Abstract
Takayasu arteritis (TAK) is a rare, chronic, large-vessel vasculitis that primarily targets the aorta and its major branches, leading to vascular stenosis, occlusion and aneurysm formation. TAK, which is characterized by granulomatous inflammation of the arterial wall, predominantly affects women, with peak onset typically occurring between 20 and 40 years of age. The disease exhibits substantial geographic variability in prevalence, with emerging evidence suggesting that these differences are partly owing to variations in genetic susceptibility loci, particularly within immune-related genes; however, the role of environmental factors in the disease aetiology remains poorly understood. Non-invasive imaging techniques have become central to both diagnosis and disease monitoring. Furthermore, the development of biomarkers holds promise for more accurate assessment of disease activity. The management of TAK is evolving, driven by an improved understanding of disease pathogenesis. The growing use of biologic agents is providing new treatment options, particularly for patients with refractory or relapsing disease. By integrating these developments, this Review is aimed at serving as a comprehensive resource for clinicians and researchers dedicated to improving the understanding and management of TAK.
Key points
-
Takayasu arteritis (TAK) is a rare large-vessel vasculitis with a global incidence of 1.11 per million person-years, which predominantly affects young women 20–40 years of age.
-
The pathogenesis of TAK involves multiple interconnected immune-mediated processes that ultimately result in vascular fibrosis and stenosis.
-
Over 100 genetic susceptibility loci, including HLA-B*52, have been identified, contributing to geographic differences in disease prevalence.
-
Non-invasive imaging is central to diagnosis and monitoring; 18F-fluorodeoxyglucose-PET uptake in the arterial wall predicts future stenotic lesions better than wall thickness alone.
-
Serum pentraxin-3 shows promise as a biomarker of disease activity, particularly when IL-6 blockers are used.
-
Glucocorticoids combined with conventional immunosuppressive therapy remain the cornerstone of treatment; relapse rates with glucocorticoid monotherapy reach 60–77% within 1 year.
-
Biologic agents, including TNF inhibitors and tocilizumab, can be effective in refractory TAK; therapies such as secukinumab and Janus kinase inhibitors are emerging options.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$189.00 per year
only $15.75 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
References
Numano, F. The story of Takayasu arteritis. Rheumatology 41, 103–106 (2002).
Zhang, Z. et al. An observational study of sex differences in Takayasu arteritis in China: implications for worldwide regional differences. Ann. Vasc. Surg. 66, 309–317 (2020).
Aeschlimann, F. A., Yeung, R. S. M. & Laxer, R. M. An update on childhood-onset Takayasu arteritis. Front. Pediatr. 10, 872313 (2022).
Rutter, M., Bowley, J., Lanyon, P. C., Grainge, M. J. & Pearce, F. A. A systematic review and meta-analysis of the incidence rate of Takayasu arteritis. Rheumatology 60, 4982–4990 (2021).
Watts, R. A., Hatemi, G., Burns, J. C. & Mohammad, A. J. Global epidemiology of vasculitis. Nat. Rev. Rheumatol. 18, 22–34 (2022).
Casares-Marfil, D. & Sawalha, A. H. Functional and practical insights into the genetic basis of Takayasu arteritis. ACR Open Rheumatol. 7, e11766 (2025).
Pedreira, A. L. S. & Santiago, M. B. Association between Takayasu arteritis and latent or active Mycobacterium tuberculosis infection: a systematic review. Clin. Rheumatol. 39, 1019–1026 (2020).
Misra, D. P. et al. Prevalence, predictors, and prognosis of serious infections in Takayasu arteritis — a cohort study. J. Rheumatol. 51, 1187–1192 (2024).
Sener, S. et al. Childhood-onset Takayasu arteritis and immunodeficiency: case-based review. Clin. Rheumatol. 41, 2883–2892 (2022).
Saadoun, D. et al. Th1 and Th17 cytokines drive inflammation in Takayasu arteritis. Arthritis Rheumatol. 67, 1353–1360 (2015).
Singh, K. et al. Novel Th17 lymphocyte populations, Th17.1 and PD1+Th17, are increased in Takayasu arteritis, and both Th17 and Th17.1 sub-populations associate with active disease. J. Inflamm. Res. 15, 1521–1541 (2022).
Wan, Z. et al. Regulatory T cells and T helper 17 cells in viral infection. Scand. J. Immunol. 91, e12873 (2020).
Arnaud, L., Haroche, J., Mathian, A., Gorochov, G. & Amoura, Z. Pathogenesis of Takayasu’s arteritis: a 2011 update. Autoimmun. Rev. 11, 61–67 (2011).
Watanabe, R., Berry, G. J., Liang, D. H., Goronzy, J. J. & Weyand, C. M. Pathogenesis of giant cell arteritis and Takayasu arteritis — similarities and differences. Curr. Rheumatol. Rep. 22, 68 (2020).
Gao, N. et al. Single-cell transcriptome analysis reveals cellular heterogeneity in the aortas of Takayasu arteritis. Arthritis Res. Ther. 27, 55 (2025).
Clement, M. et al. Tertiary lymphoid organs in Takayasu arteritis. Front. Immunol. 7, 158 (2016).
Desbois, A. C. et al. Specific follicular helper T cell signature in Takayasu arteritis. Arthritis Rheumatol. 73, 1233–1243 (2021).
Misra, D. P., Singh, K., Sharma, A. & Agarwal, V. Arterial wall fibrosis in Takayasu arteritis and its potential for therapeutic modulation. Front. Immunol. 14, 1174249 (2023).
