+
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Advances in the pathophysiology, diagnosis and treatment of Takayasu arteritis

Abstract

Takayasu arteritis (TAK) is a rare, chronic, large-vessel vasculitis that primarily targets the aorta and its major branches, leading to vascular stenosis, occlusion and aneurysm formation. TAK, which is characterized by granulomatous inflammation of the arterial wall, predominantly affects women, with peak onset typically occurring between 20 and 40 years of age. The disease exhibits substantial geographic variability in prevalence, with emerging evidence suggesting that these differences are partly owing to variations in genetic susceptibility loci, particularly within immune-related genes; however, the role of environmental factors in the disease aetiology remains poorly understood. Non-invasive imaging techniques have become central to both diagnosis and disease monitoring. Furthermore, the development of biomarkers holds promise for more accurate assessment of disease activity. The management of TAK is evolving, driven by an improved understanding of disease pathogenesis. The growing use of biologic agents is providing new treatment options, particularly for patients with refractory or relapsing disease. By integrating these developments, this Review is aimed at serving as a comprehensive resource for clinicians and researchers dedicated to improving the understanding and management of TAK.

Key points

  • Takayasu arteritis (TAK) is a rare large-vessel vasculitis with a global incidence of 1.11 per million person-years, which predominantly affects young women 20–40 years of age.

  • The pathogenesis of TAK involves multiple interconnected immune-mediated processes that ultimately result in vascular fibrosis and stenosis.

  • Over 100 genetic susceptibility loci, including HLA-B*52, have been identified, contributing to geographic differences in disease prevalence.

  • Non-invasive imaging is central to diagnosis and monitoring; 18F-fluorodeoxyglucose-PET uptake in the arterial wall predicts future stenotic lesions better than wall thickness alone.

  • Serum pentraxin-3 shows promise as a biomarker of disease activity, particularly when IL-6 blockers are used.

  • Glucocorticoids combined with conventional immunosuppressive therapy remain the cornerstone of treatment; relapse rates with glucocorticoid monotherapy reach 60–77% within 1 year.

  • Biologic agents, including TNF inhibitors and tocilizumab, can be effective in refractory TAK; therapies such as secukinumab and Janus kinase inhibitors are emerging options.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Pathology of Takayasu arteritis.
Fig. 2: Therapeutic targets in Takayasu arteritis.
Fig. 3: Angiographic patterns of Takayasu arteritis.
Fig. 4: Therapeutic approaches to Takayasu arteritis.

References

  1. Numano, F. The story of Takayasu arteritis. Rheumatology 41, 103–106 (2002).

    Article  CAS  PubMed  Google Scholar 

  2. Zhang, Z. et al. An observational study of sex differences in Takayasu arteritis in China: implications for worldwide regional differences. Ann. Vasc. Surg. 66, 309–317 (2020).

    Article  PubMed  Google Scholar 

  3. Aeschlimann, F. A., Yeung, R. S. M. & Laxer, R. M. An update on childhood-onset Takayasu arteritis. Front. Pediatr. 10, 872313 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Rutter, M., Bowley, J., Lanyon, P. C., Grainge, M. J. & Pearce, F. A. A systematic review and meta-analysis of the incidence rate of Takayasu arteritis. Rheumatology 60, 4982–4990 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Watts, R. A., Hatemi, G., Burns, J. C. & Mohammad, A. J. Global epidemiology of vasculitis. Nat. Rev. Rheumatol. 18, 22–34 (2022).

    Article  PubMed  Google Scholar 

  6. Casares-Marfil, D. & Sawalha, A. H. Functional and practical insights into the genetic basis of Takayasu arteritis. ACR Open Rheumatol. 7, e11766 (2025).

    Article  PubMed  Google Scholar 

  7. Pedreira, A. L. S. & Santiago, M. B. Association between Takayasu arteritis and latent or active Mycobacterium tuberculosis infection: a systematic review. Clin. Rheumatol. 39, 1019–1026 (2020).

    Article  PubMed  Google Scholar 

  8. Misra, D. P. et al. Prevalence, predictors, and prognosis of serious infections in Takayasu arteritis — a cohort study. J. Rheumatol. 51, 1187–1192 (2024).

    Article  PubMed  Google Scholar 

  9. Sener, S. et al. Childhood-onset Takayasu arteritis and immunodeficiency: case-based review. Clin. Rheumatol. 41, 2883–2892 (2022).

    Article  PubMed  Google Scholar 

  10. Saadoun, D. et al. Th1 and Th17 cytokines drive inflammation in Takayasu arteritis. Arthritis Rheumatol. 67, 1353–1360 (2015).

    Article  CAS  PubMed  Google Scholar 

  11. Singh, K. et al. Novel Th17 lymphocyte populations, Th17.1 and PD1+Th17, are increased in Takayasu arteritis, and both Th17 and Th17.1 sub-populations associate with active disease. J. Inflamm. Res. 15, 1521–1541 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wan, Z. et al. Regulatory T cells and T helper 17 cells in viral infection. Scand. J. Immunol. 91, e12873 (2020).

    Article  PubMed  Google Scholar 

  13. Arnaud, L., Haroche, J., Mathian, A., Gorochov, G. & Amoura, Z. Pathogenesis of Takayasu’s arteritis: a 2011 update. Autoimmun. Rev. 11, 61–67 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. Watanabe, R., Berry, G. J., Liang, D. H., Goronzy, J. J. & Weyand, C. M. Pathogenesis of giant cell arteritis and Takayasu arteritis — similarities and differences. Curr. Rheumatol. Rep. 22, 68 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Gao, N. et al. Single-cell transcriptome analysis reveals cellular heterogeneity in the aortas of Takayasu arteritis. Arthritis Res. Ther. 27, 55 (2025).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Clement, M. et al. Tertiary lymphoid organs in Takayasu arteritis. Front. Immunol. 7, 158 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Desbois, A. C. et al. Specific follicular helper T cell signature in Takayasu arteritis. Arthritis Rheumatol. 73, 1233–1243 (2021).

    Article  CAS  PubMed  Google Scholar 

  18. Misra, D. P., Singh, K., Sharma, A. & Agarwal, V. Arterial wall fibrosis in Takayasu arteritis and its potential for therapeutic modulation. Front. Immunol. 14, 1174249 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mirault, T., Guillet, H. & Messas, E. Immune response in Takayasu arteritis. Presse Med. 46, e189–e196 (2017).

