+
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

The emerging view on the origin and early evolution of eukaryotic cells

Abstract

The origin of the eukaryotic cell, with its compartmentalized nature and generally large size compared with bacterial and archaeal cells, represents a cornerstone event in the evolution of complex life on Earth. In a process referred to as eukaryogenesis, the eukaryotic cell is believed to have evolved between approximately 1.8 and 2.7 billion years ago from its archaeal ancestors, with a symbiosis with a bacterial (proto-mitochondrial) partner being a key event. In the tree of life, the branch separating the first from the last common ancestor of all eukaryotes is long and lacks evolutionary intermediates. As a result, the timing and driving forces of the emergence of complex eukaryotic features remain poorly understood. During the past decade, environmental and comparative genomic studies have revealed vital details about the identity and nature of the host cell and the proto-mitochondrial endosymbiont, enabling a critical reappraisal of hypotheses underlying the symbiotic origin of the eukaryotic cell. Here we outline our current understanding of the key players and events underlying the emergence of cellular complexity during the prokaryote-to-eukaryote transition and discuss potential avenues of future research that might provide new insights into the enigmatic origin of the eukaryotic cell.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: The phylogenetic origins of eukaryotes.
Fig. 2: Ancestral reconstructions and potential interactions between the prokaryotic partners during eukaryogenesis.
Fig. 3: Genome evolution during eukaryogenesis.

Similar content being viewed by others

References

  1. Woese, C. R. & Fox, G. E. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl Acad. Sci. USA 74, 5088–5090 (1977). This seminal paper was the first to recognize archaea—then called archaebacteria—as a separate prokaryotic group from bacteria.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  2. Woese, C. R. Bacterial evolution. Microbiol. Rev. 51, 221–271 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Woese, C. R., Kandler, O. & Wheelis, M. L. Towards a natural system of organisms: proposal for the domains archaea, bacteria, and eucarya. Proc. Natl Acad. Sci. USA 87, 4576–4579 (1990).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  4. Huet, J., Schnabel, R., Sentenac, A. & Zillig, W. Archaebacteria and eukaryotes possess DNA-dependent RNA polymerases of a common type. EMBO J. 2, 1291–1294 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ouzounis, C. & Sander, C. TFIIB, an evolutionary link between the transcription machineries of archaebacteria and eukaryotes. Cell 71, 189–190 (1992).

    Article  CAS  PubMed  Google Scholar 

  6. Myllykallio, H. et al. Bacterial mode of replication with eukaryotic-like machinery in a hyperthermophilic archaeon. Science 288, 2212–2215 (2000).

    Article  ADS  CAS  PubMed  Google Scholar 

  7. Williams, T. A., Cox, C. J., Foster, P. G., Szöllősi, G. J. & Embley, T. M. Phylogenomics provides robust support for a two-domains tree of life. Nat. Ecol. Evol. 4, 138–147 (2020). Using better-fitting models and additional in-depth analyses, this study scrutinized previous studies that reported 3D trees, resulting in robust 2D trees that show a close relationship between Heimdallarchaeia and eukaryotes.

    Article  PubMed  Google Scholar 

  8. Eme, L. et al. Inference and reconstruction of the heimdallarchaeial ancestry of eukaryotes. Nature 618, 992–999 (2023). This study presented the expanding diversity of Asgard archaea, the Hodarchaeales–sister relationship of eukaryotes based on elaborate phylogenomics, the presence of additional ESPs in Asgard genomes and the reconstructed gene content of Asgard ancestral nodes.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  9. Williams, T. A., Foster, P. G., Cox, C. J. & Embley, T. M. An archaeal origin of eukaryotes supports only two primary domains of life. Nature 504, 231–236 (2013).

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Betts, H. C. et al. Integrated genomic and fossil evidence illuminates life’s early evolution and eukaryote origin. Nat. Ecol. Evol. 2, 1556–1562 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  11. Mahendrarajah, T. A. et al. ATP synthase evolution on a cross-braced dated tree of life. Nat. Commun. 14, 7456 (2023).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  12. Eme, L., Sharpe, S. C., Brown, M. W. & Roger, A. J. On the age of eukaryotes: evaluating evidence from fossils and molecular clocks. Cold Spring Harb. Perspect. Biol. 6, a016139 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Cohen, P. A. & Kodner, R. B. The earliest history of eukaryotic life: uncovering an evolutionary story through the integration of biological and geological data. Trends Ecol. Evol. 37, 246–256 (2022).

    Article  PubMed  Google Scholar 

  14. Brocks, J. J. et al. Lost world of complex life and the late rise of the eukaryotic crown. Nature 618, 767–773 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  15. Porter, S. M. & Riedman, L. A. Frameworks for interpreting the early fossil record of eukaryotes. Annu. Rev. Microbiol. 77, 173–191 (2023).

