+
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

A genomic view of Earth’s biomes

Abstract

Microorganisms are essential to all life on Earth through critical roles in key biological processes and diverse interactions with other organisms that shape ecosystems, drive biogeochemical cycles and influence both human health and environmental health. High-throughput sequencing from environmental samples has revolutionized the understanding of microbial diversity and functions. With vast amounts of genomes now available across Earth’s biomes, these data provide a blueprint of microbial life that can be harnessed for a more holistic understanding of microbiome structure and function across the various ecosystems on Earth. Here we review the application of genome-centric approaches, including recent advances in single-cell sequencing and functional profiling, to survey microbial and viral diversity. We highlight some of the most impactful evolutionary and functional discoveries, explore the spatial diversity and temporal dynamics of microorganisms across diverse environments, and discuss genome-enabled insights into host-associated microorganisms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: A historical timeline of gene-centric and genome-centric microbial investigations from the first tree of life enabled by Sanger sequencing of ribosomal RNA genes to genome-resolved phylogenomic analyses.
Fig. 2: Primary approaches to study the genomic make-up of microbial systems.
Fig. 3: The number of isolates, metagenome-assembled and single-cell genomes per bacterial and archaeal phyla in the Genome Taxonomy Database (release 226).
Fig. 4: Distribution and scale (Mb) of metagenomic data sets in the NCBI Sequence Read Archive database with geographic information.
Fig. 5: Different levels of genome reduction among Arsenophonus symbionts of insects.

Similar content being viewed by others

References

  1. Giovannoni, S., Britschgi, T., Moyer, C. & Field, K. Genetic diversity in Sargasso sea bacterioplankton. Nature 345, 60–63 (1990).

    Article  PubMed  Google Scholar 

  2. Ward, D. M., Weller, R. & Bateson, M. M. 16S rRNA sequences reveal numerous uncultured microorganisms in a natural community. Nature 345, 63–65 (1990).

    Article  PubMed  Google Scholar 

  3. Stein, J. L., Marsh, T. L., Wu, K. Y., Shizuya, H. & DeLong, E. F. Characterization of uncultivated prokaryotes: isolation and analysis of a 40-kilobase-pair genome fragment from a planktonic marine archaeon. J. Bacteriol. 178, 591–599 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  4. Béjà, O. et al. Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289, 1902–1906 (2000).

    Article  PubMed  Google Scholar 

  5. Handelsman, J., Rondon, M. R., Brady, S. F., Clardy, J. & Goodman, R. M. Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chem. Biol. 5, R245–R249 (1998).

    Article  PubMed  Google Scholar 

  6. Tyson, G. W. et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature 428, 37–43 (2004).

    Article  PubMed  Google Scholar 

  7. Venter, J. C. et al. Environmental genome shotgun sequencing of the Sargasso sea. Science 304, 66–74 (2004).

    Article  PubMed  Google Scholar 

  8. Albertsen, M. et al. Genome sequences of rare, uncultured bacteria obtained by differential coverage binning of multiple metagenomes. Nat. Biotechnol. 31, 533–538 (2013).

    Article  PubMed  Google Scholar 

  9. Nayfach, S. et al. A genomic catalog of Earth’s microbiomes. Nat. Biotechnol. 39, 499–509 (2021).

    Article  PubMed  Google Scholar 

  10. Pinto, Y. & Bhatt, A. S. Sequencing-based analysis of microbiomes. Nat. Rev. Genet. 25, 829–845 (2024).

    Article  PubMed  Google Scholar 

  11. Sunagawa, S. et al. Ocean plankton. Structure and function of the global ocean microbiome. Science 348, 1261359 (2015).

    Article  PubMed  Google Scholar 

  12. Saary, P., Mitchell, A. L. & Finn, R. D. Estimating the quality of eukaryotic genomes recovered from metagenomic analysis with EukCC. Genome Biol. 21, 244 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Lind, A. L. & Pollard, K. S. Accurate and sensitive detection of microbial eukaryotes from whole metagenome shotgun sequencing. Microbiome 9, 58 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Call, L., Nayfach, S. & Kyrpides, N. C. Illuminating the virosphere through global metagenomics. Annu. Rev. Biomed. Data Sci. 4, 369–391 (2021).

    Article  PubMed  Google Scholar 

  15. Woyke, T., Doud, D. F. R. & Schulz, F. The trajectory of microbial single-cell sequencing. Nat. Methods 14, 1045–1054 (2017).

    Article  PubMed  Google Scholar 

  16. Neri, U. et al. Expansion of the global RNA virome reveals diverse clades of bacteriophages. Cell 185, 4023–4037.e18 (2022).

    Article  PubMed  Google Scholar 

  17. Rinke, C. et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 499, 431–437 (2013).

    Article  PubMed  Google Scholar 

  18. Brown, C. T. et al. Unusual biology across a group comprising more than 15% of domain bacteria. Nature 523, 208–211 (2015).

    Article  PubMed  Google Scholar 

  19. Hug, L. A. et al. A new view of the tree of life. Nat. Microbiol. 1, 16048 (2016).

    Article  Google Scholar 

  20. Parks, D. H. et al. Recovery of nearly 8,000 metagenome-assembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542 (2017).

    Article  PubMed  Google Scholar 

  21. Baker, B. J. et al. Diversity, ecology and evolution of Archaea. Nat. Microbiol. 5, 887–900 (2020).

    Article  PubMed  Google Scholar 

  22. Tahon, G., Geesink, P. & Ettema, T. J. G. Expanding archaeal diversity and phylogeny: past, present, and future. Annu. Rev. Microbiol. 75, 359–381 (2021).

    Article  PubMed  Google Scholar 

  23. Delmont, T. O. et al. Heterotrophic bacterial diazotrophs are more abundant than their cyanobacterial counterparts in metagenomes covering most of the sunlit ocean. ISME J. 16, 927–936 (2022).

    Article  PubMed  Google Scholar 

  24. Collingro, A., Köstlbacher, S. & Horn, M. Chlamydiae in the environment. Trends Microbiol. 28, 877–888 (2020).

    Article  PubMed  Google Scholar 

  25. Schön, M. E., Martijn, J., Vosseberg, J., Köstlbacher, S. & Ettema, T. J. G. The evolutionary origin of host association in the Rickettsiales. Nat. Microbiol. 7, 1189–1199 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Greening, C. & Grinter, R. Microbial oxidation of atmospheric trace gases. Nat. Rev. Microbiol. 20, 513–528 (2022).

    Article  PubMed  Google Scholar 

  27. Zheng, D., Liwinski, T. & Elinav, E. Interaction between microbiota and immunity in health and disease. Cell Res. 30, 492–506 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19, 55–71 (2021).