    Article  PubMed  Google Scholar 

  20. Seko, Y. et al. Expression of costimulatory molecules (4-1BBL and Fas) and major histocompatibility class I chain-related A (MICA) in aortic tissue with Takayasu’s arteritis. J. Vasc. Res. 41, 84–90 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Manabe, Y. et al. Gut dysbiosis is associated with aortic aneurysm formation and progression in Takayasu arteritis. Arthritis Res. Ther. 25, 46 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Desbois, A. C., Ciocan, D., Saadoun, D., Perlemuter, G. & Cacoub, P. Specific microbiome profile in Takayasu’s arteritis and giant cell arteritis. Sci. Rep. 11, 5926 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Fang, C. et al. Association between premature vascular smooth muscle cells senescence and vascular inflammation in Takayasu’s arteritis. Ann. Rheum. Dis. 83, 1522–1535 (2024).

    Article  CAS  PubMed  Google Scholar 

  24. Stankey, C. T. et al. A disease-associated gene desert directs macrophage inflammation through ETS2. Nature 630, 447–456 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Abacar, K., Macleod, T., Direskeneli, H. & McGonagle, D. Takayasu arteritis: a geographically distant but immunologically proximal MHC-I-opathy. Lancet Rheumatol. 7, e290–e302 (2025).

    Article  CAS  PubMed  Google Scholar 

  26. Kong, X. & Sawalha, A. H. Takayasu arteritis risk locus in IL6 represses the anti-inflammatory gene GPNMB through chromatin looping and recruiting MEF2-HDAC complex. Ann. Rheum. Dis. 78, 1388–1397 (2019).

    Article  CAS  PubMed  Google Scholar 

  27. Kong, X. et al. Potential role of macrophage phenotypes and CCL2 in the pathogenesis of Takayasu arteritis. Front. Immunol. 12, 646516 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. de Aguiar, M. F. et al. Monocyte subsets and monocyte-related chemokines in Takayasu arteritis. Sci. Rep. 13, 2092 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Ćorović, A. et al. Somatostatin receptor PET/MR imaging of inflammation in patients with large vessel vasculitis and atherosclerosis. J. Am. Coll. Cardiol. 81, 336–354 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Misra, D. P., Chaurasia, S. & Misra, R. Increased circulating Th17 cells, serum IL-17A, and IL-23 in Takayasu arteritis. Autoimmune Dis. 2016, 7841718 (2016).

    PubMed  PubMed Central  Google Scholar 

  31. Jiang, W. et al. Critical role of Notch-1 in mechanistic target of rapamycin hyperactivity and vascular inflammation in patients with Takayasu arteritis. Arthritis Rheumatol. 74, 1235–1244 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Zhang, J. et al. Targeting mechanistic target of rapamycin complex 1 restricts proinflammatory T cell differentiation and ameliorates Takayasu arteritis. Arthritis Rheumatol. 72, 303–315 (2020).

    Article  CAS  PubMed  Google Scholar 

  33. Punithavathy, P. M. et al. Study of pathogenic T-helper cell subsets in Asian Indian patients with Takayasu arteritis. Immunol. Res. 72, 636–643 (2024).

    Article  CAS  PubMed  Google Scholar 

  34. Kabeerdoss, J. et al. Genome-wide DNA methylation profiling in CD8 T-cells and gamma delta T-cells of Asian Indian patients with Takayasu arteritis. Front. Cell Dev. Biol. 10, 843413 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ren, Y. L. et al. CD8+ T lymphocyte is a main source of interferon-gamma production in Takayasu’s arteritis. Sci. Rep. 11, 17111 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Sato, Y. et al. Stem-like CD4+ T cells in perivascular tertiary lymphoid structures sustain autoimmune vasculitis. Sci. Transl. Med. 15, eadh0380 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hadjadj, J. et al. mTOR pathway is activated in endothelial cells from patients with Takayasu arteritis and is modulated by serum immunoglobulin G. Rheumatology 57, 1011–1020 (2018).

    Article  CAS  PubMed  Google Scholar 

  38. Mutoh, T. et al. Identification of two major autoantigens negatively regulating endothelial activation in Takayasu arteritis. Nat. Commun. 11, 1253 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wen, X. et al. Identification of novel serological autoantibodies in Takayasu arteritis patients using HuProt arrays. Mol. Cell Proteom. 20, 100036 (2021).

    Article  CAS  Google Scholar 

  40. Nakaoka, Y. et al. Efficacy and safety of tocilizumab in patients with refractory Takayasu arteritis: results from a randomised, double-blind, placebo-controlled, phase 3 trial in Japan (the TAKT study). Ann. Rheum. Dis. 77, 348–354 (2018).

    Article  CAS  PubMed  Google Scholar 

  41. Misra, D. P. et al. The effectiveness of tocilizumab and its comparison with tumor necrosis factor alpha inhibitors for Takayasu arteritis: a systematic review and meta-analysis. Autoimmun. Rev. 22, 103275 (2023).

    Article  CAS  PubMed  Google Scholar 

  42. Tian, X. et al. Comparative efficacy of secukinumab versus tumor necrosis factor inhibitors for the treatment of Takayasu arteritis. Arthritis Rheumatol. 75, 1415–1423 (2023).

    Article  CAS  PubMed  Google Scholar 

  43. Langford, C. A. et al. A randomized, double-blind trial of abatacept (CTLA-4Ig) for the treatment of Takayasu arteritis. Arthritis Rheumatol. 69, 846–853 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yoshifuji, H. et al. Phase 3, multicentre, randomized, double-blind, placebo-controlled, parallel-group study of ustekinumab in patients with Takayasu arteritis. Rheumatol. Adv. Pract. 9, rkaf013 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Misra, D. P. Ustekinumab merits further exploration in Takayasu arteritis despite a failed randomized controlled trial. Rheumatol. Adv. Pract. 9, rkaf038 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  46. Mekinian, A. et al. Effectiveness and safety of rituximab in Takayasu arteritis: a multicenter retrospective study. Joint Bone Spine 91, 105658 (2024).