    Article  CAS  PubMed  Google Scholar 

  16. Koumandou, V. L. et al. Molecular paleontology and complexity in the last eukaryotic common ancestor. Crit. Rev. Biochem. Mol. Biol. 48, 373–396 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Donoghue, P. C. J. et al. Defining eukaryotes to dissect eukaryogenesis. Curr. Biol. 33, R919–R929 (2023).

    Article  CAS  PubMed  Google Scholar 

  18. Makarova, K. S., Wolf, Y. I., Mekhedov, S. L., Mirkin, B. G. & Koonin, E. V. Ancestral paralogs and pseudoparalogs and their role in the emergence of the eukaryotic cell. Nucleic Acids Res. 33, 4626–4638 (2005). This paper provided a first systematic estimate of the number of gene acquisitions, duplications and inventions during eukaryogenesis based on the homology between eukaryotic clusters of orthologues and between eukaryotic and prokaryotic gene clusters.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. O’Malley, M. A., Leger, M. M., Wideman, J. G. & Ruiz-Trillo, I. Concepts of the last eukaryotic common ancestor. Nat. Ecol. Evol. 3, 338–344 (2019).

    Article  PubMed  Google Scholar 

  20. Eme, L., Spang, A., Lombard, J., Stairs, C. W. & Ettema, T. J. G. Archaea and the origin of eukaryotes. Nat. Rev. Microbiol. 15, 711–723 (2017).

    Article  CAS  PubMed  Google Scholar 

  21. Dacks, J. B. et al. The changing view of eukaryogenesis—fossils, cells, lineages and how they all come together. J. Cell Sci. 129, 3695–3703 (2016).

    Article  CAS  PubMed  Google Scholar 

  22. Woese, C. R. & Olsen, G. J. Archaebacterial phylogeny: perspectives on the Urkingdoms. Syst. Appl. Microbiol. 7, 161–177 (1986).

    Article  CAS  PubMed  Google Scholar 

  23. Lake, J. A. Origin of the eukaryotic nucleus determined by rate-invariant analysis of rRNA sequences. Nature 331, 184–186 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Gouy, M. & Li, W.-H. Phylogenetic analysis based on rRNA sequences supports the archaebacterial rather than the eocyte tree. Nature 339, 145–147 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Iwabe, N., Kuma, K., Hasegawa, M., Osawa, S. & Miyata, T. Evolutionary relationship of archaebacteria, eubacteria, and eukaryotes inferred from phylogenetic trees of duplicated genes. Proc. Natl Acad. Sci. USA 86, 9355–9359 (1989).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  26. Baldauf, S. L., Palmer, J. D. & Doolittle, W. F. The root of the universal tree and the origin of eukaryotes based on elongation factor phylogeny. Proc. Natl Acad. Sci. USA 93, 7749–7754 (1996).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lake, J. A., Henderson, E., Oakes, M. & Clark, M. W. Eocytes: a new ribosome structure indicates a kingdom with a close relationship to eukaryotes. Proc. Natl Acad. Sci. USA 81, 3786–3790 (1984). On the basis of ribosome structures, the authors of this study postulated the eocyte hypothesis, in which eukaryotes are most closely related to a specific group of archaea (the 2D tree).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  28. Rivera, M. C. & Lake, J. A. Evidence that eukaryotes and eocyte prokaryotes are immediate relatives. Science 257, 74–76 (1992).

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Brown, J. R., Douady, C. J., Italia, M. J., Marshall, W. E. & Stanhope, M. J. Universal trees based on large combined protein sequence data sets. Nat. Genet. 28, 281–285 (2001).

    Article  CAS  PubMed  Google Scholar 

  30. Ciccarelli, F. D. et al. Toward automatic reconstruction of a highly resolved tree of life. Science 311, 1283–1287 (2006).

    Article  ADS  CAS  PubMed  Google Scholar 

  31. Cox, C. J., Foster, P. G., Hirt, R. P., Harris, S. R. & Embley, T. M. The archaebacterial origin of eukaryotes. Proc. Natl Acad. Sci. USA 105, 20356–20361 (2008). Using phylogenetic models that take compositional changes into account, the 2D tree was robustly recovered for the first time in this phylogenomics study.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  32. Foster, P. G., Cox, C. J. & Embley, T. M. The primary divisions of life: a phylogenomic approach employing composition-heterogeneous methods. Phil. Trans. R. Soc. B 364, 2197–2207 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Guy, L. & Ettema, T. J. G. The archaeal ‘TACK’ superphylum and the origin of eukaryotes. Trends Microbiol. 19, 580–587 (2011).

    Article  CAS  PubMed  Google Scholar 

  34. Kelly, S., Wickstead, B. & Gull, K. Archaeal phylogenomics provides evidence in support of a methanogenic origin of the archaea and a thaumarchaeal origin for the eukaryotes. Proc. R. Soc. B 278, 1009–1018 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. Lasek-Nesselquist, E. & Gogarten, J. P. The effects of model choice and mitigating bias on the ribosomal tree of life. Mol. Phylogenetics Evol. 69, 17–38 (2013).