Mirault, T., Guillet, H. & Messas, E. Immune response in Takayasu arteritis. Presse Med. 46, e189–e196 (2017).
Seko, Y. et al. Expression of costimulatory molecules (4-1BBL and Fas) and major histocompatibility class I chain-related A (MICA) in aortic tissue with Takayasu’s arteritis. J. Vasc. Res. 41, 84–90 (2004).
Manabe, Y. et al. Gut dysbiosis is associated with aortic aneurysm formation and progression in Takayasu arteritis. Arthritis Res. Ther. 25, 46 (2023).
Desbois, A. C., Ciocan, D., Saadoun, D., Perlemuter, G. & Cacoub, P. Specific microbiome profile in Takayasu’s arteritis and giant cell arteritis. Sci. Rep. 11, 5926 (2021).
Fang, C. et al. Association between premature vascular smooth muscle cells senescence and vascular inflammation in Takayasu’s arteritis. Ann. Rheum. Dis. 83, 1522–1535 (2024).
Stankey, C. T. et al. A disease-associated gene desert directs macrophage inflammation through ETS2. Nature 630, 447–456 (2024).
Abacar, K., Macleod, T., Direskeneli, H. & McGonagle, D. Takayasu arteritis: a geographically distant but immunologically proximal MHC-I-opathy. Lancet Rheumatol. 7, e290–e302 (2025).
Kong, X. & Sawalha, A. H. Takayasu arteritis risk locus in IL6 represses the anti-inflammatory gene GPNMB through chromatin looping and recruiting MEF2-HDAC complex. Ann. Rheum. Dis. 78, 1388–1397 (2019).
Kong, X. et al. Potential role of macrophage phenotypes and CCL2 in the pathogenesis of Takayasu arteritis. Front. Immunol. 12, 646516 (2021).
de Aguiar, M. F. et al. Monocyte subsets and monocyte-related chemokines in Takayasu arteritis. Sci. Rep. 13, 2092 (2023).
Ćorović, A. et al. Somatostatin receptor PET/MR imaging of inflammation in patients with large vessel vasculitis and atherosclerosis. J. Am. Coll. Cardiol. 81, 336–354 (2023).
Misra, D. P., Chaurasia, S. & Misra, R. Increased circulating Th17 cells, serum IL-17A, and IL-23 in Takayasu arteritis. Autoimmune Dis. 2016, 7841718 (2016).
Jiang, W. et al. Critical role of Notch-1 in mechanistic target of rapamycin hyperactivity and vascular inflammation in patients with Takayasu arteritis. Arthritis Rheumatol. 74, 1235–1244 (2022).
Zhang, J. et al. Targeting mechanistic target of rapamycin complex 1 restricts proinflammatory T cell differentiation and ameliorates Takayasu arteritis. Arthritis Rheumatol. 72, 303–315 (2020).
Punithavathy, P. M. et al. Study of pathogenic T-helper cell subsets in Asian Indian patients with Takayasu arteritis. Immunol. Res. 72, 636–643 (2024).
Kabeerdoss, J. et al. Genome-wide DNA methylation profiling in CD8 T-cells and gamma delta T-cells of Asian Indian patients with Takayasu arteritis. Front. Cell Dev. Biol. 10, 843413 (2022).
Ren, Y. L. et al. CD8+ T lymphocyte is a main source of interferon-gamma production in Takayasu’s arteritis. Sci. Rep. 11, 17111 (2021).
Sato, Y. et al. Stem-like CD4+ T cells in perivascular tertiary lymphoid structures sustain autoimmune vasculitis. Sci. Transl. Med. 15, eadh0380 (2023).
Hadjadj, J. et al. mTOR pathway is activated in endothelial cells from patients with Takayasu arteritis and is modulated by serum immunoglobulin G. Rheumatology 57, 1011–1020 (2018).
Mutoh, T. et al. Identification of two major autoantigens negatively regulating endothelial activation in Takayasu arteritis. Nat. Commun. 11, 1253 (2020).
Wen, X. et al. Identification of novel serological autoantibodies in Takayasu arteritis patients using HuProt arrays. Mol. Cell Proteom. 20, 100036 (2021).
Nakaoka, Y. et al. Efficacy and safety of tocilizumab in patients with refractory Takayasu arteritis: results from a randomised, double-blind, placebo-controlled, phase 3 trial in Japan (the TAKT study). Ann. Rheum. Dis. 77, 348–354 (2018).
Misra, D. P. et al. The effectiveness of tocilizumab and its comparison with tumor necrosis factor alpha inhibitors for Takayasu arteritis: a systematic review and meta-analysis. Autoimmun. Rev. 22, 103275 (2023).
Tian, X. et al. Comparative efficacy of secukinumab versus tumor necrosis factor inhibitors for the treatment of Takayasu arteritis. Arthritis Rheumatol. 75, 1415–1423 (2023).
Langford, C. A. et al. A randomized, double-blind trial of abatacept (CTLA-4Ig) for the treatment of Takayasu arteritis. Arthritis Rheumatol. 69, 846–853 (2017).
Yoshifuji, H. et al. Phase 3, multicentre, randomized, double-blind, placebo-controlled, parallel-group study of ustekinumab in patients with Takayasu arteritis. Rheumatol. Adv. Pract. 9, rkaf013 (2025).