    Article  CAS  PubMed  Google Scholar 

  47. Chu, C. Q. Animal models for large vessel vasculitis — the unmet need. Rheumatol. Immunol. Res. 4, 4–10 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Han, J. W. et al. Vessel wall-embedded dendritic cells induce T-cell autoreactivity and initiate vascular inflammation. Circ. Res. 102, 546–553 (2008).

    Article  CAS  PubMed  Google Scholar 

  49. Saruhan-Direskeneli, G. et al. Identification of multiple genetic susceptibility loci in Takayasu arteritis. Am. J. Hum. Genet. 93, 298–305 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Terao, C. et al. Two susceptibility loci to Takayasu arteritis reveal a synergistic role of the IL12B and HLA-B regions in a Japanese population. Am. J. Hum. Genet. 93, 289–297 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Renauer, P. A. et al. Identification of susceptibility loci in IL6, RPS9/LILRB3, and an intergenic locus on chromosome 21q22 in Takayasu arteritis in a genome-wide association study. Arthritis Rheumatol. 67, 1361–1368 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Terao, C. et al. Genetic determinants and an epistasis of LILRA3 and HLA-B*52 in Takayasu arteritis. Proc. Natl Acad. Sci. USA 115, 13045–13050 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ortiz-Fernandez, L. et al. Identification of susceptibility loci for Takayasu arteritis through a large multi-ancestral genome-wide association study. Am. J. Hum. Genet. 108, 84–99 (2021).

    Article  CAS  PubMed  Google Scholar 

  54. Isohisa, I., Numano, F., Maezawa, H. & Sasazuki, T. HLA-Bw52 in Takayasu disease. Tissue Antigens 12, 246–248 (1978).

    Article  CAS  PubMed  Google Scholar 

  55. Sahin, Z. et al. Takayasu’s arteritis is associated with HLA-B*52, but not with HLA-B*51, in Turkey. Arthritis Res. Ther. 14, R27 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Renauer, P. & Sawalha, A. H. The genetics of Takayasu arteritis. Presse Med. 46, e179–e187 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  57. Origuchi, T. et al. The severity of Takayasu arteritis is associated with the HLA-B52 allele in Japanese patients. Tohoku J. Exp. Med. 239, 67–72 (2016).

    Article  CAS  PubMed  Google Scholar 

  58. Kasuya, K., Hashimoto, Y. & Numano, F. Left ventricular dysfunction and HLA Bw52 antigen in Takayasu arteritis. Heart Vessel. Suppl. 7, 116–119 (1992).

    Article  CAS  Google Scholar 

  59. Carmona, F. D. et al. Analysis of the common genetic component of large-vessel vasculitides through a meta-immunochip strategy. Sci. Rep. 7, 43953 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Terao, C. et al. Ustekinumab as a therapeutic option for Takayasu arteritis: from genetic findings to clinical application. Scand. J. Rheumatol. 45, 80–82 (2016).

    Article  CAS  PubMed  Google Scholar 

  61. Ortiz-Fernandez, L. et al. Identification of new risk loci shared across systemic vasculitides points towards potential target genes for drug repurposing. Ann. Rheum. Dis. 82, 837–847 (2023).

    Article  CAS  PubMed  Google Scholar 

  62. Lupi-Herrera, E. et al. Takayasu’s arteritis. Clinical study of 107 cases. Am. Heart J. 93, 94–103 (1977).

    Article  CAS  PubMed  Google Scholar 

  63. Quinn, K. A. et al. Patterns of clinical presentation in Takayasu’s arteritis. Semin. Arthritis Rheum. 50, 576–581 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Danda, D. et al. Clinical course of 602 patients with Takayasu’s arteritis: comparison between childhood-onset versus adult onset disease. Rheumatology 60, 2246–2255 (2021).

    Article  CAS  PubMed  Google Scholar 

  65. Gong, J.-N. et al. Analysis of clinical features between active and inactive patients of Takayasu’s arteritis with pulmonary arteries involvement. Int. J. Cardiol. 381, 88–93 (2023).

    Article  PubMed  Google Scholar 

  66. Torere, B. E. et al. Subclavian steal syndrome as the initial presentation of Takayasu’s vasculitis in a young Caucasian female. Cureus 15, e37940 (2023).

    PubMed  PubMed Central  Google Scholar 

  67. Comarmond, C. et al. Long-term outcomes and prognostic factors of complications in Takayasu arteritis: a multicenter study of 318 patients. Circulation 136, 1114–1122 (2017).

    Article  PubMed  Google Scholar 

  68. Yang, L. et al. Clinical manifestations and longterm outcome for patients with Takayasu arteritis in China. J. Rheumatol. 41, 2439–2446 (2014).

    Article  PubMed  Google Scholar 

  69. Liao, H. et al. Predictors for pulmonary artery involvement in Takayasu arteritis and its cluster analysis. Arthritis Res. Ther. 25, 9 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Guha Sarkar, P., Bansal, A., Tyagi, S. & Gupta, M. D. Predictors of left ventricular dysfunction in patients with Takayasu’s arteritis: a single centre experience. Clin. Exp. Rheumatol. 40, 714–719 (2022).

    PubMed  Google Scholar 

  71. Zhou, J. et al. Age, sex and angiographic type-related phenotypic differences in inpatients with Takayasu arteritis: a 13-year retrospective study at a national referral center in China. Front. Cardiovasc. Med. 10, 1099144 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Peter, J. et al. Ocular manifestations of Takayasu arteritis: a cross-sectional study. Retina 31, 1170–1178 (2011).

    Article  PubMed  Google Scholar 

  73. Bayardo-Gutiérrez, B. et al. Amaurosis as an initial presentation of Takayasu arteritis in children. Rheumatol. Int. 43, 575–587 (2023).

    Article  PubMed  Google Scholar 

  74. Ungprasert, P., Wijarnpreecha, K., Cheungpasitporn, W., Thongprayoon, C. & Kroner, P. T. Inpatient prevalence, burden and comorbidity of Takayasu’s arteritis: nationwide inpatient sample 2013–2014. Semin. Arthritis Rheum. 49, 136–139 (2019).

    Article  PubMed  Google Scholar 

  75. Kim, H. & Barra, L. Ischemic complications in Takayasu’s arteritis: a meta-analysis. Semin. Arthritis Rheum. 47, 900–906 (2018).