    Article  PubMed  Google Scholar 

  29. Loman, N. J. & Pallen, M. J. Twenty years of bacterial genome sequencing. Nat. Rev. Microbiol. 13, 787–794 (2015).

    Article  PubMed  Google Scholar 

  30. Steen, A. D. et al. High proportions of bacteria and archaea across most biomes remain uncultured. ISME J. 13, 3126–3130 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  31. Wu, D., Seshadri, R., Kyrpides, N. C. & Ivanova, N. N. A metagenomic perspective on the microbial prokaryotic genome census. Sci. Adv. 11, eadq2166 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Dharamshi, J. E. et al. Gene gain facilitated endosymbiotic evolution of Chlamydiae. Nat. Microbiol. 8, 40–54 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Parks, D. H. et al. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res. 50, D785–D794 (2022).

    Article  PubMed  Google Scholar 

  34. Chen, I.-M. A. et al. The IMG/M data management and analysis system v.7: content updates and new features. Nucleic Acids Res. 51, D723–D732 (2023).

    Article  PubMed  Google Scholar 

  35. Richardson, L. et al. MGnify: the microbiome sequence data analysis resource in 2023. Nucleic Acids Res. 51, D753–D759 (2023).

    Article  PubMed  Google Scholar 

  36. Sayers, E. W. et al. Database resources of the national center for biotechnology information. Nucleic Acids Res. 50, D20–D26 (2022).

    Article  PubMed  Google Scholar 

  37. Eloe-Fadrosh, E. A., Ivanova, N. N., Woyke, T. & Kyrpides, N. C. Metagenomics uncovers gaps in amplicon-based detection of microbial diversity. Nat. Microbiol. 1, 15032 (2016).

    Article  PubMed  Google Scholar 

  38. New, F. N. & Brito, I. L. What is metagenomics teaching us, and what is missed? Annu. Rev. Microbiol. 74, 117–135 (2020).

    Article  PubMed  Google Scholar 

  39. Gruber-Vodicka, H. R., Seah, B. K. B. & Pruesse, E. PhyloFlash: rapid small-subunit rRNA profiling and targeted assembly from metagenomes. mSystems 5, e00920 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mise, K. & Iwasaki, W. Unexpected absence of ribosomal protein genes from metagenome-assembled genomes. ISME Commun. 2, 118 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kim, C., Pongpanich, M. & Porntaveetus, T. Unraveling metagenomics through long-read sequencing: a comprehensive review. J. Transl. Med. 22, 111 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Agustinho, D. P. et al. Unveiling microbial diversity: harnessing long-read sequencing technology. Nat. Methods 21, 954–966 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sevim, V. et al. Shotgun metagenome data of a defined mock community using Oxford Nanopore, PacBio and Illumina technologies. Sci. Data 6, 285 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Singleton, C. M. et al. Connecting structure to function with the recovery of over 1000 high-quality metagenome-assembled genomes from activated sludge using long-read sequencing. Nat. Commun. 12, 2009 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Trigodet, F., Sachdeva, R., Banfield, J. F. & Eren, A. M. Assemblies of long-read metagenomes suffer from diverse errors. Preprint at bioRxiv https://doi.org/10.1101/2025.04.22.649783 (2025).

  46. Sánchez-Romero, M. A. & Casadesús, J. The bacterial epigenome. Nat. Rev. Microbiol. 18, 7–20 (2020).

    Article  PubMed  Google Scholar 

  47. Nielsen, T. K. et al. Detection of nucleotide modifications in bacteria and bacteriophages: strengths and limitations of current technologies and software. Mol. Ecol. 32, 1236–1247 (2023).

    Article  PubMed  Google Scholar 

  48. Beaulaurier, J. et al. Metagenomic binning and association of plasmids with bacterial host genomes using DNA methylation. Nat. Biotechnol. 36, 61–69 (2018).

    Article  PubMed  Google Scholar 

  49. Hiraoka, S. et al. Metaepigenomic analysis reveals the unexplored diversity of DNA methylation in an environmental prokaryotic community. Nat. Commun. 10, 159 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zhang, W., Foo, M., Eren, A. M. & Pan, T. tRNA modification dynamics from individual organisms to metaepitranscriptomics of microbiomes. Mol. Cell 82, 891–906 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Roux, S. et al. Ecology and evolution of viruses infecting uncultivated SUP05 bacteria as revealed by single-cell- and meta-genomics. eLife 3, e03125 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  52. Jarett, J. K. et al. Insights into the dynamics between viruses and their hosts in a hot spring microbial mat. ISME J. 14, 2527–2541 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bowers, R. M. et al. Dissecting the dominant hot spring microbial populations based on community-wide sampling at single-cell genomic resolution. ISME J. 16, 1337–1347 (2022).

    Article  PubMed  Google Scholar 

  54. Marcy, Y. et al. Dissecting biological ‘dark matter’ with single-cell genetic analysis of rare and uncultivated TM7 microbes from the human mouth. Proc. Natl Acad. Sci. USA 104, 11889–11894 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Kashtan, N. et al. Single-cell genomics reveals hundreds of coexisting subpopulations in wild Prochlorococcus. Science 344, 416–420 (2014).

    Article  PubMed  Google Scholar 

  56. Zheng, W. et al. High-throughput, single-microbe genomics with strain resolution, applied to a human gut microbiome. Science 376, eabm1483 (2022).

    Article  PubMed  Google Scholar 

  57. Jarett, J. K. et al. Single-cell genomics of co-sorted Nanoarchaeota suggests novel putative host associations and diversification of proteins involved in symbiosis. Microbiome 6, 161 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  58. Tyml, T., Date, S. V. & Woyke, T. A single-cell genome perspective on studying intracellular associations in unicellular eukaryotes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 374, 20190082 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Schulz, F. et al. Protists as mediators of complex microbial and viral associations. Preprint at bioRxiv https://doi.org/10.1101/2024.12.29.630703 (2024).

  60. Doud, D. F. R. & Woyke, T. Novel approaches in function-driven single-cell genomics. FEMS Microbiol. Rev. 41, 538–548 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Stepanauskas, R. et al. Improved genome recovery and integrated cell-size analyses of individual uncultured microbial cells and viral particles. Nat. Commun. 8, 84 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Doud, D. F. R. et al. Function-driven single-cell genomics uncovers cellulose-degrading bacteria from the rare biosphere. ISME J. 14, 659–675 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Pachiadaki, M. G. et al. Charting the complexity of the marine microbiome through single-cell genomics. Cell 179, 1623–1635.e11 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  64. Džunková, M. et al. Synthase-selected sorting approach identifies a beta-lactone synthase in a nudibranch symbiotic bacterium. Microbiome 11, 130 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Martinez-Garcia, M. et al. Capturing single cell genomes of active polysaccharide degraders: an unexpected contribution of Verrucomicrobia. PLoS ONE 7, e35314 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Bowers, R. M. et al. scMicrobe PTA: near complete genomes from single bacterial cells. ISME Commun. 4, ycae085 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  67. Leonaviciene, G., Leonavicius, K., Meskys, R. & Mazutis, L. Multi-step processing of single cells using semi-permeable capsules. Lab Chip 20, 4052–4062 (2020).