Misra, D. P. Ustekinumab merits further exploration in Takayasu arteritis despite a failed randomized controlled trial. Rheumatol. Adv. Pract. 9, rkaf038 (2025).
Mekinian, A. et al. Effectiveness and safety of rituximab in Takayasu arteritis: a multicenter retrospective study. Joint Bone Spine 91, 105658 (2024).
Chu, C. Q. Animal models for large vessel vasculitis — the unmet need. Rheumatol. Immunol. Res. 4, 4–10 (2023).
Han, J. W. et al. Vessel wall-embedded dendritic cells induce T-cell autoreactivity and initiate vascular inflammation. Circ. Res. 102, 546–553 (2008).
Saruhan-Direskeneli, G. et al. Identification of multiple genetic susceptibility loci in Takayasu arteritis. Am. J. Hum. Genet. 93, 298–305 (2013).
Terao, C. et al. Two susceptibility loci to Takayasu arteritis reveal a synergistic role of the IL12B and HLA-B regions in a Japanese population. Am. J. Hum. Genet. 93, 289–297 (2013).
Renauer, P. A. et al. Identification of susceptibility loci in IL6, RPS9/LILRB3, and an intergenic locus on chromosome 21q22 in Takayasu arteritis in a genome-wide association study. Arthritis Rheumatol. 67, 1361–1368 (2015).
Terao, C. et al. Genetic determinants and an epistasis of LILRA3 and HLA-B*52 in Takayasu arteritis. Proc. Natl Acad. Sci. USA 115, 13045–13050 (2018).
Ortiz-Fernandez, L. et al. Identification of susceptibility loci for Takayasu arteritis through a large multi-ancestral genome-wide association study. Am. J. Hum. Genet. 108, 84–99 (2021).
Isohisa, I., Numano, F., Maezawa, H. & Sasazuki, T. HLA-Bw52 in Takayasu disease. Tissue Antigens 12, 246–248 (1978).
Sahin, Z. et al. Takayasu’s arteritis is associated with HLA-B*52, but not with HLA-B*51, in Turkey. Arthritis Res. Ther. 14, R27 (2012).
Renauer, P. & Sawalha, A. H. The genetics of Takayasu arteritis. Presse Med. 46, e179–e187 (2017).
Origuchi, T. et al. The severity of Takayasu arteritis is associated with the HLA-B52 allele in Japanese patients. Tohoku J. Exp. Med. 239, 67–72 (2016).
Kasuya, K., Hashimoto, Y. & Numano, F. Left ventricular dysfunction and HLA Bw52 antigen in Takayasu arteritis. Heart Vessel. Suppl. 7, 116–119 (1992).
Carmona, F. D. et al. Analysis of the common genetic component of large-vessel vasculitides through a meta-immunochip strategy. Sci. Rep. 7, 43953 (2017).
Terao, C. et al. Ustekinumab as a therapeutic option for Takayasu arteritis: from genetic findings to clinical application. Scand. J. Rheumatol. 45, 80–82 (2016).
Ortiz-Fernandez, L. et al. Identification of new risk loci shared across systemic vasculitides points towards potential target genes for drug repurposing. Ann. Rheum. Dis. 82, 837–847 (2023).
Lupi-Herrera, E. et al. Takayasu’s arteritis. Clinical study of 107 cases. Am. Heart J. 93, 94–103 (1977).
Quinn, K. A. et al. Patterns of clinical presentation in Takayasu’s arteritis. Semin. Arthritis Rheum. 50, 576–581 (2020).
Danda, D. et al. Clinical course of 602 patients with Takayasu’s arteritis: comparison between childhood-onset versus adult onset disease. Rheumatology 60, 2246–2255 (2021).
Gong, J.-N. et al. Analysis of clinical features between active and inactive patients of Takayasu’s arteritis with pulmonary arteries involvement. Int. J. Cardiol. 381, 88–93 (2023).
Torere, B. E. et al. Subclavian steal syndrome as the initial presentation of Takayasu’s vasculitis in a young Caucasian female. Cureus 15, e37940 (2023).
Comarmond, C. et al. Long-term outcomes and prognostic factors of complications in Takayasu arteritis: a multicenter study of 318 patients. Circulation 136, 1114–1122 (2017).
Yang, L. et al. Clinical manifestations and longterm outcome for patients with Takayasu arteritis in China. J. Rheumatol. 41, 2439–2446 (2014).
Liao, H. et al. Predictors for pulmonary artery involvement in Takayasu arteritis and its cluster analysis. Arthritis Res. Ther. 25, 9 (2023).
Guha Sarkar, P., Bansal, A., Tyagi, S. & Gupta, M. D. Predictors of left ventricular dysfunction in patients with Takayasu’s arteritis: a single centre experience. Clin. Exp. Rheumatol. 40, 714–719 (2022).
Zhou, J. et al. Age, sex and angiographic type-related phenotypic differences in inpatients with Takayasu arteritis: a 13-year retrospective study at a national referral center in China. Front. Cardiovasc. Med. 10, 1099144 (2023).
Peter, J. et al. Ocular manifestations of Takayasu arteritis: a cross-sectional study. Retina 31, 1170–1178 (2011).
Bayardo-Gutiérrez, B. et al. Amaurosis as an initial presentation of Takayasu arteritis in children. Rheumatol. Int. 43, 575–587 (2023).
Ungprasert, P., Wijarnpreecha, K., Cheungpasitporn, W., Thongprayoon, C. & Kroner, P. T. Inpatient prevalence, burden and comorbidity of Takayasu’s arteritis: nationwide inpatient sample 2013–2014. Semin. Arthritis Rheum. 49, 136–139 (2019).