    Article  PubMed  Google Scholar 

  76. Duarte, M. M., Geraldes, R., Sousa, R., Alarcão, J. & Costa, J. Stroke and transient ischemic attack in Takayasu’s arteritis: a systematic review and meta-analysis. J. Stroke Cerebrovasc. Dis. 25, 781–791 (2016).

    Article  PubMed  Google Scholar 

  77. Clifford, A. H. Cardiovascular disease in large vessel vasculitis: risks, controversies, and management strategies. Rheum. Dis. Clin. North Am. 49, 81–96 (2023).

    Article  PubMed  Google Scholar 

  78. Xu, Y. et al. Clinical characteristics and risk factors of coronary artery lesions in Chinese pediatric Takayasu arteritis patients: a retrospective study. Pediatr. Rheumatol. Online J. 21, 42 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  79. Dzhus, M. & Mostbauer, H. Coronary artery lesions in Takayasu arteritis. Reumatologia 61, 460–472 (2023).

    Article  PubMed  Google Scholar 

  80. Ren, X. et al. Assessment of coronary involvement with MDCT and long-term outcomes in patients with Takayasu’s arteritis. Acad. Radiol. 31, 4329–4339 (2024).

    Article  PubMed  Google Scholar 

  81. Espinoza, J. L., Ai, S. & Matsumura, I. New insights on the pathogenesis of Takayasu arteritis: revisiting the microbial theory. Pathogens 7, 73 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Perniciaro, C. V., Winkelmann, R. K. & Hunder, G. G. Cutaneous manifestations of Takayasu’s arteritis. A clinicopathologic correlation. J. Am. Acad. Dermatol. 17, 998–1005 (1987).

    Article  CAS  PubMed  Google Scholar 

  83. Francès, C. et al. Cutaneous manifestations of Takayasu arteritis. A retrospective study of 80 cases. Dermatologica 181, 266–272 (1990).

    Article  PubMed  Google Scholar 

  84. Pascual-López, M. et al. Takayasu’s disease with cutaneous involvement. Dermatology 208, 10–15 (2004).

    Article  PubMed  Google Scholar 

  85. Misra, D. P. et al. Presentation and clinical course of pediatric-onset versus adult-onset Takayasu arteritis — a systematic review and meta-analysis. Clin. Rheumatol. 41, 3601–3613 (2022).

    Article  PubMed  Google Scholar 

  86. Miller-Barmak, A. et al. Infantile Takayasu: clinical features and long-term outcome. Rheumatology 62, 3126–3132 (2023).

    Article  CAS  PubMed  Google Scholar 

  87. Abacar, K. et al. Frequency and the effects of spondyloarthritis-spectrum disorders on the clinical course and management of Takayasu arteritis: an observational retrospective study. Clin. Rheumatol. 43, 1571–1578 (2024).

    Article  PubMed  Google Scholar 

  88. Keser, G. & Aksu, K. Diagnosis and differential diagnosis of large-vessel vasculitides. Rheumatol. Int. 39, 169–185 (2019).

    Article  PubMed  Google Scholar 

  89. Berti, A. et al. Beyond giant cell arteritis and Takayasu’s arteritis: secondary large vessel vasculitis and vasculitis mimickers. Curr. Rheumatol. Rep. 22, 88 (2020).

    Article  PubMed  Google Scholar 

  90. Alessi, H. D. et al. Longitudinal characterization of vascular inflammation and disease activity in Takayasu arteritis and giant cell arteritis: a single-center prospective study. Arthritis Care Res. 75, 1362–1370 (2023).

    Article  Google Scholar 

  91. Zarka, F., Veillette, C. & Makhzoum, J.-P. A review of primary vasculitis mimickers based on the Chapel Hill consensus classification. Int. J. Rheumatol. 2020, 8392542 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Furuta, S., Cousins, C., Chaudhry, A. & Jayne, D. Clinical features and radiological findings in large vessel vasculitis: are Takayasu arteritis and giant cell arteritis 2 different diseases or a single entity? J. Rheumatol. 42, 300–308 (2015).

    Article  PubMed  Google Scholar 

  93. Oyama-Manabe, N., Manabe, O., Tsuneta, S. & Ishizaka, N. RadioGraphics update: IgG4-related cardiovascular disease from the aorta to the coronary arteries. Radiographics 40, E29–E32 (2020).

    Article  PubMed  Google Scholar 

  94. Peng, L. et al. IgG4-related aortitis/periaortitis and periarteritis: a distinct spectrum of IgG4-related disease. Arthritis Res. Ther. 22, 103 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Fathala, A. Multimodalities imaging of immunoglobulin 4-related cardiovascular disorders. Curr. Cardiol. Rev. 15, 224–229 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Alie, N., Eldib, M., Fayad, Z. A. & Mani, V. Inflammation, atherosclerosis, and coronary artery disease: PET/CT for the evaluation of atherosclerosis and inflammation. Clin. Med. Insights Cardiol. 8, 13–21 (2014).

    PubMed  Google Scholar 

  97. Khasnis, A. & Molloy, E. Mimics of primary systemic vasculitides. Int. J. Clin. Rheumatol. 4, 597–609 (2009).

    Article  Google Scholar 

  98. Restrepo, C. S., Ocazionez, D., Suri, R. & Vargas, D. Aortitis: imaging spectrum of the infectious and inflammatory conditions of the aorta. Radiographics 31, 435–451 (2011).

    Article  PubMed  Google Scholar 

  99. Grayson, P. C. et al. 2022 American College of Rheumatology/EULAR classification criteria for Takayasu arteritis. Ann. Rheum. Dis. 81, 1654–1660 (2022).

    Article  PubMed  Google Scholar 

  100. Arend, W. P. et al. The American College of rheumatology 1990 criteria for the classification of Takayasu arteritis. Arthritis Rheum. 33, 1129–1134 (1990).

    Article  CAS  PubMed  Google Scholar 

  101. Grayson, P. C. et al. Association of vascular physical examination findings and arteriographic lesions in large vessel vasculitis. J. Rheumatol. 39, 303–309 (2012).