    Article  PubMed  Google Scholar 

  68. Pavlopoulos, G. A. et al. Unraveling the functional dark matter through global metagenomics. Nature 622, 594–602 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Vanni, C. et al. Unifying the known and unknown microbial coding sequence space. eLife 11, e67667 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Salazar, G. et al. Gene expression changes and community turnover differentially shape the global ocean metatranscriptome. Cell 179, 1068–1083.e21 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Sieradzki, E. T., Nuccio, E. E., Pett-Ridge, J. & Firestone, M. K. Expression of macromolecular organic nitrogen degrading enzymes identifies potential mediators of soil organic N availability to an annual grass. ISME J. 17, 967–975 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Carini, P. et al. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat. Microbiol. 2, 16242 (2016).

    Article  PubMed  Google Scholar 

  73. Barnett, S. E., Egan, R., Foster, B., Eloe-Fadrosh, E. A. & Buckley, D. H. Genomic features predict bacterial life history strategies in soil, as identified by metagenomic stable isotope probing. mBio 14, e0358422 (2023).

    Article  PubMed  Google Scholar 

  74. Pett-Ridge, J. & Weber, P. K. NanoSIP: NanoSIMS applications for microbial biology. Methods Mol. Biol. 2349, 91–136 (2022).

    Article  PubMed  Google Scholar 

  75. Nuccio, E. E. et al. Community RNA-seq: multi-kingdom responses to living versus decaying roots in soil. ISME Commun. 1, 72 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Franzosa, E. A. et al. Relating the metatranscriptome and metagenome of the human gut. Proc. Natl Acad. Sci. USA 111, E2329–E2338 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ojala, T., Kankuri, E. & Kankainen, M. Understanding human health through metatranscriptomics. Trends Mol. Med. 29, 376–389 (2023).

    Article  PubMed  Google Scholar 

  78. Caron, D. A. et al. Probing the evolution, ecology and physiology of marine protists using transcriptomics. Nat. Rev. Microbiol. 15, 6–20 (2017).

    Article  PubMed  Google Scholar 

  79. Yergeau, E. et al. Soil contamination alters the willow root and rhizosphere metatranscriptome and the root–rhizosphere interactome. ISME J. 12, 869–884 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  80. Chuckran, P. F. et al. Codon bias, nucleotide selection, and genome size predict in situ bacterial growth rate and transcription in rewetted soil. Proc. Natl Acad. Sci. USA 122, e2413032122 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Liu, Y., Beyer, A. & Aebersold, R. On the dependency of cellular protein levels on mRNA abundance. Cell 165, 535–550 (2016).

    Article  PubMed  Google Scholar 

  82. Zhang, Y., Thompson, K. N., Huttenhower, C. & Franzosa, E. A. Statistical approaches for differential expression analysis in metatranscriptomics. Bioinformatics 37, i34–i41 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Blazewicz, S. J., Barnard, R. L., Daly, R. A. & Firestone, M. K. Evaluating rRNA as an indicator of microbial activity in environmental communities: limitations and uses. ISME J. 7, 2061–2068 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Gifford, S. M., Sharma, S., Rinta-Kanto, J. M. & Moran, M. A. Quantitative analysis of a deeply sequenced marine microbial metatranscriptome. ISME J. 5, 461–472 (2011).

    Article  PubMed  Google Scholar 

  85. Shakya, M., Lo, C.-C. & Chain, P. S. G. Advances and challenges in metatranscriptomic analysis. Front. Genet. 10, 904 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  86. Nuccio, E. E. et al. Niche differentiation is spatially and temporally regulated in the rhizosphere. ISME J. 14, 999–1014 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  87. Integrative HMP (iHMP) Research Network Consortium. The integrative human microbiome project. Nature 569, 641–648 (2019).

    Article  Google Scholar 

  88. Almeida, A. et al. A unified catalog of 204,938 reference genomes from the human gut microbiome. Nat. Biotechnol. 39, 105–114 (2021).

    Article  PubMed  Google Scholar 

  89. Chen, Y. & Murrell, J. C. When metagenomics meets stable-isotope probing: progress and perspectives. Trends Microbiol. 18, 157–163 (2010).

    Article  PubMed  Google Scholar 

  90. Stable Isotope Probing: Methods and Protocols (eds Dumont, M. G. & Hernández García, M.) (Humana Press, 2019).

  91. Pepe-Ranney, C., Campbell, A. N., Koechli, C. N., Berthrong, S. & Buckley, D. H. Unearthing the ecology of soil microorganisms using a high resolution DNA-SIP approach to explore cellulose and xylose metabolism in soil. Front. Microbiol. 7, 703 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  92. Fischer, A., Manefield, M. & Bombach, P. Application of stable isotope tools for evaluating natural and stimulated biodegradation of organic pollutants in field studies. Curr. Opin. Biotechnol. 41, 99–107 (2016).

    Article  PubMed  Google Scholar 

  93. Buckley, D. H., Huangyutitham, V., Hsu, S.-F. & Nelson, T. A. Stable isotope probing with 15N2 reveals novel noncultivated diazotrophs in soil. Appl. Environ. Microbiol. 73, 3196–3204 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Blazewicz, S. J., Schwartz, E. & Firestone, M. K. Growth and death of bacteria and fungi underlie rainfall-induced carbon dioxide pulses from seasonally dried soil. Ecology 95, 1162–1172 (2014).

    Article  PubMed  Google Scholar 

  95. Hungate, B. A. et al. The functional significance of bacterial predators. mBio 12, e00466-21 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  96. Hungate, B. A. et al. Quantitative microbial ecology through stable isotope probing. Appl. Environ. Microbiol. 81, 7570–7581 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  97. Koch, B. J. et al. Estimating taxon-specific population dynamics in diverse microbial communities. Ecosphere 9, e02090 (2018).

    Article  Google Scholar 

  98. Foley, M. M. et al. Growth rate as a link between microbial diversity and soil biogeochemistry. Nat. Ecol. Evol. 8, 2018–2026 (2024).

    Article  PubMed  Google Scholar 

  99. Morrissey, E. M. et al. Evolutionary history constrains microbial traits across environmental variation. Nat. Ecol. Evol. 3, 1064–1069 (2019).

    Article  PubMed  Google Scholar 

  100. Stone, B. W. G. et al. Life history strategies among soil bacteria-dichotomy for few, continuum for many. ISME J. 17, 611–619 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Barnett, S. E., Youngblut, N. D., Koechli, C. N. & Buckley, D. H. Multisubstrate DNA stable isotope probing reveals guild structure of bacteria that mediate soil carbon cycling. Proc. Natl Acad. Sci. USA 118, e2115292118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  102. Hestrin, R. et al. Plant-associated fungi support bacterial resilience following water limitation. ISME J. 16, 2752–2762 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Sul, W. J. et al. DNA-stable isotope probing integrated with metagenomics for retrieval of biphenyl dioxygenase genes from polychlorinated biphenyl-contaminated river sediment. Appl. Environ. Microbiol. 75, 5501–5506 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  104. Wilhelm, R. C., Singh, R., Eltis, L. & Mohn, W. Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. ISME J. 13, 413–429 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  105. Sieradzki, E. T., Morando, M. & Fuhrman, J. A. Metagenomics and quantitative stable isotope probing offer insights into metabolism of polycyclic aromatic hydrocarbon degraders in chronically polluted seawater. mSystems 6, e00245-21 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  106. Starr, E. P. et al. Stable-isotope-informed, genome-resolved metagenomics uncovers potential cross-kingdom interactions in rhizosphere soil. mSphere 6, e0008521 (2021).