Kim, H. & Barra, L. Ischemic complications in Takayasu’s arteritis: a meta-analysis. Semin. Arthritis Rheum. 47, 900–906 (2018).
Duarte, M. M., Geraldes, R., Sousa, R., Alarcão, J. & Costa, J. Stroke and transient ischemic attack in Takayasu’s arteritis: a systematic review and meta-analysis. J. Stroke Cerebrovasc. Dis. 25, 781–791 (2016).
Clifford, A. H. Cardiovascular disease in large vessel vasculitis: risks, controversies, and management strategies. Rheum. Dis. Clin. North Am. 49, 81–96 (2023).
Xu, Y. et al. Clinical characteristics and risk factors of coronary artery lesions in Chinese pediatric Takayasu arteritis patients: a retrospective study. Pediatr. Rheumatol. Online J. 21, 42 (2023).
Dzhus, M. & Mostbauer, H. Coronary artery lesions in Takayasu arteritis. Reumatologia 61, 460–472 (2023).
Ren, X. et al. Assessment of coronary involvement with MDCT and long-term outcomes in patients with Takayasu’s arteritis. Acad. Radiol. 31, 4329–4339 (2024).
Espinoza, J. L., Ai, S. & Matsumura, I. New insights on the pathogenesis of Takayasu arteritis: revisiting the microbial theory. Pathogens 7, 73 (2018).
Perniciaro, C. V., Winkelmann, R. K. & Hunder, G. G. Cutaneous manifestations of Takayasu’s arteritis. A clinicopathologic correlation. J. Am. Acad. Dermatol. 17, 998–1005 (1987).
Francès, C. et al. Cutaneous manifestations of Takayasu arteritis. A retrospective study of 80 cases. Dermatologica 181, 266–272 (1990).
Pascual-López, M. et al. Takayasu’s disease with cutaneous involvement. Dermatology 208, 10–15 (2004).
Misra, D. P. et al. Presentation and clinical course of pediatric-onset versus adult-onset Takayasu arteritis — a systematic review and meta-analysis. Clin. Rheumatol. 41, 3601–3613 (2022).
Miller-Barmak, A. et al. Infantile Takayasu: clinical features and long-term outcome. Rheumatology 62, 3126–3132 (2023).
Abacar, K. et al. Frequency and the effects of spondyloarthritis-spectrum disorders on the clinical course and management of Takayasu arteritis: an observational retrospective study. Clin. Rheumatol. 43, 1571–1578 (2024).
Keser, G. & Aksu, K. Diagnosis and differential diagnosis of large-vessel vasculitides. Rheumatol. Int. 39, 169–185 (2019).
Berti, A. et al. Beyond giant cell arteritis and Takayasu’s arteritis: secondary large vessel vasculitis and vasculitis mimickers. Curr. Rheumatol. Rep. 22, 88 (2020).
Alessi, H. D. et al. Longitudinal characterization of vascular inflammation and disease activity in Takayasu arteritis and giant cell arteritis: a single-center prospective study. Arthritis Care Res. 75, 1362–1370 (2023).
Zarka, F., Veillette, C. & Makhzoum, J.-P. A review of primary vasculitis mimickers based on the Chapel Hill consensus classification. Int. J. Rheumatol. 2020, 8392542 (2020).
Furuta, S., Cousins, C., Chaudhry, A. & Jayne, D. Clinical features and radiological findings in large vessel vasculitis: are Takayasu arteritis and giant cell arteritis 2 different diseases or a single entity? J. Rheumatol. 42, 300–308 (2015).
Oyama-Manabe, N., Manabe, O., Tsuneta, S. & Ishizaka, N. RadioGraphics update: IgG4-related cardiovascular disease from the aorta to the coronary arteries. Radiographics 40, E29–E32 (2020).
Peng, L. et al. IgG4-related aortitis/periaortitis and periarteritis: a distinct spectrum of IgG4-related disease. Arthritis Res. Ther. 22, 103 (2020).
Fathala, A. Multimodalities imaging of immunoglobulin 4-related cardiovascular disorders. Curr. Cardiol. Rev. 15, 224–229 (2019).
Alie, N., Eldib, M., Fayad, Z. A. & Mani, V. Inflammation, atherosclerosis, and coronary artery disease: PET/CT for the evaluation of atherosclerosis and inflammation. Clin. Med. Insights Cardiol. 8, 13–21 (2014).
Khasnis, A. & Molloy, E. Mimics of primary systemic vasculitides. Int. J. Clin. Rheumatol. 4, 597–609 (2009).
Restrepo, C. S., Ocazionez, D., Suri, R. & Vargas, D. Aortitis: imaging spectrum of the infectious and inflammatory conditions of the aorta. Radiographics 31, 435–451 (2011).
Grayson, P. C. et al. 2022 American College of Rheumatology/EULAR classification criteria for Takayasu arteritis. Ann. Rheum. Dis. 81, 1654–1660 (2022).
Arend, W. P. et al. The American College of rheumatology 1990 criteria for the classification of Takayasu arteritis. Arthritis Rheum. 33, 1129–1134 (1990).
Grayson, P. C. et al. Association of vascular physical examination findings and arteriographic lesions in large vessel vasculitis. J. Rheumatol. 39, 303–309 (2012).