    Article  Google Scholar 

  36. Guy, L., Saw, J. H. & Ettema, T. J. G. The archaeal legacy of eukaryotes: a phylogenomic perspective. Cold Spring Harb. Perspect. Biol. 6, a016022 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Williams, T. A. & Embley, T. M. Archaeal “dark matter” and the origin of eukaryotes. Genome Biol. Evol. 6, 474–481 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Raymann, K., Brochier-Armanet, C. & Gribaldo, S. The two-domain tree of life is linked to a new root for the Archaea. Proc. Natl Acad. Sci. USA 112, 6670–6675 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  39. Spang, A. et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521, 173–179 (2015). This paper described the discovery of the first Asgard archaeon, Lokiarchaeum, and showed both its close relationship with eukaryotes and the presence of multiple new ESPs in its genome.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  40. Seitz, K. W., Lazar, C. S., Hinrichs, K.-U., Teske, A. P. & Baker, B. J. Genomic reconstruction of a novel, deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction. ISME J. 10, 1696–1705 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zaremba-Niedzwiedzka, K. et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541, 353–358 (2017).

    Article  ADS  CAS  PubMed  Google Scholar 

  42. Spang, A. et al. Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nat. Microbiol. 4, 1138–1148 (2019).

    Article  CAS  PubMed  Google Scholar 

  43. Seitz, K. W. et al. Asgard archaea capable of anaerobic hydrocarbon cycling. Nat. Commun. 10, 1822 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  44. Imachi, H. et al. Isolation of an archaeon at the prokaryote–eukaryote interface. Nature 577, 519–525 (2020). This study presented the first cultured Asgard archaeon, the lokiarchaeon Candidatus P. syntrophicum, showing remarkable cell physiology (see also ref. 50).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liu, Y. et al. Expanded diversity of Asgard archaea and their relationships with eukaryotes. Nature 593, 553–557 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  46. Sun, J. et al. Recoding of stop codons expands the metabolic potential of two novel Asgardarchaeota lineages. ISME Commun. 1, 30 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Aouad, M. et al. A divide-and-conquer phylogenomic approach based on character supermatrices resolves early steps in the evolution of the archaea. BMC Ecol. Evo. 22, 1 (2022).

    Article  Google Scholar 

  48. Wu, F. et al. Unique mobile elements and scalable gene flow at the prokaryote–eukaryote boundary revealed by circularized Asgard archaea genomes. Nat. Microbiol. 7, 200–212 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Xie, R. et al. Expanding Asgard members in the domain of archaea sheds new light on the origin of eukaryotes. Sci. China Life Sci. 65, 818–829 (2022).

    Article  CAS  PubMed  Google Scholar 

  50. Rodrigues-Oliveira, T. et al. Actin cytoskeleton and complex cell architecture in an Asgard archaeon. Nature 613, 332–339 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  51. Da Cunha, V., Gaia, M., Gadelle, D., Nasir, A. & Forterre, P. Lokiarchaea are close relatives of Euryarchaeota, not bridging the gap between prokaryotes and eukaryotes. PLoS Genet. 13, e1006810 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Stairs, C. W. & Ettema, T. J. G. The archaeal roots of the eukaryotic dynamic actin cytoskeleton. Curr. Biol. 30, R521–R526 (2020).

    Article  CAS  PubMed  Google Scholar 

  53. Klinger, C. M., Spang, A., Dacks, J. B. & Ettema, T. J. G. Tracing the archaeal origins of eukaryotic membrane-trafficking system building blocks. Mol. Biol. Evol. 33, 1528–1541 (2016).

    Article  CAS  PubMed  Google Scholar 

  54. Vosseberg, J. et al. Timing the origin of eukaryotic cellular complexity with ancient duplications. Nat. Ecol. Evol. 5, 92–100 (2021). This paper reconstructed the numerous gene duplications that occurred during eukaryogenesis from phylogenetic trees and inferred their relative timing, also in comparison with gene transfer events, using the branch lengths approach adapted from ref. 127.

    Article  PubMed  Google Scholar 

  55. Szöllősi, G. J., Rosikiewicz, W., Boussau, B., Tannier, E. & Daubin, V. Efficient exploration of the space of reconciled gene trees. Syst. Biol. 62, 901–912 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  56. Williams, T. A. et al. Parameter estimation and species tree rooting using ALE and GeneRax. Genome Biol. Evol. 15, evad134 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Akıl, C. & Robinson, R. C. Genomes of Asgard archaea encode profilins that regulate actin. Nature 562, 439–443 (2018). This article is the first of a series of biochemical papers investigating the molecular function of Asgard ESPs by expressing them in heterologous systems, in this case focusing on the interaction between Asgard profilin and eukaryotic actin.