    Article  PubMed  Google Scholar 

  102. Grayson, P. C. et al. 18F-Fluorodeoxyglucose-positron emission tomography as an imaging biomarker in a prospective, longitudinal cohort of patients with large vessel vasculitis. Arthritis Rheumatol. 70, 439–449 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Nielsen, C. C., Amrhein, C. G., Osornio-Vargas, A. R. & DoMi, N. O. T. Mapping outdoor habitat and abnormally small newborns to develop an ambient health hazard index. Int. J. Health Geogr. 16, 43 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Tarkin, J. M. & Gopalan, D. Multimodality imaging of large-vessel vasculitis. Heart 109, 232–240 (2023).

    Article  CAS  PubMed  Google Scholar 

  105. Slart, R. et al. FDG-PET/CT(A) imaging in large vessel vasculitis and polymyalgia rheumatica: joint procedural recommendation of the EANM, SNMMI, and the PET interest group (PIG), and endorsed by the ASNC. Eur. J. Nucl. Med. Mol. Imaging 45, 1250–1269 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Dejaco, C. et al. EULAR recommendations for the use of imaging in large vessel vasculitis in clinical practice: 2023 update. Ann. Rheum. Dis. 83, 741–751 (2024).

    Article  CAS  PubMed  Google Scholar 

  107. Quinn, K. A. et al. Use of 18F-fluorodeoxyglucose positron emission tomography to standardize clinical trial recruitment in Takayasu’s arteritis. Rheumatology 61, 4047–4055 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Quinn, K. A. et al. Comparison of magnetic resonance angiography and 18F-fluorodeoxyglucose positron emission tomography in large-vessel vasculitis. Ann. Rheum. Dis. 77, 1165–1171 (2018).

    Article  PubMed  Google Scholar 

  109. Peverelli, M. & Tarkin, J. M. Emerging PET radiotracers for vascular imaging. Rheumatology 64, i33–i37 (2025).

    Article  CAS  PubMed  Google Scholar 

  110. Zoghi, S. et al. Role of total body PET/CT in inflammatory disorders. Semin. Nucl. Med. 55, 41–51 (2025).

    Article  PubMed  Google Scholar 

  111. Ueno, A., Awane, Y., Wakabayashi, A. & Shimizu, K. Successfully operated obliterative brachiocephalic arteritis (Takayasu) associated with the elongated coarctation. Jpn Heart J. 8, 538–544 (1967).

    Article  CAS  PubMed  Google Scholar 

  112. Hata, A., Noda, M., Moriwaki, R. & Numano, F. Angiographic findings of Takayasu arteritis: new classification. Int. J. Cardiol. 54, S155–S163 (1996).

    Article  PubMed  Google Scholar 

  113. Goel, R. et al. Derivation of an angiographically based classification system in Takayasu’s arteritis: an observational study from India and North America. Rheumatology 59, 1118–1127 (2020).

    Article  CAS  PubMed  Google Scholar 

  114. Moriwaki, R., Noda, M., Yajima, M., Sharma, B. K. & Numano, F. Clinical manifestations of Takayasu arteritis in India and Japan — new classification of angiographic findings. Angiology 48, 369–379 (1997).

    Article  CAS  PubMed  Google Scholar 

  115. Kerr, G. S. et al. Takayasu arteritis. Ann. Intern. Med. 120, 919–929 (1994).

    Article  CAS  PubMed  Google Scholar 

  116. Maz, M. et al. 2021 American College of Rheumatology/Vasculitis Foundation guideline for the management of giant cell arteritis and Takayasu arteritis. Arthritis Rheumatol. 73, 1349–1365 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  117. Quinn, K. A. et al. Association of 18F-fluorodeoxyglucose-positron emission tomography activity with angiographic progression of disease in large vessel vasculitis. Arthritis Rheumatol. 75, 98–107 (2023).

    Article  CAS  PubMed  Google Scholar 

  118. Spira, D., Xenitidis, T., Henes, J. & Horger, M. MRI parametric monitoring of biological therapies in primary large vessel vasculitides: a pilot study. Br. J. Radiol. 89, 20150892 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Besutti, G. et al. Vessel inflammation and morphological changes in patients with large vessel vasculitis: a retrospective study. RMD Open 8, e001977 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Pugh, D. et al. 18F-FDG-PET/MR imaging to monitor disease activity in large vessel vasculitis. Nat. Commun. 15, 7314 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Marvisi, C. et al. Development of the Takayasu Arteritis Integrated Disease Activity Index. Arthritis Care Res. 76, 531–540 (2024).

    Article  Google Scholar 

  122. Salvarani, C., Cantini, F., Boiardi, L. & Hunder, G. G. Laboratory investigations useful in giant cell arteritis and Takayasu’s arteritis. Clin. Exp. Rheumatol. 21, S23–S28 (2003).

    CAS  PubMed  Google Scholar 

  123. Mason, J. C. Takayasu arteritis — advances in diagnosis and management. Nat. Rev. Rheumatol. 6, 406–415 (2010).

    Article  PubMed  Google Scholar 

  124. Hoffman, G. S. & Ahmed, A. E. Surrogate markers of disease activity in patients with Takayasu arteritis. A preliminary report from the International Network for the Study of the Systemic Vasculitides (INSSYS). Int. J. Cardiol. 66, S191–S194 (1998).

    Article  PubMed  Google Scholar 

  125. Maksimowicz-McKinnon, K., Clark, T. M. & Hoffman, G. S. Limitations of therapy and a guarded prognosis in an American cohort of Takayasu arteritis patients. Arthritis Rheum. 56, 1000–1009 (2007).

    Article  PubMed  Google Scholar 

  126. Hoffman, G. S. Takayasu arteritis: lessons from the American National Institutes of Health experience. Int. J. Cardiol. 54(Suppl), S99–S102 (1996).

    Article  PubMed  Google Scholar 

  127. Ma, J. et al. Circulation levels of acute phase proteins in patients with Takayasu arteritis. J. Vasc. Surg. 51, 700–706 (2010).

    Article  PubMed  Google Scholar 

  128. Nair, A. M. et al. Serum amyloid A as a marker of disease activity and treatment response in Takayasu arteritis. Rheumatol. Int. 37, 1643–1649 (2017).

    Article  CAS  PubMed  Google Scholar 

  129. Misra, D. P. et al. Outcome measures and biomarkers for disease assessment in Takayasu arteritis. Diagnostics 12, 2565 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Dhawan, V., Mahajan, N. & Jain, S. Role of C-C chemokines in Takayasu’s arteritis disease. Int. J. Cardiol. 112, 105–111 (2006).