Grayson, P. C. et al. 18F-Fluorodeoxyglucose-positron emission tomography as an imaging biomarker in a prospective, longitudinal cohort of patients with large vessel vasculitis. Arthritis Rheumatol. 70, 439–449 (2018).
Nielsen, C. C., Amrhein, C. G., Osornio-Vargas, A. R. & DoMi, N. O. T. Mapping outdoor habitat and abnormally small newborns to develop an ambient health hazard index. Int. J. Health Geogr. 16, 43 (2017).
Tarkin, J. M. & Gopalan, D. Multimodality imaging of large-vessel vasculitis. Heart 109, 232–240 (2023).
Slart, R. et al. FDG-PET/CT(A) imaging in large vessel vasculitis and polymyalgia rheumatica: joint procedural recommendation of the EANM, SNMMI, and the PET interest group (PIG), and endorsed by the ASNC. Eur. J. Nucl. Med. Mol. Imaging 45, 1250–1269 (2018).
Dejaco, C. et al. EULAR recommendations for the use of imaging in large vessel vasculitis in clinical practice: 2023 update. Ann. Rheum. Dis. 83, 741–751 (2024).
Quinn, K. A. et al. Use of 18F-fluorodeoxyglucose positron emission tomography to standardize clinical trial recruitment in Takayasu’s arteritis. Rheumatology 61, 4047–4055 (2022).
Quinn, K. A. et al. Comparison of magnetic resonance angiography and 18F-fluorodeoxyglucose positron emission tomography in large-vessel vasculitis. Ann. Rheum. Dis. 77, 1165–1171 (2018).
Peverelli, M. & Tarkin, J. M. Emerging PET radiotracers for vascular imaging. Rheumatology 64, i33–i37 (2025).
Zoghi, S. et al. Role of total body PET/CT in inflammatory disorders. Semin. Nucl. Med. 55, 41–51 (2025).
Ueno, A., Awane, Y., Wakabayashi, A. & Shimizu, K. Successfully operated obliterative brachiocephalic arteritis (Takayasu) associated with the elongated coarctation. Jpn Heart J. 8, 538–544 (1967).
Hata, A., Noda, M., Moriwaki, R. & Numano, F. Angiographic findings of Takayasu arteritis: new classification. Int. J. Cardiol. 54, S155–S163 (1996).
Goel, R. et al. Derivation of an angiographically based classification system in Takayasu’s arteritis: an observational study from India and North America. Rheumatology 59, 1118–1127 (2020).
Moriwaki, R., Noda, M., Yajima, M., Sharma, B. K. & Numano, F. Clinical manifestations of Takayasu arteritis in India and Japan — new classification of angiographic findings. Angiology 48, 369–379 (1997).
Kerr, G. S. et al. Takayasu arteritis. Ann. Intern. Med. 120, 919–929 (1994).
Maz, M. et al. 2021 American College of Rheumatology/Vasculitis Foundation guideline for the management of giant cell arteritis and Takayasu arteritis. Arthritis Rheumatol. 73, 1349–1365 (2021).
Quinn, K. A. et al. Association of 18F-fluorodeoxyglucose-positron emission tomography activity with angiographic progression of disease in large vessel vasculitis. Arthritis Rheumatol. 75, 98–107 (2023).
Spira, D., Xenitidis, T., Henes, J. & Horger, M. MRI parametric monitoring of biological therapies in primary large vessel vasculitides: a pilot study. Br. J. Radiol. 89, 20150892 (2016).
Besutti, G. et al. Vessel inflammation and morphological changes in patients with large vessel vasculitis: a retrospective study. RMD Open 8, e001977 (2022).
Pugh, D. et al. 18F-FDG-PET/MR imaging to monitor disease activity in large vessel vasculitis. Nat. Commun. 15, 7314 (2024).
Marvisi, C. et al. Development of the Takayasu Arteritis Integrated Disease Activity Index. Arthritis Care Res. 76, 531–540 (2024).
Salvarani, C., Cantini, F., Boiardi, L. & Hunder, G. G. Laboratory investigations useful in giant cell arteritis and Takayasu’s arteritis. Clin. Exp. Rheumatol. 21, S23–S28 (2003).
Mason, J. C. Takayasu arteritis — advances in diagnosis and management. Nat. Rev. Rheumatol. 6, 406–415 (2010).
Hoffman, G. S. & Ahmed, A. E. Surrogate markers of disease activity in patients with Takayasu arteritis. A preliminary report from the International Network for the Study of the Systemic Vasculitides (INSSYS). Int. J. Cardiol. 66, S191–S194 (1998).
Maksimowicz-McKinnon, K., Clark, T. M. & Hoffman, G. S. Limitations of therapy and a guarded prognosis in an American cohort of Takayasu arteritis patients. Arthritis Rheum. 56, 1000–1009 (2007).
Hoffman, G. S. Takayasu arteritis: lessons from the American National Institutes of Health experience. Int. J. Cardiol. 54(Suppl), S99–S102 (1996).
Ma, J. et al. Circulation levels of acute phase proteins in patients with Takayasu arteritis. J. Vasc. Surg. 51, 700–706 (2010).
Nair, A. M. et al. Serum amyloid A as a marker of disease activity and treatment response in Takayasu arteritis. Rheumatol. Int. 37, 1643–1649 (2017).
Misra, D. P. et al. Outcome measures and biomarkers for disease assessment in Takayasu arteritis. Diagnostics 12, 2565 (2022).