    Article  ADS  PubMed  Google Scholar 

  58. Akıl, C. et al. Insights into the evolution of regulated actin dynamics via characterization of primitive gelsolin/cofilin proteins from Asgard archaea. Proc. Natl Acad. Sci. USA 117, 19904–19913 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  59. Survery, S. et al. Heimdallarchaea encodes profilin with eukaryotic-like actin regulation and polyproline binding. Commun. Biol. 4, 1024 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Akıl, C. et al. Structure and dynamics of Odinarchaeota tubulin and the implications for eukaryotic microtubule evolution. Sci. Adv. 8, eabm2225 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Leung, K. F., Dacks, J. B. & Field, M. C. Evolution of the multivesicular body ESCRT machinery; retention across the eukaryotic lineage. Traffic 9, 1698–1716 (2008).

    Article  CAS  PubMed  Google Scholar 

  62. Hatano, T. et al. Asgard archaea shed light on the evolutionary origins of the eukaryotic ubiquitin–ESCRT machinery. Nat. Commun. 13, 3398 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  63. Neveu, E., Khalifeh, D., Salamin, N. & Fasshauer, D. Prototypic SNARE proteins are encoded in the genomes of Heimdallarchaeota, potentially bridging the gap between the prokaryotes and eukaryotes. Curr. Biol. 30, 2468–2480 (2020).

    Article  CAS  PubMed  Google Scholar 

  64. Avcı, B. et al. Spatial separation of ribosomes and DNA in Asgard archaeal cells. ISME J. 16, 606–610 (2022).

    Article  PubMed  Google Scholar 

  65. Gray, M. W., Burger, G. & Lang, B. F. Mitochondrial evolution. Science 283, 1476–1481 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  66. Roger, A. J., Muñoz-Gómez, S. A. & Kamikawa, R. The origin and diversification of mitochondria. Curr. Biol. 27, R1177–R1192 (2017).

    Article  CAS  PubMed  Google Scholar 

  67. Yang, D., Oyaizu, Y., Oyaizu, H., Olsen, G. J. & Woese, C. R. Mitochondrial origins. Proc. Natl Acad. Sci. USA 82, 4443–4447 (1985).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fitzpatrick, D. A., Creevey, C. J. & McInerney, J. O. Genome phylogenies indicate a meaningful α-proteobacterial phylogeny and support a grouping of the mitochondria with the Rickettsiales. Mol. Biol. Evol. 23, 74–85 (2006).

    Article  CAS  PubMed  Google Scholar 

  69. Williams, K. P., Sobral, B. W. & Dickerman, A. W. A robust species tree for the Alphaproteobacteria. J. Bacteriol. 189, 4578–4586 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Thrash, J. C. et al. Phylogenomic evidence for a common ancestor of mitochondria and the SAR11 clade. Sci. Rep. 1, 13 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Georgiades, K., Madoui, M.-A., Le, P., Robert, C. & Raoult, D. Phylogenomic analysis of Odyssella thessalonicensis fortifies the common origin of Rickettsiales, Pelagibacter ubique and Reclimonas americana mitochondrion. PLoS ONE 6, e24857 (2011).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sassera, D. et al. Phylogenomic evidence for the presence of a flagellum and cbb3 oxidase in the free-living mitochondrial ancestor. Mol. Biol. Evol. 28, 3285–3296 (2011).

    Article  CAS  PubMed  Google Scholar 

  73. Rodríguez-Ezpeleta, N. & Embley, T. M. The SAR11 group of alpha-proteobacteria is not related to the origin of mitochondria. PLoS ONE 7, e30520 (2012).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  74. Viklund, J., Martijn, J., Ettema, T. J. G. & Andersson, S. G. E. Comparative and phylogenomic evidence that the alphaproteobacterium HIMB59 is not a member of the oceanic SAR11 clade. PLoS ONE 8, e78858 (2013).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  75. Wang, Z. & Wu, M. Phylogenomic reconstruction indicates mitochondrial ancestor was an energy parasite. PLoS ONE 9, e110685 (2014).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  76. Wang, Z. & Wu, M. An integrated phylogenomic approach toward pinpointing the origin of mitochondria. Sci. Rep. 5, 7949 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  77. Martijn, J., Vosseberg, J., Guy, L., Offre, P. & Ettema, T. J. G. Deep mitochondrial origin outside the sampled Alphaproteobacteria. Nature 557, 101–105 (2018). This study recovered several novel marine alphaproteobacterial groups and performed careful phylogenomic analyses to address long-branch and compositional artefacts, revealing the novel Alphaproteobacteria–sister position of mitochondria.

    Article  ADS  CAS  PubMed  Google Scholar 

  78. Fan, L. et al. Phylogenetic analyses with systematic taxon sampling show that mitochondria branch within Alphaproteobacteria. Nat. Ecol. Evol. 4, 1213–1219 (2020).