    Article  PubMed  Google Scholar 

  107. Eyice, Ö et al. SIP metagenomics identifies uncultivated Methylophilaceae as dimethylsulphide degrading bacteria in soil and lake sediment. ISME J. 9, 2336–2348 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  108. Trubl, G. et al. Active virus–host interactions at sub-freezing temperatures in arctic peat soil. Microbiome 9, 208 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  109. López-Mondéjar, R. et al. Metagenomics and stable isotope probing reveal the complementary contribution of fungal and bacterial communities in the recycling of dead biomass in forest soil. Soil Biol. Biochem. 148, 107875 (2020).

    Article  Google Scholar 

  110. Metze, D. et al. Microbial growth under drought is confined to distinct taxa and modified by potential future climate conditions. Nat. Commun. 14, 5895 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Greenlon, A. et al. Quantitative stable-isotope probing (qSIP) with metagenomics links microbial physiology and activity to soil moisture in Mediterranean-climate grassland ecosystems. mSystems 7, e0041722 (2022).

    Article  PubMed  Google Scholar 

  112. Penev, P. I. et al. The active subset of grassland soil microbiomes changes with soil depth, water availability and prominently features predatory bacteria and episymbionts. Preprint at bioRxiv https://doi.org/10.1101/2024.12.19.629468 (2024).

  113. Youngblut, N. D. & Buckley, D. H. Intra-genomic variation in G + C content and its implications for DNA stable isotope probing. Environ. Microbiol. Rep. 6, 767–775 (2014).

    Article  PubMed  Google Scholar 

  114. Nuccio, E. E. et al. HT-SIP: a semi-automated stable isotope probing pipeline identifies cross-kingdom interactions in the hyphosphere of arbuscular mycorrhizal fungi. Microbiome 10, 199 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  115. Barnett, S. E., Youngblut, N. D. & Buckley, D. H. Data analysis for DNA stable isotope probing experiments using multiple window high-resolution SIP. Methods Mol. Biol. 2046, 109–128 (2019).

    Article  PubMed  Google Scholar 

  116. Vyshenska, D. et al. A standardized quantitative analysis strategy for stable isotope probing metagenomics. mSystems 8, e0128022 (2023).

    Article  PubMed  Google Scholar 

  117. Hernández Medina, R. et al. Machine learning and deep learning applications in microbiome research. ISME Commun. 2, 98 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  118. Liu, Y. et al. Expanded diversity of Asgard archaea and their relationships with eukaryotes. Nature 593, 553–557 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  119. Coleman, G. A. et al. A rooted phylogeny resolves early bacterial evolution. Science 372, eabe0511 (2021).

    Article  PubMed  Google Scholar 

  120. Gabaldón, T. Origin and early evolution of the eukaryotic cell. Annu. Rev. Microbiol. 75, 631–647 (2021).

    Article  PubMed  Google Scholar 

  121. Megrian, D., Taib, N., Jaffe, A. L., Banfield, J. F. & Gribaldo, S. Ancient origin and constrained evolution of the division and cell wall gene cluster in bacteria. Nat. Microbiol. 7, 2114–2127 (2022).

    Article  PubMed  Google Scholar 

  122. Sibbald, S. J. & Archibald, J. M. Genomic insights into plastid evolution. Genome Biol. Evol. 12, 978–990 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  123. Dutkiewicz, Z. et al. Proposal of Patescibacterium danicum gen. nov., sp. nov. in the ubiquitous ultrasmall bacterial phylum Patescibacteriota phyl. nov. ISME Commun. 5, ycae147 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  124. Hedlund, B. P. et al. SeqCode: a nomenclatural code for prokaryotes described from sequence data. Nat. Microbiol. 7, 1702–1708 (2022).

    PubMed  PubMed Central  Google Scholar 

  125. Nakajima, M. et al. Minisyncoccus archaeiphilus gen. nov., sp. nov., a mesophilic, obligate parasitic bacterium and proposal of Minisyncoccaceae fam. nov., Minisyncoccales ord. nov., Minisyncoccia class. nov. and Minisyncoccota phyl. nov. formerly referred to as Candidatus Patescibacteria or candidate phyla radiation. Int. J. Syst. Evol. Microbiol. 75, 006668 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  126. Leng, H., Wang, Y., Zhao, W., Sievert, S. M. & Xiao, X. Identification of a deep-branching thermophilic clade sheds light on early bacterial evolution. Nat. Commun. 14, 4354 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Hashimi, A. & Tocheva, E. I. Cell envelope diversity and evolution across the bacterial tree of life. Nat. Microbiol. 9, 2475–2487 (2024).

    Article  PubMed  Google Scholar 

  128. Megrian, D., Taib, N., Witwinowski, J., Beloin, C. & Gribaldo, S. One or two membranes? Diderm Firmicutes challenge the Gram-positive/Gram-negative divide. Mol. Microbiol. 113, 659–671 (2020).

    Article  PubMed  Google Scholar 

  129. Witwinowski, J. et al. An ancient divide in outer membrane tethering systems in bacteria suggests a mechanism for the diderm-to-monoderm transition. Nat. Microbiol. 7, 411–422 (2022).

    Article  PubMed  Google Scholar 

  130. Beaud Benyahia, B., Taib, N., Beloin, C. & Gribaldo, S. Terrabacteria: redefining bacterial envelope diversity, biogenesis and evolution. Nat. Rev. Microbiol. 23, 41–56 (2024).

    Article  PubMed  Google Scholar 

  131. Spang, A. et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 521, 173–179 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  132. Bäckström, D. et al. Virus genomes from deep sea sediments expand the ocean megavirome and support independent origins of viral gigantism. mBio 10, e02497–18 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  133. Roux, S. et al. Cryptic inoviruses revealed as pervasive in bacteria and archaea across Earth’s biomes. Nat. Microbiol. 4, 1895–1906 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Paez-Espino, D. et al. Diversity, evolution, and classification of virophages uncovered through global metagenomics. Microbiome 7, 157 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Schulz, F. et al. Giant virus diversity and host interactions through global metagenomics. Nature 578, 432–436 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  136. Moniruzzaman, M., Martinez-Gutierrez, C. A., Weinheimer, A. R. & Aylward, F. O. Dynamic genome evolution and complex virocell metabolism of globally-distributed giant viruses. Nat. Commun. 11, 1710 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  137. Al-Shayeb, B. et al. Borgs are giant genetic elements with potential to expand metabolic capacity. Nature 610, 731–736 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  138. Camargo, A. P. et al. Identification of mobile genetic elements with geNomad. Nat. Biotechnol. 42, 1303–1312 (2024).