Dhawan, V., Mahajan, N. & Jain, S. Role of C-C chemokines in Takayasu’s arteritis disease. Int. J. Cardiol. 112, 105–111 (2006).
Dong, H. et al. Elevated chemokines concentration is associated with disease activity in Takayasu arteritis. Cytokine 143, 155515 (2021).
Matsuyama, A. et al. Matrix metalloproteinases as novel disease markers in Takayasu arteritis. Circulation 108, 1469–1473 (2003).
Sun, Y. et al. MMP-9 and IL-6 are potential biomarkers for disease activity in Takayasu’s arteritis. Int. J. Cardiol. 156, 236–238 (2012).
Pathadan, A. P. et al. The study of novel inflammatory markers in Takayasu arteritis and its correlation with disease activity. Indian Heart J. 73, 640–643 (2021).
Li, J. et al. Association between acute phase reactants, interleukin-6, tumor necrosis factor-α, and disease activity in Takayasu’s arteritis patients. Arthritis Res. Ther. 22, 285 (2020).
Wang, H. et al. Circulating B lymphocytes producing autoantibodies to endothelial cells play a role in the pathogenesis of Takayasu arteritis. J. Vasc. Surg. 53, 174–180 (2011).
Chen, S. et al. Serum C1q concentration is associated with disease activity in Chinese Takayasu arteritis patients: a case-control study. Health Sci. Rep. 4, e252 (2021).
Umezawa, N. et al. Leucine-rich alpha-2 glycoprotein as a potential biomarker for large vessel vasculitides. Front. Med. 10, 1153883 (2023).
Chen, R. et al. Serum complement 3 is a potential biomarker for assessing disease activity in Takayasu arteritis. Arthritis Res. Ther. 23, 63 (2021).
Souza Pedreira, A. L., Leite de Castro Flores, M. & Barreto Santiago, M. Interleukin 6 levels and disease activity in Takayasu arteritis: a systematic review with meta-analysis. J. Clin. Rheumatol. 30, 58–64 (2024).
Pulsatelli, L. et al. Interleukin-6 and soluble interleukin-6 receptor are elevated in large-vessel vasculitis: a cross-sectional and longitudinal study. Clin. Exp. Rheumatol. 35 (Suppl 103), 102–110 (2017).
Garlanda, C., Bottazzi, B., Bastone, A. & Mantovani, A. Pentraxins at the crossroads between innate immunity, inflammation, matrix deposition, and female fertility. Annu. Rev. Immunol. 23, 337–366 (2005).
Ishihara, T. et al. Sensitive assessment of activity of Takayasu’s arteritis by pentraxin3, a new biomarker. J. Am. Coll. Cardiol. 57, 1712–1713 (2011).
Dagna, L. et al. Pentraxin-3 as a marker of disease activity in Takayasu arteritis. Ann. Intern. Med. 155, 425–433 (2011).
Ishihara, T. et al. Diagnosis and assessment of Takayasu arteritis by multiple biomarkers. Circ. J. 77, 477–483 (2013).
Ramirez, G. A. et al. PTX3 intercepts vascular inflammation in systemic immune-mediated diseases. Front. Immunol. 10, 1135 (2019).
Chen, Z. et al. Study on the association of serum pentraxin-3 and lysosomal-associated membrane protein-2 levels with disease activity in Chinese Takayasu’s arteritis patients. Clin. Exp. Rheumatol. 37, 109–115 (2019).
Alibaz-Oner, F. et al. Plasma pentraxin-3 levels in patients with Takayasu’s arteritis during routine follow-up. Clin. Exp. Rheumatol. 34, S73–S76 (2016).
Tombetti, E. et al. Systemic pentraxin-3 levels reflect vascular enhancement and progression in Takayasu arteritis. Arthritis Res. Ther. 16, 479 (2014).
Pulsatelli, L. et al. Imbalance between angiogenic and anti-angiogenic factors in sera from patients with large-vessel vasculitis. Clin. Exp. Rheumatol. 38, 23–30 (2020).
Kang, F. et al. Performance of the PET vascular activity score (PETVAS) for qualitative and quantitative assessment of inflammatory activity in Takayasu’s arteritis patients. Eur. J. Nucl. Med. Mol. Imaging 47, 3107–3117 (2020).
Wen, X. et al. Pentraxin 3 is more accurate than C-reactive protein for Takayasu arteritis activity assessment: a systematic review and meta-analysis. PLoS ONE 16, e0245612 (2021).
Stojanovic, M. et al. Enhanced liver fibrosis score as a biomarker for vascular damage assessment in patients with Takayasu arteritis — a pilot study. J. Cardiovasc. Dev. Dis. 8, 187 (2021).
Kadoba, K. et al. A susceptibility locus in the IL12B but not LILRA3 region is associated with vascular damage in Takayasu arteritis. Sci. Rep. 11, 13667 (2021).
Keser, G., Direskeneli, H. & Aksu, K. Management of Takayasu arteritis: a systematic review. Rheumatology 53, 793–801 (2014).
Hellmich, B. et al. 2018 update of the EULAR recommendations for the management of large vessel vasculitis. Ann. Rheum. Dis. 79, 19–30 (2020).
de Souza, A. W. S. et al. Pan American League of Associations for Rheumatology guidelines for the treatment of Takayasu arteritis. J. Clin. Rheumatol. 29, 316–325 (2023).