    Article  PubMed  Google Scholar 

  79. Wang, S. & Luo, H. Dating Alphaproteobacteria evolution with eukaryotic fossils. Nat. Commun. 12, 3324 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  80. Muñoz-Gómez, S. A. et al. Site-and-branch-heterogeneous analyses of an expanded dataset favour mitochondria as sister to known Alphaproteobacteria. Nat. Ecol. Evol. 6, 253–262 (2022). This study corroborated the Alphaproteobacteria–sister relationship of mitochondria using a newly developed model that accounts for compositional heterogeneity across sites and branches.

    Article  PubMed  Google Scholar 

  81. Martijn, J., Vosseberg, J., Guy, L., Offre, P. & Ettema, T. J. G. Phylogenetic affiliation of mitochondria with Alpha-II and Rickettsiales is an artefact. Nat. Ecol. Evol. 6, 1829–1831 (2022).

    Article  PubMed  Google Scholar 

  82. Fan, L. et al. Reply to: Phylogenetic affiliation of mitochondria with Alpha-II and Rickettsiales is an artefact. Nat. Ecol. Evol. 6, 1832–1835 (2022).

    Article  PubMed  Google Scholar 

  83. Ettema, T. J. G. & Andersson, S. G. E. The α-proteobacteria: the Darwin finches of the bacterial world. Biol. Lett. 5, 429–432 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Martin, W. F., Garg, S. & Zimorski, V. Endosymbiotic theories for eukaryote origin. Phil. Trans. R. Soc. B 370, 20140330 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Martin, W. & Müller, M. The hydrogen hypothesis for the first eukaryote. Nature 392, 37–41 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  86. Sousa, F. L., Neukirchen, S., Allen, J. F., Lane, N. & Martin, W. F. Lokiarchaeon is hydrogen dependent. Nat. Microbiol. 1, 16034 (2016).

    Article  CAS  PubMed  Google Scholar 

  87. Moreira, D. & López-García, P. Symbiosis between methanogenic archaea and δ-proteobacteria as the origin of eukaryotes: the syntrophic hypothesis. J. Mol. Evol. 47, 517–530 (1998).

    Article  ADS  CAS  PubMed  Google Scholar 

  88. López-García, P. & Moreira, D. The syntrophy hypothesis for the origin of eukaryotes revisited. Nat. Microbiol. 5, 655–667 (2020).

    Article  PubMed  Google Scholar 

  89. Bulzu, P.-A. et al. Casting light on Asgardarchaeota metabolism in a sunlit microoxic niche. Nat. Microbiol. 4, 1129–1137 (2019).

    Article  CAS  PubMed  Google Scholar 

  90. Mills, D. B. et al. Eukaryogenesis and oxygen in Earth history. Nat. Ecol. Evol. 6, 520–532 (2022).

    Article  PubMed  Google Scholar 

  91. Muñoz-Gómez, S. A., Wideman, J. G., Roger, A. J. & Slamovits, C. H. The origin of mitochondrial cristae from Alphaproteobacteria. Mol. Biol. Evol. 34, 943–956 (2017).

    PubMed  Google Scholar 

  92. Gabaldón, T. & Huynen, M. A. Reconstruction of the proto-mitochondrial metabolism. Science 301, 609–609 (2003).

    Article  PubMed  Google Scholar 

  93. Gabaldón, T. & Huynen, M. A. From endosymbiont to host-controlled organelle: the hijacking of mitochondrial protein synthesis and metabolism. PLoS Comput. Biol. 3, e219 (2007).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  94. Stairs, C. W., Leger, M. M. & Roger, A. J. Diversity and origins of anaerobic metabolism in mitochondria and related organelles. Phil. Trans. R. Soc. B 370, 20140326 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  95. Stairs, C. W. et al. Chlamydial contribution to anaerobic metabolism during eukaryotic evolution. Sci. Adv. 6, eabb7258 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  96. Speijer, D. Alternating terminal electron-acceptors at the basis of symbiogenesis: How oxygen ignited eukaryotic evolution. BioEssays 39, 1600174 (2017).

    Article  Google Scholar 

  97. Cavalier-Smith, T. The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int. J. Syst. Evol. Microbiol. 52, 297–354 (2002).

    Article  CAS  PubMed  Google Scholar 

  98. Martijn, J. & Ettema, T. J. G. From archaeon to eukaryote: the evolutionary dark ages of the eukaryotic cell. Biochem. Soc. Trans. 41, 451–457 (2013).

