was
scaled based on the counts of genes enriched for each pathway. Top pathways

were ranked based on the gene ratio which was calculated by counts of enriched
genesdivided by the total number of genes that can be found in the background
genesetwithineachscore. (b) Upset plotillustrating the connection of top 20
pathways across gene sets with scores >3 to >7. Black dotsand lines represent
inclusioninthe top 20 pathways and dark grey dots and lines represent over-
represented but notin the top 20 rank, pathways were ranked by gene ratio.
Thebar plot displays the total number of over-represented pathways and the
fraction of top 20 pathways withineach gene score set.
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Extended DataFig.8|Number of risk alleles carried by Million Veteran
Programosteoarthritis patients in each pathway. Distribution of risk alleles
carried by the Million Veteran Program patients with (a) osteoarthritis atany
site (n=56,848), (b) knee osteoarthritis (n =37,814) and (c) hip osteoarthritis
(n=11,873). The pathways arerepresented by: RA, retinoic acid signalling;

TGFB, TGFB signalling; BMP, BMP signalling; WNT, Wnt signalling; FGF, FGF
signalling; ECM, ECM assembly and organization; CIRC, circadian rhythm and
GLIAL, glial cell related. On the x-axis the maximum number of variants
includedintheanalysisisprovided.
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Population characteristics Population characteristics for each contributing study are included in Supplementary Table 2.

Recruitment Ascertainment for osteoarthritis cases and controls for each contributing study are presented in Supplementary Table 2.
Ethics oversight All participants provided written informed consent. The ethics statements from each contributing study are provided in the

Supplementary Note. All human research was approved within each contributing study by the relevant institutional review
boards and conducted according to the Declaration of Helsinki.
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Sample size We have performed genome-wide association study meta-analysis for osteoarthritis, across 1,962,069 individuals, including 489,975
osteoarthritis cases. This is the largest GWAS meta-analysis for osteoarthritis to date. In order to reach this sample size, we included as many
global GWAS summary statistics as possible that contained the relevant phenotypes. With our sample size of 489,975 osteoarthritis cases and
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1,472,094 controls, at a study-wide significance threshold (p<1.3x10-8), under an additive genetic model of homogeneous effects across
ancestry groups, we had >80% power to detect association of variants with MAF 5% and OR >1.0355 or MAF >1% and OR >1.078.

Data exclusions  Within each contributing study, individuals and variants were excluded based on well-established individual and variant quality control

procedures to eliminate poor quality genotypes, samples, and variants. The procedures and thresholds for each study are detailed in
Supplementary Table 2.

Replication For each osteoarthritis associated signal that reached study-wide significance (P<1.3x10-8) we required that the signal was internally
replicated: nominally significant (P<0.05) in at least 2 contributing studies with the same direction of effect.

Randomization | Randomization was not performed. Within each study, covariates were included to account for potential confounding. The covariate
adjustments are reported in Supplementary Table 2.

Blinding Group allocation was not relevant to this study, so blinding was not necessary.
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