Ughi, N. et al. The Italian Society of Rheumatology clinical practice guidelines for the management of large vessel vasculitis. Reumatismo https://doi.org/10.4081/reumatismo.2021.1470 (2022).
Tian, X. & Zeng, X. Chinese guideline for the diagnosis and treatment of Takayasu’s arteritis (2023). Rheumatol. Immunol. Res. 5, 5–26 (2024).
Alibaz-Oner, F. et al. Turkish Society for Rheumatology (Turkish Takayasu Arteritis Study Group) recommendations for the diagnosis, follow-up and the treatment of Takayasu’s arteritis. Clin. Exp. Rheumatol. https://doi.org/10.55563/clinexprheumatol/lptjx1 (2025).
Isobe, M. et al. JCS 2017 guideline on management of vasculitis syndrome — digest version. Circ. J. 84, 299–359 (2020).
Saadoun, D. et al. French recommendations for the management of Takayasu’s arteritis. Orphanet J. Rare Dis. 16, 311 (2021).
Goel, R. et al. Long-term outcome of 251 patients with Takayasu arteritis on combination immunosuppressant therapy: single centre experience from a large tertiary care teaching hospital in Southern India. Semin. Arthritis Rheum. 47, 718–726 (2018).
Padiyar, S. et al. Clinical and angiographic outcomes of mycophenolate versus methotrexate in south Asian patients of Takayasu arteritis: results from an open-label, outcome-assessor blinded randomized controlled trial. Mod. Rheumatol. 34, 175–181 (2023).
Narvaez, J. et al. Efficacy and safety of leflunomide in the management of large vessel vasculitis: a systematic review and metaanalysis of cohort studies. Semin. Arthritis Rheum. 59, 152166 (2023).
Dai, D., Wang, Y., Jin, H., Mao, Y. & Sun, H. The efficacy of mycophenolate mofetil in treating Takayasu arteritis: a systematic review and meta-analysis. Rheumatol. Int. 37, 1083–1088 (2017).
Kaymaz-Tahra, S. et al. Comparison of methotrexate and azathioprine as the first-line steroid-sparing immunosuppressive agents in patients with Takayasu’s arteritis. Semin. Arthritis Rheum. 66, 152446 (2024).
Sun, X. et al. Mycophenolate mofetil plus methotrexate versus cyclophosphamide with sequential azathioprine for treatment of Takayasu arteritis. Ann. Rheum. Dis. 84, 1733–1742 (2025).
Ying, S. et al. Efficacy and safety of leflunomide versus cyclophosphamide for initial-onset Takayasu arteritis: a prospective cohort study. Therapeut. Adv. Musculoskelet. Dis. 12, 1759720X20930114 (2020).
Agueda, A. F. et al. Management of Takayasu arteritis: a systematic literature review informing the 2018 update of the EULAR recommendation for the management of large vessel vasculitis. RMD Open 5, e001020 (2019).
Gudbrandsson, B., Molberg, O. & Palm, O. TNF inhibitors appear to inhibit disease progression and improve outcome in Takayasu arteritis; an observational, population-based time trend study. Arthritis Res. Ther. 19, 99 (2017).
Mekinian, A. et al. Efficacy and safety of TNF-α antagonists and tocilizumab in Takayasu arteritis: multicentre retrospective study of 209 patients. Rheumatology 61, 1376–1384 (2022).
Alibaz-Oner, F. et al. Biologic treatments in Takayasu’s arteritis: a comparative study of tumor necrosis factor inhibitors and tocilizumab. Semin. Arthritis Rheum. 51, 1224–1229 (2021).
Wang, J. et al. Treatment efficacy and safety of adalimumab versus tocilizumab in patients with active and severe Takayasu arteritis: an open-label study. Rheumatology 63, 1359–1367 (2024).
Kong, X. et al. Treatment efficacy and safety of tofacitinib versus methotrexate in Takayasu arteritis: a prospective observational study. Ann. Rheum. Dis. 81, 117–123 (2022).
Wang, J. et al. Efficacy and safety of tofacitinib versus leflunomide with glucocorticoids treatment in Takayasu arteritis: a prospective study. Semin. Arthritis Rheum. 55, 152018 (2022).
Zhou, Z. et al. Baricitinib for refractory Takayasu arteritis: a prospective cohort study in a tertiary referral centre. RMD Open 10, e003985 (2024).
Kaymaz-Tahra, S., Alibaz-Oner, F. & Direskeneli, H. Assessment of damage in Takayasu’s arteritis. Semin. Arthritis Rheum. 50, 586–591 (2020).
Shirai, T., Sato, H., Fujii, H., Ishii, T. & Harigae, H. The feasible maintenance dose of corticosteroid in Takayasu arteritis in the era of biologic therapy. Scand. J. Rheumatol. 50, 462–468 (2021).
Misra, D. P. et al. Management of Takayasu arteritis. Best Pract. Res. Clin. Rheumatol. 37, 101826 (2023).
Perera, A. H. et al. Optimizing the outcome of vascular intervention for Takayasu arteritis. Br. J. Surg. 101, 43–50 (2014).
Joseph, G. et al. Outcomes of percutaneous intervention in patients with Takayasu arteritis. J. Am. Coll. Cardiol. 81, 49–64 (2023).
Park, H. S. et al. Long term results of endovascular treatment in renal arterial stenosis from Takayasu arteritis: angioplasty versus stent placement. Eur. J. Radiol. 82, 1913–1918 (2013).