    Article  CAS  PubMed  Google Scholar 

  99. Zachar, I., Szilágyi, A., Számadó, S. & Szathmáry, E. Farming the mitochondrial ancestor as a model of endosymbiotic establishment by natural selection. Proc. Natl Acad. Sci. USA 115, E1504–E1510 (2018).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  100. Baum, D. A. & Baum, B. An inside-out origin for the eukaryotic cell. BMC Biol. 12, 76 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Mills, D. B. The origin of phagocytosis in Earth history. Interface Focus 10, 20200019 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Bremer, N., Tria, F. D. K., Skejo, J., Garg, S. G. & Martin, W. F. Ancestral state reconstructions trace mitochondria but not phagocytosis to the last eukaryotic common ancestor. Genome Biol. Evol. 14, evac079 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Yutin, N., Wolf, M. Y., Wolf, Y. I. & Koonin, E. V. The origins of phagocytosis and eukaryogenesis. Biol. Direct 4, 9 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Hugoson, E., Guliaev, A., Ammunét, T. & Guy, L. Host adaptation in Legionellales Is 1.9 Ga, coincident with eukaryogenesis. Mol. Biol. Evol. 39, msac037 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Martin, W. F., Tielens, A. G. M., Mentel, M., Garg, S. G. & Gould, S. B. The physiology of phagocytosis in the context of mitochondrial origin. Microbiol. Mol. Biol. Rev. 81, e00008–e00017 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Hampl, V., Čepička, I. & Eliáš, M. Was the mitochondrion necessary to start eukaryogenesis? Trends Microbiol. 27, 96–104 (2019).

    Article  CAS  PubMed  Google Scholar 

  107. Shiratori, T., Suzuki, S., Kakizawa, Y. & Ishida, K. Phagocytosis-like cell engulfment by a planctomycete bacterium. Nat. Commun. 10, 5529 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  108. Burns, J. A., Pittis, A. A. & Kim, E. Gene-based predictive models of trophic modes suggest Asgard archaea are not phagocytotic. Nat. Ecol. Evol. 2, 697–704 (2018).

    Article  PubMed  Google Scholar 

  109. Cavalier-Smith, T. Archaebacteria and archezoa. Nature 339, 100–101 (1989).

    Article  ADS  Google Scholar 

  110. Embley, T. M. & Hirt, R. P. Early branching eukaryotes? Curr. Opin. Genet. Dev. 8, 624–629 (1998).

    Article  CAS  PubMed  Google Scholar 

  111. Ettema, T. J. G. Evolution: mitochondria in the second act. Nature 531, 39–40 (2016).

    Article  ADS  CAS  PubMed  Google Scholar 

  112. Lane, N. & Martin, W. The energetics of genome complexity. Nature 467, 929–934 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  113. Lane, N. Energetics and genetics across the prokaryote–eukaryote divide. Biol. Direct 6, 35 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  114. Booth, A. & Doolittle, W. F. Eukaryogenesis, how special really? Proc. Natl Acad. Sci. USA 112, 10278–10285 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  115. Lynch, M. & Marinov, G. K. The bioenergetic costs of a gene. Proc. Natl Acad. Sci. USA 112, 15690–15695 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  116. Koonin, E. V. Energetics and population genetics at the root of eukaryotic cellular and genomic complexity. Proc. Natl Acad. Sci. USA 112, 15777–15778 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  117. Lynch, M. & Marinov, G. K. Membranes, energetics, and evolution across the prokaryote–eukaryote divide. eLife 6, e20437 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Lane, N. Serial endosymbiosis or singular event at the origin of eukaryotes? J. Theor. Biol. 434, 58–67 (2017).

    Article  ADS  PubMed  Google Scholar 

  119. Chiyomaru, K. & Takemoto, K. Revisiting the hypothesis of an energetic barrier to genome complexity between eukaryotes and prokaryotes. R. Soc. Open Sci. 7, 191859 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  120. Lane, N. How energy flow shapes cell evolution. Curr. Biol. 30, R471–R476 (2020).

    Article  CAS  PubMed  Google Scholar 

  121. Schavemaker, P. E. & Muñoz-Gómez, S. A. The role of mitochondrial energetics in the origin and diversification of eukaryotes. Nat. Ecol. Evol. 6, 1307–1317 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Volland, J.-M. et al. A centimeter-long bacterium with DNA contained in metabolically active, membrane-bound organelles. Science 376, 1453–1458 (2022).

    Article  ADS  CAS  PubMed  Google Scholar 

  123. Greening, C. & Lithgow, T. Formation and function of bacterial organelles. Nat. Rev. Microbiol. 18, 677–689 (2020).

    Article  CAS  PubMed  Google Scholar 

  124. Küper, U., Meyer, C., Müller, V., Rachel, R. & Huber, H. Energized outer membrane and spatial separation of metabolic processes in the hyperthermophilic Archaeon Ignicoccus hospitalis. Proc. Natl Acad. Sci. USA 107, 3152–3156 (2010).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  125. Wiegand, S., Jogler, M. & Jogler, C. On the maverick planctomycetes. FEMS Microbiol. Rev. 42, 739–760 (2018).