    Article  PubMed  Google Scholar 

  139. Fogarty, E. C. et al. A cryptic plasmid is among the most numerous genetic elements in the human gut. Cell 187, 1206–1222.e16 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  140. West, P. T., Probst, A. J., Grigoriev, I. V., Thomas, B. C. & Banfield, J. F. Genome-reconstruction for eukaryotes from complex natural microbial communities. Genome Res. 28, 569–580 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  141. Delmont, T. O. et al. Functional repertoire convergence of distantly related eukaryotic plankton lineages abundant in the sunlit ocean. Cell Genom. 2, 100123 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Saraiva, J. P., Bartholomäus, A., Toscan, R. B., Baldrian, P. & Nunes da Rocha, U. Recovery of 197 eukaryotic bins reveals major challenges for eukaryote genome reconstruction from terrestrial metagenomes. Mol. Ecol. Resour. 23, 1066–1076 (2023).

    Article  PubMed  Google Scholar 

  143. Moniruzzaman, M., Weinheimer, A. R., Martinez-Gutierrez, C. A. & Aylward, F. O. Widespread endogenization of giant viruses shapes genomes of green algae. Nature 588, 141–145 (2020).

    Article  PubMed  Google Scholar 

  144. Aylward, F. O. & Moniruzzaman, M. ViralRecall — a flexible command-line tool for the detection of giant virus signatures in ’omic data. Viruses 13, 150 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Pitot, T. M., Brůna, T. & Schulz, F. Conservative taxonomy and quality assessment of giant virus genomes with GVClass. npj Viruses 2, 1–7 (2024).

    Article  Google Scholar 

  146. Coclet, C., Camargo, A. P. & Roux, S. MVP: a modular viromics pipeline to identify, filter, cluster, annotate, and bin viruses from metagenomes. mSystems 9, e0088824 (2024).

    Article  PubMed  Google Scholar 

  147. Wu, L.-Y. et al. Benchmarking bioinformatic virus identification tools using real-world metagenomic data across biomes. Genome Biol. 25, 97 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  148. Roux, S. et al. iPHoP: an integrated machine learning framework to maximize host prediction for metagenome-derived viruses of archaea and bacteria. PLoS Biol. 21, e3002083 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  149. Mougari, S., Sahmi-Bounsiar, D., Levasseur, A., Colson, P. & La Scola, B. Virophages of giant viruses: an update at eleven. Viruses 11, 733 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  150. Kim, D., Song, L., Breitwieser, F. P. & Salzberg, S. L. Centrifuge: rapid and sensitive classification of metagenomic sequences. Genome Res. 26, 1721–1729 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  151. Karlicki, M., Antonowicz, S. & Karnkowska, A. Tiara: deep learning-based classification system for eukaryotic sequences. Bioinformatics 38, 344–350 (2022).

    Article  PubMed  Google Scholar 

  152. Muñoz-Marín, M. D. C., López-Lozano, A., Moreno-Cabezuelo, J. Á, Díez, J. & García-Fernández, J. M. Mixotrophy in cyanobacteria. Curr. Opin. Microbiol. 78, 102432 (2024).

    Article  PubMed  Google Scholar 

  153. Ovchinnikov, S. et al. Protein structure determination using metagenome sequence data. Science 355, 294–298 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  154. Zhang, Z., Ou, C., Cho, Y., Akiyama, Y. & Ovchinnikov, S. Artificial intelligence methods for protein folding and design. Curr. Opin. Struct. Biol. 93, 103066 (2025).

    Article  PubMed  Google Scholar 

  155. Rozenberg, A., Inoue, K., Kandori, H. & Béjà, O. Microbial rhodopsins: the last two decades. Annu. Rev. Microbiol. 75, 427–447 (2021).

    Article  PubMed  Google Scholar 

  156. Bulzu, P.-A. et al. Casting light on Asgardarchaeota metabolism in a sunlit microoxic niche. Nat. Microbiol. 4, 1129–1137 (2019).

    Article  PubMed  Google Scholar 

  157. Pushkarev, A. et al. A distinct abundant group of microbial rhodopsins discovered using functional metagenomics. Nature 558, 595–599 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Farnelid, H. et al. Nitrogenase gene amplicons from global marine surface waters are dominated by genes of non-cyanobacteria. PLoS ONE 6, e19223 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  159. Daims, H. et al. Complete nitrification by Nitrospira bacteria. Nature 528, 504–509 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  160. van Kessel, M. A. H. J. et al. Complete nitrification by a single microorganism. Nature 528, 555–559 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  161. Koch, H., van Kessel, M. A. H. J. & Lücker, S. Complete nitrification: insights into the ecophysiology of comammox Nitrospira. Appl. Microbiol. Biotechnol. 103, 177–189 (2019).

    Article  PubMed  Google Scholar 

  162. Zhu, G. et al. Towards a more labor-saving way in microbial ammonium oxidation: a review on complete ammonia oxidization (comammox). Sci. Total Environ. 829, 154590 (2022).

    Article  PubMed  Google Scholar 

  163. Evans, P. N. et al. An evolving view of methane metabolism in the Archaea. Nat. Rev. Microbiol. 17, 219–232 (2019).

    Article  PubMed  Google Scholar 

  164. Lynes, M. M. et al. Diversity and function of methyl-coenzyme M reductase-encoding archaea in yellowstone hot springs revealed by metagenomics and mesocosm experiments. ISME Commun. 3, 22 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  165. Leung, P. M. et al. Trace gas oxidation sustains energy needs of a thermophilic archaeon at suboptimal temperatures. Nat. Commun. 15, 3219 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  166. Ghannam, R. B. & Techtmann, S. M. Machine learning applications in microbial ecology, human microbiome studies, and environmental monitoring. Comput. Struct. Biotechnol. J. 19, 1092–1107 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  167. Asnicar, F., Thomas, A. M., Passerini, A., Waldron, L. & Segata, N. Machine learning for microbiologists. Nat. Rev. Microbiol. 22, 191–205 (2024).

    Article  PubMed  Google Scholar 

  168. Lin, Z. et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. Science 379, 1123–1130 (2023).

    Article  PubMed  Google Scholar 

  169. Abramson, J. et al. Accurate structure prediction of biomolecular interactions with AlphaFold 3. Nature 630, 493–500 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Kim, G. B., Gao, Y., Palsson, B. O. & Lee, S. Y. DeepTFactor: a deep learning-based tool for the prediction of transcription factors. Proc. Natl Acad. Sci. USA 118, e2021171118 (2021).