    Article  PubMed  Google Scholar 

  131. Dong, H. et al. Elevated chemokines concentration is associated with disease activity in Takayasu arteritis. Cytokine 143, 155515 (2021).

    Article  CAS  PubMed  Google Scholar 

  132. Matsuyama, A. et al. Matrix metalloproteinases as novel disease markers in Takayasu arteritis. Circulation 108, 1469–1473 (2003).

    Article  CAS  PubMed  Google Scholar 

  133. Sun, Y. et al. MMP-9 and IL-6 are potential biomarkers for disease activity in Takayasu’s arteritis. Int. J. Cardiol. 156, 236–238 (2012).

    Article  PubMed  Google Scholar 

  134. Pathadan, A. P. et al. The study of novel inflammatory markers in Takayasu arteritis and its correlation with disease activity. Indian Heart J. 73, 640–643 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Li, J. et al. Association between acute phase reactants, interleukin-6, tumor necrosis factor-α, and disease activity in Takayasu’s arteritis patients. Arthritis Res. Ther. 22, 285 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Wang, H. et al. Circulating B lymphocytes producing autoantibodies to endothelial cells play a role in the pathogenesis of Takayasu arteritis. J. Vasc. Surg. 53, 174–180 (2011).

    Article  PubMed  Google Scholar 

  137. Chen, S. et al. Serum C1q concentration is associated with disease activity in Chinese Takayasu arteritis patients: a case-control study. Health Sci. Rep. 4, e252 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Umezawa, N. et al. Leucine-rich alpha-2 glycoprotein as a potential biomarker for large vessel vasculitides. Front. Med. 10, 1153883 (2023).

    Article  Google Scholar 

  139. Chen, R. et al. Serum complement 3 is a potential biomarker for assessing disease activity in Takayasu arteritis. Arthritis Res. Ther. 23, 63 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Souza Pedreira, A. L., Leite de Castro Flores, M. & Barreto Santiago, M. Interleukin 6 levels and disease activity in Takayasu arteritis: a systematic review with meta-analysis. J. Clin. Rheumatol. 30, 58–64 (2024).

    Article  PubMed  Google Scholar 

  141. Pulsatelli, L. et al. Interleukin-6 and soluble interleukin-6 receptor are elevated in large-vessel vasculitis: a cross-sectional and longitudinal study. Clin. Exp. Rheumatol. 35 (Suppl 103), 102–110 (2017).

    PubMed  Google Scholar 

  142. Garlanda, C., Bottazzi, B., Bastone, A. & Mantovani, A. Pentraxins at the crossroads between innate immunity, inflammation, matrix deposition, and female fertility. Annu. Rev. Immunol. 23, 337–366 (2005).

    Article  CAS  PubMed  Google Scholar 

  143. Ishihara, T. et al. Sensitive assessment of activity of Takayasu’s arteritis by pentraxin3, a new biomarker. J. Am. Coll. Cardiol. 57, 1712–1713 (2011).

    Article  PubMed  Google Scholar 

  144. Dagna, L. et al. Pentraxin-3 as a marker of disease activity in Takayasu arteritis. Ann. Intern. Med. 155, 425–433 (2011).

    Article  PubMed  Google Scholar 

  145. Ishihara, T. et al. Diagnosis and assessment of Takayasu arteritis by multiple biomarkers. Circ. J. 77, 477–483 (2013).

    Article  CAS  PubMed  Google Scholar 

  146. Ramirez, G. A. et al. PTX3 intercepts vascular inflammation in systemic immune-mediated diseases. Front. Immunol. 10, 1135 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Chen, Z. et al. Study on the association of serum pentraxin-3 and lysosomal-associated membrane protein-2 levels with disease activity in Chinese Takayasu’s arteritis patients. Clin. Exp. Rheumatol. 37, 109–115 (2019).

    PubMed  Google Scholar 

  148. Alibaz-Oner, F. et al. Plasma pentraxin-3 levels in patients with Takayasu’s arteritis during routine follow-up. Clin. Exp. Rheumatol. 34, S73–S76 (2016).

    PubMed  Google Scholar 

  149. Tombetti, E. et al. Systemic pentraxin-3 levels reflect vascular enhancement and progression in Takayasu arteritis. Arthritis Res. Ther. 16, 479 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Pulsatelli, L. et al. Imbalance between angiogenic and anti-angiogenic factors in sera from patients with large-vessel vasculitis. Clin. Exp. Rheumatol. 38, 23–30 (2020).

    PubMed  Google Scholar 

  151. Kang, F. et al. Performance of the PET vascular activity score (PETVAS) for qualitative and quantitative assessment of inflammatory activity in Takayasu’s arteritis patients. Eur. J. Nucl. Med. Mol. Imaging 47, 3107–3117 (2020).

    Article  CAS  PubMed  Google Scholar 

  152. Wen, X. et al. Pentraxin 3 is more accurate than C-reactive protein for Takayasu arteritis activity assessment: a systematic review and meta-analysis. PLoS ONE 16, e0245612 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Stojanovic, M. et al. Enhanced liver fibrosis score as a biomarker for vascular damage assessment in patients with Takayasu arteritis — a pilot study. J. Cardiovasc. Dev. Dis. 8, 187 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Kadoba, K. et al. A susceptibility locus in the IL12B but not LILRA3 region is associated with vascular damage in Takayasu arteritis. Sci. Rep. 11, 13667 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Keser, G., Direskeneli, H. & Aksu, K. Management of Takayasu arteritis: a systematic review. Rheumatology 53, 793–801 (2014).

    Article  CAS  PubMed  Google Scholar 

  156. Hellmich, B. et al. 2018 update of the EULAR recommendations for the management of large vessel vasculitis. Ann. Rheum. Dis. 79, 19–30 (2020).

    Article  PubMed  Google Scholar 

  157. de Souza, A. W. S. et al. Pan American League of Associations for Rheumatology guidelines for the treatment of Takayasu arteritis. J. Clin. Rheumatol. 29, 316–325 (2023).

    Article  PubMed  Google Scholar 

  158. Ughi, N. et al. The Italian Society of Rheumatology clinical practice guidelines for the management of large vessel vasculitis. Reumatismo https://doi.org/10.4081/reumatismo.2021.1470 (2022).