    Article  CAS  PubMed  Google Scholar 

  126. Katayama, T. et al. Isolation of a member of the candidate phylum ‘Atribacteria’ reveals a unique cell membrane structure. Nat. Commun. 11, 6381 (2020).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  127. Pittis, A. A. & Gabaldón, T. Late acquisition of mitochondria by a host with chimaeric prokaryotic ancestry. Nature 531, 101–104 (2016). This study presented a novel approach to use phylogenetic branch lengths to infer the relative timing of gene acquisitions during eukaryogenesis, pointing to rampant bacterial gene flow to stem eukaryotes prior to the proto-mitochondrial acquisition.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  128. Gabaldón, T. Relative timing of mitochondrial endosymbiosis and the “pre-mitochondrial symbioses” hypothesis. IUBMB Life 70, 1188–1196 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Vosseberg, J., Schinkel, M., Gremmen, S. & Snel, B. The spread of the first introns in proto-eukaryotic paralogs. Commun. Biol. 5, 476 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Susko, E., Steel, M. & Roger, A. J. Conditions under which distributions of edge length ratios on phylogenetic trees can be used to order evolutionary events. J. Theor. Biol. 526, 110788 (2021).

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  131. Tricou, T., Tannier, E. & de Vienne, D. M. Ghost lineages can invalidate or even reverse findings regarding gene flow. PLoS Biol. 20, e3001776 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Fritz-Laylin, L. K. et al. The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell 140, 631–642 (2010).

    Article  CAS  PubMed  Google Scholar 

  133. Huynen, M. A., Duarte, I. & Szklarczyk, R. Loss, replacement and gain of proteins at the origin of the mitochondria. Biochim. Biophys. Acta 1827, 224–231 (2013).

    Article  CAS  PubMed  Google Scholar 

  134. Timmis, J. N., Ayliffe, M. A., Huang, C. Y. & Martin, W. Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat. Rev. Genet. 5, 123–135 (2004).

    Article  CAS  PubMed  Google Scholar 

  135. Karnkowska, A. et al. A eukaryote without a mitochondrial organelle. Curr. Biol. 26, 1274–1284 (2016).

    Article  CAS  PubMed  Google Scholar 

  136. Gabaldón, T. et al. Origin and evolution of the peroxisomal proteome. Biol. Direct 1, 8 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Rochette, N. C., Brochier-Armanet, C. & Gouy, M. Phylogenomic test of the hypotheses for the evolutionary origin of eukaryotes. Mol. Biol. Evol. 31, 832–845 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Irwin, N. A. T., Pittis, A. A., Richards, T. A. & Keeling, P. J. Systematic evaluation of horizontal gene transfer between eukaryotes and viruses. Nat. Microbiol. 7, 327–336 (2022).

    Article  CAS  PubMed  Google Scholar 

  139. Ku, C. et al. Endosymbiotic origin and differential loss of eukaryotic genes. Nature 524, 427–432 (2015).

    Article  ADS  CAS  PubMed  Google Scholar 

  140. Gould, S. B., Garg, S. G. & Martin, W. F. Bacterial vesicle secretion and the evolutionary origin of the eukaryotic endomembrane system. Trends Microbiol. 24, 525–534 (2016).

    Article  CAS  PubMed  Google Scholar 

  141. Coleman, G. A., Pancost, R. D. & Williams, T. A. Investigating the origins of membrane phospholipid biosynthesis genes using outgroup-free rooting. Genome Biol. Evol. 11, 883–898 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Volker, C. & Lupas, A. N. in The Proteasome–Ubiquitin Protein Degradation Pathway (eds Zwickl, P. & Baumeister, W.) 1–22 (Springer, 2002).

  143. Vosseberg, J., Stolker, D., von der Dunk, S. H. A. & Snel, B. Integrating phylogenetics with intron positions illuminates the origin of the complex spliceosome. Mol. Biol. Evol. 40, msad011 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Tromer, E. C., Hooff, J. J. E., van, Kops, G. J. P. L. & Snel, B. Mosaic origin of the eukaryotic kinetochore. Proc. Natl Acad. Sci. USA 116, 12873–12882 (2019).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  145. Findeisen, P. et al. Six subgroups and extensive recent duplications characterize the evolution of the eukaryotic tubulin protein family. Genome Biol. Evol. 6, 2274–2288 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Muñoz-Gómez, S. A., Bilolikar, G., Wideman, J. G. & Geiler-Samerotte, K. Constructive neutral evolution 20 years later. J. Mol. Evol. 89, 172–182 (2021).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  147. Dacks, J. B. & Field, M. C. Evolution of the eukaryotic membrane-trafficking system: origin, tempo and mode. J. Cell Sci. 120, 2977–2985 (2007).

    Article  CAS  PubMed  Google Scholar 

  148. Dacks, J. B. & Field, M. C. Evolutionary origins and specialisation of membrane transport. Curr. Opin. Cell Biol. 53, 70–76 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  150. Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  151. Ekman, D., Björklund, Å. K., Frey-Skött, J. & Elofsson, A. Multi-domain proteins in the three kingdoms of life: orphan domains and other unassigned regions. J. Mol. Biol. 348, 231–243 (2005).