    Article  PubMed  Google Scholar 

  171. Hannigan, G. D. et al. A deep learning genome-mining strategy for biosynthetic gene cluster prediction. Nucleic Acids Res. 47, e110 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Arango-Argoty, G. et al. DeepARG: a deep learning approach for predicting antibiotic resistance genes from metagenomic data. Microbiome 6, 23 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  173. Ramoneda, J., Hoffert, M., Stallard-Olivera, E., Casamayor, E. O. & Fierer, N. Leveraging genomic information to predict environmental preferences of bacteria. ISME J. 18, wrae195 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  174. Feldbauer, R., Schulz, F., Horn, M. & Rattei, T. Prediction of microbial phenotypes based on comparative genomics. BMC Bioinforma. 16, S1 (2015).

    Article  Google Scholar 

  175. Villada, J. C. et al. A genomic catalog of Earth’s bacterial and archaeal symbionts. Preprint at bioRxiv https://doi.org/10.1101/2025.05.29.656868 (2025).

  176. Fierer, N. Embracing the unknown: disentangling the complexities of the soil microbiome. Nat. Rev. Microbiol. 15, 579–590 (2017).

    Article  PubMed  Google Scholar 

  177. Chang, H.-X., Haudenshield, J. S., Bowen, C. R. & Hartman, G. L. Metagenome-wide association study and machine learning prediction of bulk soil microbiome and crop productivity. Front. Microbiol. 8, 519 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  178. Ning, L. et al. Microbiome and metabolome features in inflammatory bowel disease via multi-omics integration analyses across cohorts. Nat. Commun. 14, 7135 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Sunagawa, S. et al. Tara oceans: towards global ocean ecosystems biology. Nat. Rev. Microbiol. 18, 428–445 (2020).

    Article  PubMed  Google Scholar 

  180. Lauro, F. M. et al. The genomic basis of trophic strategy in marine bacteria. Proc. Natl Acad. Sci. USA 106, 15527–15533 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  181. Ibarbalz, F. M. et al. Global trends in marine plankton diversity across kingdoms of life. Cell 179, 1084–1097.e21 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  182. Gregory, A. C. et al. Marine DNA viral macro- and microdiversity from pole to pole. Cell 177, 1109–1123.e14 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Mende, D. R. et al. Environmental drivers of a microbial genomic transition zone in the ocean’s interior. Nat. Microbiol. 2, 1367–1373 (2017).

    Article  PubMed  Google Scholar 

  184. Obiol, A. et al. A metagenomic assessment of microbial eukaryotic diversity in the global ocean. Mol. Ecol. Resour. 20, 718–731 (2020).

    Article  Google Scholar 

  185. Giovannoni, S. J., Cameron Thrash, J. & Temperton, B. Implications of streamlining theory for microbial ecology. ISME J. 8, 1553–1565 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  186. Biller, S. J., Berube, P. M., Lindell, D. & Chisholm, S. W. Prochlorococcus: the structure and function of collective diversity. Nat. Rev. Microbiol. 13, 13–27 (2015).

    Article  PubMed  Google Scholar 

  187. Batut, B., Knibbe, C., Marais, G. & Daubin, V. Reductive genome evolution at both ends of the bacterial population size spectrum. Nat. Rev. Microbiol. 12, 841–850 (2014).

    Article  PubMed  Google Scholar 

  188. Noell, S. E., Hellweger, F. L., Temperton, B. & Giovannoni, S. J. A reduction of transcriptional regulation in aquatic oligotrophic microorganisms enhances fitness in nutrient-poor environments. Microbiol. Mol. Biol. Rev. 87, e0012422 (2023).

    Article  PubMed  Google Scholar 

  189. Polz, M. F. & Cordero, O. X. The genetic law of the minimum. Science 370, 655–656 (2020).

    Article  PubMed  Google Scholar 

  190. Shenhav, L. & Zeevi, D. Resource conservation manifests in the genetic code. Science 370, 683–687 (2020).

    Article  PubMed  Google Scholar 

  191. VanInsberghe, D., Arevalo, P., Chien, D. & Polz, M. F. How can microbial population genomics inform community ecology? Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190253 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Muñoz-Marín, M. C. et al. Mixotrophy in marine picocyanobacteria: use of organic compounds by Prochlorococcus and Synechococcus. ISME J. 14, 1065–1073 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Ulloa, O. et al. The cyanobacterium Prochlorococcus has divergent light-harvesting antennae and may have evolved in a low-oxygen ocean. Proc. Natl Acad. Sci. USA 118, e2025638118 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  194. Berube, P. et al. Single cell genomes of Prochlorococcus, Synechococcus, and sympatric microbes from diverse marine environments. Sci. Data 5, 180154 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  195. Hackl, T. et al. Novel integrative elements and genomic plasticity in ocean ecosystems. Cell 186, 47–62.e16 (2023).

    Article  PubMed  Google Scholar 

  196. Shapiro, B. J. et al. Population genomics of early events in the ecological differentiation of bacteria. Science 336, 48–51 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  197. Hussain, F. A. et al. Rapid evolutionary turnover of mobile genetic elements drives bacterial resistance to phages. Science 374, 488–492 (2021).

    Article  PubMed  Google Scholar 

  198. Kauffman, K. M. et al. Resolving the structure of phage–bacteria interactions in the context of natural diversity. Nat. Commun. 13, 372 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Crowther, T. W. et al. The global soil community and its influence on biogeochemistry. Science 365, eaav0550 (2019).

    Article  PubMed  Google Scholar 

  200. Sokol, N. W. et al. Life and death in the soil microbiome: how ecological processes influence biogeochemistry. Nat. Rev. Microbiol. 20, 415–430 (2022).

    Article  PubMed  Google Scholar 

  201. Hartmann, M. & Six, J. Soil structure and microbiome functions in agroecosystems. Nat. Rev. Earth Environ. 4, 4–18 (2022).

    Article  Google Scholar 

  202. Riley, R. et al. Terabase-scale coassembly of a tropical soil microbiome. Microbiol. Spectr. 11, e0020023 (2023).

    Article  PubMed  Google Scholar 

  203. Kazarina, A., Wiechman, H., Sarkar, S., Richie, T. & Lee, S. T. M. Recovery of 679 metagenome-assembled genomes from different soil depths along a precipitation gradient. Sci. Data 12, 521 (2025).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Bardgett, R. D. & Caruso, T. Soil microbial community responses to climate extremes: resistance, resilience and transitions to alternative states. Philos. Trans. R. Soc. Lond. B Biol. Sci. 375, 20190112 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  205. Knight, C. G. et al. Soil microbiomes show consistent and predictable responses to extreme events. Nature 636, 690–696 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  206. Woodcroft, B. J. et al. Genome-centric view of carbon processing in thawing permafrost. Nature 560, 49–54 (2018).

    Article  PubMed  Google Scholar 

  207. Emerson, J. B. et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat. Microbiol. 3, 870–880 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  208. Bahram, M. et al. Structure and function of the global topsoil microbiome. Nature 560, 233–237 (2018).

    Article  PubMed  Google Scholar 

  209. Jansson, J. K., McClure, R. & Egbert, R. G. Soil microbiome engineering for sustainability in a changing environment. Nat. Biotechnol. 41, 1716–1728 (2023).