Peng, M. et al. Selective stent placement versus balloon angioplasty for renovascular hypertension caused by Takayasu arteritis: two-year results. Int. J. Cardiol. 205, 117–123 (2016).
Wang, H. et al. Comparing the effects of different management strategies on long-term outcomes for significant coronary stenosis in patients with Takayasu arteritis. Int. J. Cardiol. 306, 1–7 (2020).
Bass, A. R. et al. 2022 American College of Rheumatology guideline for vaccinations in patients with rheumatic and musculoskeletal diseases. Arthritis Rheumatol. 75, 333–348 (2023).
Drosos, G. C. et al. EULAR recommendations for cardiovascular risk management in rheumatic and musculoskeletal diseases, including systemic lupus erythematosus and antiphospholipid syndrome. Ann. Rheum. Dis. 81, 768–779 (2022).
Provenzale, J. M., Barboriak, D. P., Allen, N. B. & Ortel, T. L. Antiphospholipid antibodies: findings at arteriography. AJNR Am. J. Neuroradiol. 19, 611–616 (1998).
Brun, A.-L. et al. Erdheim–Chester disease: CT findings of thoracic involvement. Eur. Radiol. 20, 2579–2587 (2010).
Berti, A., Ferrarini, M., Ferrero, E. & Dagna, L. Cardiovascular manifestations of Erdheim–Chester disease. Clin. Exp. Rheumatol. 33, S-155–163 (2015).
Haroche, J. et al. Images in cardiovascular medicine. Cardiac involvement in Erdheim–Chester disease: magnetic resonance and computed tomographic scan imaging in a monocentric series of 37 patients. Circulation 119, e597–e598 (2009).
Pappaccogli, M. et al. The European/International Fibromuscular Dysplasia Registry and Initiative (FEIRI) — clinical phenotypes and their predictors based on a cohort of 1000 patients. Cardiovasc. Res. 117, 950–959 (2021).
Shenouda, M., Riga, C., Naji, Y. & Renton, S. Segmental arterial mediolysis: a systematic review of 85 cases. Ann. Vasc. Surg. 28, 269–277 (2014).
Baker-LePain, J. C., Stone, D. H., Mattis, A. N., Nakamura, M. C. & Fye, K. H. Clinical diagnosis of segmental arterial mediolysis: differentiation from vasculitis and other mimics. Arthritis Care Res. 62, 1655–1660 (2010).
Zilocchi, M. et al. Vascular Ehlers–Danlos syndrome: imaging findings. AJR Am. J. Roentgenol. 189, 712–719 (2007).
Oderich, G. S. et al. Vascular abnormalities in patients with neurofibromatosis syndrome type I: clinical spectrum, management, and results. J. Vasc. Surg. 46, 475–484 (2007).
Hoogendoorn, E. H., Oyen, W. J. G., van Dijk, A. P. J. & van der Meer, J. W. M. Pneumococcal aortitis, report of a case with emphasis on the contribution to diagnosis of positron emission tomography using fluorinated deoxyglucose. Clin. Microbiol. Infect. 9, 73–76 (2003).
Lecler, A. et al. TIPIC syndrome: beyond the myth of carotidynia, a new distinct unclassified entity. AJNR Am. J. Neuroradiol. 38, 1391–1398 (2017).
Margolis, J., Bilfinger, T. & Labropoulos, N. A right-sided aortic arch and aberrant left subclavian artery with proximal segment hypoplasia. Interact. Cardiovasc. Thorac. Surg. 14, 370–371 (2012).
Mahmood, S. S. & Nohria, A. Cardiovascular complications of cranial and neck radiation. Curr. Treat. Options Cardiovasc. Med. 18, 45 (2016).
Corbera-Bellalta, M. et al. Blocking GM-CSF receptor α with mavrilimumab reduces infiltrating cells, pro-inflammatory markers and neoangiogenesis in ex vivo cultured arteries from patients with giant cell arteritis. Ann. Rheum. Dis. 81, 524–536 (2022).
Cid, M. C. et al. Efficacy and safety of mavrilimumab in giant cell arteritis: a phase 2, randomised, double-blind, placebo-controlled trial. Ann. Rheum. Dis. 81, 653–661 (2022).
Gribbons, K. B. et al. Patterns of arterial disease in Takayasu arteritis and giant cell arteritis. Arthritis Care Res. 72, 1615–1624 (2020).
Acknowledgements
The authors dedicate this work to the memory of Dr. Debashish Danda, whose pioneering contributions profoundly shaped our understanding of this complex disease and advanced patient care. A distinguished expert, esteemed colleague, dedicated mentor, passionate educator and cherished friend, his legacy continues to guide and inspire both the vasculitis field and the global rheumatology community. K.A.Q. and P.C.G. are funded by the Intramural Research Program at the National Institute of Arthritis and Musculoskeletal and Skin Diseases at the US National Institutes of Health. The findings and conclusions presented in this paper are those of the authors and do not necessarily reflect the views of the US National Institutes of Health or the US Department of Health and Human Services.
Author information
Authors and Affiliations
Contributions
The authors contributed equally to all aspects of the article.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Reviews Rheumatology thanks Maria Cid, Xinping Tian and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Sawalha, A.H., Misra, D.P., Goel, R. et al. Advances in the pathophysiology, diagnosis and treatment of Takayasu arteritis. Nat Rev Rheumatol (2025). https://doi.org/10.1038/s41584-025-01309-7
Accepted:
Published:
Version of record:
DOI: https://doi.org/10.1038/s41584-025-01309-7