    Article  CAS  PubMed  Google Scholar 

  152. Liu, J. & Rost, B. Comparing function and structure between entire proteomes. Protein Sci. 10, 1970–1979 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Xue, B., Dunker, A. K. & Uversky, V. N. Orderly order in protein intrinsic disorder distribution: disorder in 3500 proteomes from viruses and the three domains of life. J. Biomol. Struct. Dyn. 30, 137–149 (2012).

    Article  CAS  PubMed  Google Scholar 

  154. Colnaghi, M., Lane, N. & Pomiankowski, A. Genome expansion in early eukaryotes drove the transition from lateral gene transfer to meiotic sex. eLife 9, e58873 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. van Dijk, B., Bertels, F., Stolk, L., Takeuchi, N. & Rainey, P. B. Transposable elements promote the evolution of genome streamlining. Phil. Trans. R. Soc. B 377, 20200477 (2022).

    Article  PubMed  Google Scholar 

  156. Colnaghi, M., Lane, N. & Pomiankowski, A. Repeat sequences limit the effectiveness of lateral gene transfer and favored the evolution of meiotic sex in early eukaryotes. Proc. Natl Acad. Sci. USA 119, e2205041119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Gilbert, W. Why genes in pieces? Nature 271, 501–501 (1978).

    Article  ADS  CAS  PubMed  Google Scholar 

  158. Liu, M. & Grigoriev, A. Protein domains correlate strongly with exons in multiple eukaryotic genomes – evidence of exon shuffling? Trends Genet. 20, 399–403 (2004).

    Article  PubMed  Google Scholar 

  159. Grau-Bové, X. et al. Dynamics of genomic innovation in the unicellular ancestry of animals. eLife 6, e26036 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Ocaña-Pallarès, E. et al. Divergent genomic trajectories predate the origin of animals and fungi. Nature 609, 747–753 (2022).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  161. Méheust, R. et al. Formation of chimeric genes with essential functions at the origin of eukaryotes. BMC Biol. 16, 30 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  162. Tamarit, D. et al. Description of Asgardarchaeum abyssi gen. nov. spec. nov., a novel species within the class Asgardarchaeia and phylum Asgardarchaeota in accordance with the SeqCode. Syst. Appl. Microbiol. 47, 126525 (2024).

  163. Delsuc, F., Brinkmann, H. & Philippe, H. Phylogenomics and the reconstruction of the tree of life. Nat. Rev. Genet. 6, 361–375 (2005).

    Article  CAS  PubMed  Google Scholar 

  164. Kapli, P., Yang, Z. & Telford, M. J. Phylogenetic tree building in the genomic age. Nat. Rev. Genet. 21, 428–444 (2020).

    Article  CAS  PubMed  Google Scholar 

  165. Steenwyk, J. L., Li, Y., Zhou, X., Shen, X.-X. & Rokas, A. Incongruence in the phylogenomics era. Nat. Rev. Genet. 24, 834–850 (2023).

    Article  CAS  PubMed  Google Scholar 

  166. Fleming, J. F., Valero-Gracia, A. & Struck, T. H. Identifying and addressing methodological incongruence in phylogenomics: a review. Evol. Appl. 16, 1087–1104 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Foster, P. G. et al. Recoding amino acids to a reduced alphabet may increase or decrease phylogenetic accuracy. Syst. Biol. 72, 723–737 (2023).

    Article  CAS  PubMed  Google Scholar 

  168. Susko, E. & Roger, A. J. On reduced amino acid alphabets for phylogenetic inference. Mol. Biol. Evol. 24, 2139–2150 (2007).

    Article  CAS  PubMed  Google Scholar 

  169. Viklund, J., Ettema, T. J. G. & Andersson, S. G. E. Independent genome reduction and phylogenetic reclassification of the oceanic SAR11 clade. Mol. Biol. Evol. 29, 599–615 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank B. Snel for helpful advice. This work was supported by the Dutch Research Council (VI.C.192.016 to T.J.G.E. and VI.Veni.212.099 to J.J.E.v.H.), the European Research Council (ERC Consolidator grant 817834 to T.J.G.E.), Volkswagen Foundation (‘Life’ grant 96725 to T.J.G.E.) and the Moore-Simons Project on the Origin of the Eukaryotic Cell (Simons Foundation 73592LPI to T.J.G.E.).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the writing of this manuscript.

Corresponding author

Correspondence to Thijs J. G. Ettema.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Toni Gabaldón and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vosseberg, J., van Hooff, J.J.E., Köstlbacher, S. et al. The emerging view on the origin and early evolution of eukaryotic cells. Nature 633, 295–305 (2024). https://doi.org/10.1038/s41586-024-07677-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41586-024-07677-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载