    Article  PubMed  Google Scholar 

  210. Hiis, E. G. et al. Unlocking bacterial potential to reduce farmland N2O emissions. Nature 630, 421–428 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  211. Shu, W.-S. & Huang, L.-N. Microbial diversity in extreme environments. Nat. Rev. Microbiol. 20, 219–235 (2022).

    Article  PubMed  Google Scholar 

  212. Cowan, D. A., Ramond, J.-B., Makhalanyane, T. P. & De Maayer, P. Metagenomics of extreme environments. Curr. Opin. Microbiol. 25, 97–102 (2015).

    Article  PubMed  Google Scholar 

  213. Baker, B. J. et al. Genomic inference of the metabolism of cosmopolitan subsurface Archaea, Hadesarchaea. Nat. Microbiol. 1, 16002 (2016).

    Article  PubMed  Google Scholar 

  214. Eloe-Fadrosh, E. A. et al. Global metagenomic survey reveals a new bacterial candidate phylum in geothermal springs. Nat. Commun. 7, 10476 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  215. Narasingarao, P. et al. De novo metagenomic assembly reveals abundant novel major lineage of Archaea in hypersaline microbial communities. ISME J. 6, 81–93 (2012).

    Article  PubMed  Google Scholar 

  216. Inskeep, W. P. et al. The YNP metagenome project: environmental parameters responsible for microbial distribution in the Yellowstone geothermal ecosystem. Front. Microbiol. 4, 67 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  217. Colman, D. R. et al. Covariation of hot spring geochemistry with microbial genomic diversity, function, and evolution. Nat. Commun. 15, 7506 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  218. Qi, Y.-L. et al. Analysis of nearly 3000 archaeal genomes from terrestrial geothermal springs sheds light on interconnected biogeochemical processes. Nat. Commun. 15, 4066 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Rappaport, H. B. & Oliverio, A. M. Lessons from extremophiles: functional adaptations and genomic innovations across the eukaryotic tree of life. Genome Biol. Evol. 16, evae160 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  220. Verma, D., Joshi, S., Ghimire, P., Mishra, A. & Kumar, V. Developments in extremophilic bacterial genomics: a post next generation sequencing era. Ecol. Genet. Genom. 32, 100255 (2024).

    Google Scholar 

  221. Catchpole, R. J. & Forterre, P. The evolution of reverse gyrase suggests a nonhyperthermophilic last universal common ancestor. Mol. Biol. Evol. 36, 2737–2747 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Pierpont, C. L., Baroch, J. J., Church, M. J. & Miller, S. R. Idiosyncratic genome evolution of the thermophilic cyanobacterium Synechococcus at the limits of phototrophy. ISME J. 18, wrae184 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  223. Munson-McGee, J. H. et al. Nanoarchaeota, their Sulfolobales host, and Nanoarchaeota virus distribution across Yellowstone National Park hot springs. Appl. Environ. Microbiol. 81, 7860–7868 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  224. Tierney, B. T. et al. Longitudinal multi-omics analysis of host microbiome architecture and immune responses during short-term spaceflight. Nat. Microbiol. 9, 1661–1675 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  225. Fuhrman, J. A., Cram, J. A. & Needham, D. M. Marine microbial community dynamics and their ecological interpretation. Nat. Rev. Microbiol. 13, 133–146 (2015).

    Article  PubMed  Google Scholar 

  226. Faust, K., Lahti, L., Gonze, D., de Vos, W. M. & Raes, J. Metagenomics meets time series analysis: unraveling microbial community dynamics. Curr. Opin. Microbiol. 25, 56–66 (2015).

    Article  PubMed  Google Scholar 

  227. Rohwer, R. R. et al. Two decades of bacterial ecology and evolution in a freshwater lake. Nat. Microbiol. 10, 246–257 (2025).

    Article  PubMed  Google Scholar 

  228. Oliver, T. et al. Coassembly and binning of a twenty-year metagenomic time-series from Lake Mendota. Sci. Data 11, 966 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  229. Coclet, C. et al. Virus diversity and activity is driven by snowmelt and host dynamics in a high-altitude watershed soil ecosystem. Microbiome 11, 237 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  230. Nyholm, S. V. & McFall-Ngai, M. J. A lasting symbiosis: how the Hawaiian bobtail squid finds and keeps its bioluminescent bacterial partner. Nat. Rev. Microbiol. 19, 666–679 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  231. Castelle, C. J. et al. Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations. Nat. Rev. Microbiol. 16, 629–645 (2018).

    Article  PubMed  Google Scholar 

  232. Dombrowski, N., Lee, J.-H., Williams, T. A., Offre, P. & Spang, A. Genomic diversity, lifestyles and evolutionary origins of DPANN archaea. FEMS Microbiol. Lett. 366, fnz008 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  233. Hamm, J. N. et al. Unexpected host dependency of Antarctic Nanohaloarchaeota. Proc. Natl Acad. Sci. USA 116, 14661–14670 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  234. Beam, J. P. et al. Ancestral absence of electron transport chains in Patescibacteria and DPANN. Front. Microbiol. 11, 1848 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  235. Utter, D. R., He, X., Cavanaugh, C. M., McLean, J. S. & Bor, B. The saccharibacterium TM7x elicits differential responses across its host range. ISME J. 14, 3054–3067 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  236. Sakai, H. D. et al. Insight into the symbiotic lifestyle of DPANN archaea revealed by cultivation and genome analyses. Proc. Natl Acad. Sci. USA 119, e2115449119 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  237. Kuroda, K. et al. Microscopic and metatranscriptomic analyses revealed unique cross-domain parasitism between phylum Candidatus Patescibacteria/candidate phyla radiation and methanogenic archaea in anaerobic ecosystems. mBio 15, e0310223 (2024).

    Article  PubMed  Google Scholar 

  238. Zhang, B., Xiao, L., Lyu, L., Zhao, F. & Miao, M. Exploring the landscape of symbiotic diversity and distribution in unicellular ciliated protists. Microbiome 12, 96 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  239. Esser, S. P. et al. A predicted CRISPR-mediated symbiosis between uncultivated archaea. Nat. Microbiol. 8, 1619–1633 (2023).

    Article  PubMed  Google Scholar 

  240. Murali, R. et al. Physiological potential and evolutionary trajectories of syntrophic sulfate-reducing bacterial partners of anaerobic methanotrophic archaea. PLoS Biol. 21, e3002292 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  241. Tschitschko, B. et al. Rhizobia-diatom symbiosis fixes missing nitrogen in the ocean. Nature 630, 899–904 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  242. Nakayama, T. et al. Single-cell genomics unveiled a cryptic cyanobacterial lineage with a worldwide distribution hidden by a dinoflagellate host. Proc. Natl Acad. Sci. USA 116, 15973–15978 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  243. Wang, Z. & Wu, M. Comparative genomic analysis of Acanthamoeba endosymbionts highlights the role of amoebae as a ‘melting pot’ shaping the Rickettsiales evolution. Genome Biol. Evol. 9, 3214–3224 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  244. Ansorge, R. et al. Functional diversity enables multiple symbiont strains to coexist in deep-sea mussels. Nat. Microbiol. 4, 2487–2497 (2019).