    Article  PubMed  Google Scholar 

  159. Tian, X. & Zeng, X. Chinese guideline for the diagnosis and treatment of Takayasu’s arteritis (2023). Rheumatol. Immunol. Res. 5, 5–26 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Alibaz-Oner, F. et al. Turkish Society for Rheumatology (Turkish Takayasu Arteritis Study Group) recommendations for the diagnosis, follow-up and the treatment of Takayasu’s arteritis. Clin. Exp. Rheumatol. https://doi.org/10.55563/clinexprheumatol/lptjx1 (2025).

    Article  PubMed  Google Scholar 

  161. Isobe, M. et al. JCS 2017 guideline on management of vasculitis syndrome — digest version. Circ. J. 84, 299–359 (2020).

    Article  PubMed  Google Scholar 

  162. Saadoun, D. et al. French recommendations for the management of Takayasu’s arteritis. Orphanet J. Rare Dis. 16, 311 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  163. Goel, R. et al. Long-term outcome of 251 patients with Takayasu arteritis on combination immunosuppressant therapy: single centre experience from a large tertiary care teaching hospital in Southern India. Semin. Arthritis Rheum. 47, 718–726 (2018).

    Article  CAS  PubMed  Google Scholar 

  164. Padiyar, S. et al. Clinical and angiographic outcomes of mycophenolate versus methotrexate in south Asian patients of Takayasu arteritis: results from an open-label, outcome-assessor blinded randomized controlled trial. Mod. Rheumatol. 34, 175–181 (2023).

    Article  PubMed  Google Scholar 

  165. Narvaez, J. et al. Efficacy and safety of leflunomide in the management of large vessel vasculitis: a systematic review and metaanalysis of cohort studies. Semin. Arthritis Rheum. 59, 152166 (2023).

    Article  CAS  PubMed  Google Scholar 

  166. Dai, D., Wang, Y., Jin, H., Mao, Y. & Sun, H. The efficacy of mycophenolate mofetil in treating Takayasu arteritis: a systematic review and meta-analysis. Rheumatol. Int. 37, 1083–1088 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Kaymaz-Tahra, S. et al. Comparison of methotrexate and azathioprine as the first-line steroid-sparing immunosuppressive agents in patients with Takayasu’s arteritis. Semin. Arthritis Rheum. 66, 152446 (2024).

    Article  CAS  PubMed  Google Scholar 

  168. Sun, X. et al. Mycophenolate mofetil plus methotrexate versus cyclophosphamide with sequential azathioprine for treatment of Takayasu arteritis. Ann. Rheum. Dis. 84, 1733–1742 (2025).

    Article  PubMed  Google Scholar 

  169. Ying, S. et al. Efficacy and safety of leflunomide versus cyclophosphamide for initial-onset Takayasu arteritis: a prospective cohort study. Therapeut. Adv. Musculoskelet. Dis. 12, 1759720X20930114 (2020).

    Article  CAS  Google Scholar 

  170. Agueda, A. F. et al. Management of Takayasu arteritis: a systematic literature review informing the 2018 update of the EULAR recommendation for the management of large vessel vasculitis. RMD Open 5, e001020 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Gudbrandsson, B., Molberg, O. & Palm, O. TNF inhibitors appear to inhibit disease progression and improve outcome in Takayasu arteritis; an observational, population-based time trend study. Arthritis Res. Ther. 19, 99 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Mekinian, A. et al. Efficacy and safety of TNF-α antagonists and tocilizumab in Takayasu arteritis: multicentre retrospective study of 209 patients. Rheumatology 61, 1376–1384 (2022).

    Article  CAS  PubMed  Google Scholar 

  173. Alibaz-Oner, F. et al. Biologic treatments in Takayasu’s arteritis: a comparative study of tumor necrosis factor inhibitors and tocilizumab. Semin. Arthritis Rheum. 51, 1224–1229 (2021).

    Article  CAS  PubMed  Google Scholar 

  174. Wang, J. et al. Treatment efficacy and safety of adalimumab versus tocilizumab in patients with active and severe Takayasu arteritis: an open-label study. Rheumatology 63, 1359–1367 (2024).

    Article  PubMed  Google Scholar 

  175. Kong, X. et al. Treatment efficacy and safety of tofacitinib versus methotrexate in Takayasu arteritis: a prospective observational study. Ann. Rheum. Dis. 81, 117–123 (2022).

    Article  CAS  PubMed  Google Scholar 

  176. Wang, J. et al. Efficacy and safety of tofacitinib versus leflunomide with glucocorticoids treatment in Takayasu arteritis: a prospective study. Semin. Arthritis Rheum. 55, 152018 (2022).

    Article  CAS  PubMed  Google Scholar 

  177. Zhou, Z. et al. Baricitinib for refractory Takayasu arteritis: a prospective cohort study in a tertiary referral centre. RMD Open 10, e003985 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Kaymaz-Tahra, S., Alibaz-Oner, F. & Direskeneli, H. Assessment of damage in Takayasu’s arteritis. Semin. Arthritis Rheum. 50, 586–591 (2020).

    Article  PubMed  Google Scholar 

  179. Shirai, T., Sato, H., Fujii, H., Ishii, T. & Harigae, H. The feasible maintenance dose of corticosteroid in Takayasu arteritis in the era of biologic therapy. Scand. J. Rheumatol. 50, 462–468 (2021).

    Article  CAS  PubMed  Google Scholar 

  180. Misra, D. P. et al. Management of Takayasu arteritis. Best Pract. Res. Clin. Rheumatol. 37, 101826 (2023).

    Article  PubMed  Google Scholar 

  181. Perera, A. H. et al. Optimizing the outcome of vascular intervention for Takayasu arteritis. Br. J. Surg. 101, 43–50 (2014).

    Article  CAS  PubMed  Google Scholar 

  182. Joseph, G. et al. Outcomes of percutaneous intervention in patients with Takayasu arteritis. J. Am. Coll. Cardiol. 81, 49–64 (2023).

    Article  PubMed  Google Scholar 

  183. Park, H. S. et al. Long term results of endovascular treatment in renal arterial stenosis from Takayasu arteritis: angioplasty versus stent placement. Eur. J. Radiol. 82, 1913–1918 (2013).

    Article  PubMed  Google Scholar 

  184. Peng, M. et al. Selective stent placement versus balloon angioplasty for renovascular hypertension caused by Takayasu arteritis: two-year results. Int. J. Cardiol. 205, 117–123 (2016).

    Article  PubMed  Google Scholar 

  185. Wang, H. et al. Comparing the effects of different management strategies on long-term outcomes for significant coronary stenosis in patients with Takayasu arteritis. Int. J. Cardiol. 306, 1–7 (2020).

    Article  PubMed  Google Scholar 

  186. Bass, A. R. et al. 2022 American College of Rheumatology guideline for vaccinations in patients with rheumatic and musculoskeletal diseases. Arthritis Rheumatol. 75, 333–348 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Drosos, G. C. et al. EULAR recommendations for cardiovascular risk management in rheumatic and musculoskeletal diseases, including systemic lupus erythematosus and antiphospholipid syndrome. Ann. Rheum. Dis. 81, 768–779 (2022).

    Article  CAS  PubMed  Google Scholar 

  188. Provenzale, J. M., Barboriak, D. P., Allen, N. B. & Ortel, T. L. Antiphospholipid antibodies: findings at arteriography. AJNR Am. J. Neuroradiol. 19, 611–616 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Brun, A.-L. et al. Erdheim–Chester disease: CT findings of thoracic involvement. Eur. Radiol. 20, 2579–2587 (2010).

    Article  PubMed  Google Scholar 

  190. Berti, A., Ferrarini, M., Ferrero, E. & Dagna, L. Cardiovascular manifestations of Erdheim–Chester disease. Clin. Exp. Rheumatol. 33, S-155–163 (2015).

    Google Scholar 

  191. Haroche, J. et al. Images in cardiovascular medicine. Cardiac involvement in Erdheim–Chester disease: magnetic resonance and computed tomographic scan imaging in a monocentric series of 37 patients. Circulation 119, e597–e598 (2009).

    Article  PubMed  Google Scholar 

  192. Pappaccogli, M. et al. The European/International Fibromuscular Dysplasia Registry and Initiative (FEIRI) — clinical phenotypes and their predictors based on a cohort of 1000 patients. Cardiovasc. Res. 117, 950–959 (2021).

    Article  CAS  PubMed  Google Scholar 

  193. Shenouda, M., Riga, C., Naji, Y. & Renton, S. Segmental arterial mediolysis: a systematic review of 85 cases. Ann. Vasc. Surg. 28, 269–277 (2014).

    Article  PubMed  Google Scholar 

  194. Baker-LePain, J. C., Stone, D. H., Mattis, A. N., Nakamura, M. C. & Fye, K. H. Clinical diagnosis of segmental arterial mediolysis: differentiation from vasculitis and other mimics. Arthritis Care Res. 62, 1655–1660 (2010).

    Article  Google Scholar 

  195. Zilocchi, M. et al. Vascular Ehlers–Danlos syndrome: imaging findings. AJR Am. J. Roentgenol. 189, 712–719 (2007).

    Article  PubMed  Google Scholar 

  196. Oderich, G. S. et al. Vascular abnormalities in patients with neurofibromatosis syndrome type I: clinical spectrum, management, and results. J. Vasc. Surg. 46, 475–484 (2007).

    Article  PubMed  Google Scholar 

  197. Hoogendoorn, E. H., Oyen, W. J. G., van Dijk, A. P. J. & van der Meer, J. W. M. Pneumococcal aortitis, report of a case with emphasis on the contribution to diagnosis of positron emission tomography using fluorinated deoxyglucose. Clin. Microbiol. Infect. 9, 73–76 (2003).

    Article  CAS  PubMed  Google Scholar 

  198. Lecler, A. et al. TIPIC syndrome: beyond the myth of carotidynia, a new distinct unclassified entity. AJNR Am. J. Neuroradiol. 38, 1391–1398 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Margolis, J., Bilfinger, T. & Labropoulos, N. A right-sided aortic arch and aberrant left subclavian artery with proximal segment hypoplasia. Interact. Cardiovasc. Thorac. Surg. 14, 370–371 (2012).

    Article  PubMed  Google Scholar 

  200. Mahmood, S. S. & Nohria, A. Cardiovascular complications of cranial and neck radiation. Curr. Treat. Options Cardiovasc. Med. 18, 45 (2016).

    Article  PubMed  Google Scholar 

  201. Corbera-Bellalta, M. et al. Blocking GM-CSF receptor α with mavrilimumab reduces infiltrating cells, pro-inflammatory markers and neoangiogenesis in ex vivo cultured arteries from patients with giant cell arteritis. Ann. Rheum. Dis. 81, 524–536 (2022).

    Article  CAS  PubMed  Google Scholar 

  202. Cid, M. C. et al. Efficacy and safety of mavrilimumab in giant cell arteritis: a phase 2, randomised, double-blind, placebo-controlled trial. Ann. Rheum. Dis. 81, 653–661 (2022).

    Article  CAS  PubMed  Google Scholar 

  203. Gribbons, K. B. et al. Patterns of arterial disease in Takayasu arteritis and giant cell arteritis. Arthritis Care Res. 72, 1615–1624 (2020).

    Article  Google Scholar 

Download references

Acknowledgements

The authors dedicate this work to the memory of Dr. Debashish Danda, whose pioneering contributions profoundly shaped our understanding of this complex disease and advanced patient care. A distinguished expert, esteemed colleague, dedicated mentor, passionate educator and cherished friend, his legacy continues to guide and inspire both the vasculitis field and the global rheumatology community. K.A.Q. and P.C.G. are funded by the Intramural Research Program at the National Institute of Arthritis and Musculoskeletal and Skin Diseases at the US National Institutes of Health. The findings and conclusions presented in this paper are those of the authors and do not necessarily reflect the views of the US National Institutes of Health or the US Department of Health and Human Services.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Amr H. Sawalha.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Rheumatology thanks Maria Cid, Xinping Tian and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sawalha, A.H., Misra, D.P., Goel, R. et al. Advances in the pathophysiology, diagnosis and treatment of Takayasu arteritis. Nat Rev Rheumatol (2025). https://doi.org/10.1038/s41584-025-01309-7

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41584-025-01309-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载