    Article  PubMed  Google Scholar 

  245. Engel, P., Stepanauskas, R. & Moran, N. A. Hidden diversity in honey bee gut symbionts detected by single-cell genomics. PLoS Genet. 10, e1004596 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  246. Robbins, S. J. et al. A genomic view of the microbiome of coral reef demosponges. ISME J. 15, 1641–1654 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  247. Perreau, J. & Moran, N. A. Genetic innovations in animal–microbe symbioses. Nat. Rev. Genet. 23, 23–39 (2022).

    Article  PubMed  Google Scholar 

  248. McCutcheon, J. P., Boyd, B. M. & Dale, C. The life of an insect endosymbiont from the cradle to the grave. Curr. Biol. 29, R485–R495 (2019).

    Article  PubMed  Google Scholar 

  249. Manzano-Marín, A. & Latorre, A. Snapshots of a shrinking partner: genome reduction in Serratia symbiotica. Sci. Rep. 6, 32590 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  250. Bourguignon, T. et al. Increased mutation rate is linked to genome reduction in prokaryotes. Curr. Biol. 30, 3848–3855.e4 (2020).

    Article  PubMed  Google Scholar 

  251. Siozios, S. et al. Genome dynamics across the evolutionary transition to endosymbiosis. Curr. Biol. 34, 5659–5670.e7 (2024).

    Article  PubMed  Google Scholar 

  252. Chong, R. A., Park, H. & Moran, N. A. Genome evolution of the obligate endosymbiont Buchnera aphidicola. Mol. Biol. Evol. 36, 1481–1489 (2019).

    Article  PubMed  Google Scholar 

  253. Sudakaran, S., Kost, C. & Kaltenpoth, M. Symbiont acquisition and replacement as a source of ecological innovation. Trends Microbiol. 25, 375–390 (2017).

    Article  PubMed  Google Scholar 

  254. Husnik, F. & McCutcheon, J. P. Repeated replacement of an intrabacterial symbiont in the tripartite nested mealybug symbiosis. Proc. Natl Acad. Sci. USA 113, E5416–E5424 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  255. Li, Y. et al. HGT is widespread in insects and contributes to male courtship in lepidopterans. Cell 185, 2975–2987.e10 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  256. Eren, A. M. & Banfield, J. F. Modern microbiology: embracing complexity through integration across scales. Cell 187, 5151–5170 (2024).

    Article  PubMed  Google Scholar 

  257. Woese, C. R. & Fox, G. E. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl Acad. Sci. USA 74, 5088–5090 (1977).

    Article  PubMed  PubMed Central  Google Scholar 

  258. Woese, C. R. Bacterial evolution. Microbiol. Rev. 51, 221–271 (1987).

    Article  PubMed  PubMed Central  Google Scholar 

  259. Fleischmann, R. D. et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496–512 (1995).

    Article  PubMed  Google Scholar 

  260. Thompson, L. R. et al. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  261. Parks, D. H. et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004 (2018).

    Article  PubMed  Google Scholar 

  262. Rinke, C. et al. A standardized archaeal taxonomy for the genome taxonomy database. Nat. Microbiol. 6, 946–959 (2021).

    Article  PubMed  Google Scholar 

  263. Wilkinson, M. D. et al. The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3, 160018 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  264. Yilmaz, P. et al. Minimum information about a marker gene sequence (MIMARKS) and minimum information about any (x) sequence (MIxS) specifications. Nat. Biotechnol. 29, 415–420 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  265. Eloe-Fadrosh, E. A. et al. A practical approach to using the genomic standards consortium MIxS reporting standard for comparative genomics and metagenomics. Methods Mol. Biol. 2802, 587–609 (2024).

    Article  PubMed  Google Scholar 

  266. Field, D. et al. The minimum information about a genome sequence (MIGS) specification. Nat. Biotechnol. 26, 541–547 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  267. Bowers, R. M. et al. Minimum information about a single amplified genome (MISAG) and a metagenome-assembled genome (MIMAG) of bacteria and archaea. Nat. Biotechnol. 35, 725–731 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  268. Roux, S. et al. Minimum information about an uncultivated virus genome (MIUViG). Nat. Biotechnol. 37, 29–37 (2019).

    Article  PubMed  Google Scholar 

  269. Zaremba-Niedzwiedzka, K. et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature 541, 353–358 (2017).

    Article  PubMed  Google Scholar 

  270. Tamarit, D. et al. Description of Asgardarchaeum abyssi gen. nov. spec. nov., a novel species within the class Asgardarchaeia and phylum Asgardarchaeota in accordance with the SeqCode. Syst. Appl. Microbiol. 47, 126525 (2024).

    Article  PubMed  Google Scholar 

  271. Imachi, H. et al. Promethearchaeum syntrophicum gen. nov., sp. nov., an anaerobic, obligately syntrophic archaeon, the first isolate of the lineage ‘Asgard’ archaea, and proposal of the new archaeal phylum Promethearchaeota phyl. nov. and kingdom Promethearchaeati regn. nov. Int. J. Syst. Evol. Microbiol. 74, 006435 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  272. Imachi, H. et al. Isolation of an archaeon at the prokaryote–eukaryote interface. Nature 577, 519–525 (2019).

    Article  Google Scholar 

  273. López-García, P. & Moreira, D. Cultured Asgard archaea shed light on eukaryogenesis. Cell 181, 232–235 (2020).

    Article  PubMed  Google Scholar 

  274. Williams, T. A., Foster, P. G., Cox, C. J. & Embley, T. M. An archaeal origin of eukaryotes supports only two primary domains of life. Nature 504, 231–236 (2013).

    Article  PubMed  Google Scholar 

  275. Eme, L. et al. Inference and reconstruction of the heimdallarchaeial ancestry of eukaryotes. Nature 618, 992–999 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  276. Zhou, Z. et al. Unravelling viral ecology and evolution over 20 years in a freshwater lake. Nat. Microbiol. 10, 231–245 (2025).

    Article  PubMed  Google Scholar 

  277. Krinos, A. I. et al. Time-series metagenomics reveals changing protistan ecology of a temperate dimictic lake. Microbiome 12, 133 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

G.S., E.A.E.-F. and T.W. were funded by the US Department of Energy Joint Genome Institute (https://ror.org/04xm1d337), a DOE Office of Science User Facility supported by the Office of Science of the US Department of Energy operated under Contract No. DE-AC02-05CH11231. J.P.-R. was supported by the US Department of Energy, Office of Biological and Environmental Research, Genomic Science Program ‘Microbes Persist’ Scientific Focus Area (award no. SCW1632) and under the auspices of the US Department of Energy under contract DE-AC52-07NA27344. The authors thank S. Roux (Joint Genome Institute) for assistance in compiling the Sequence Read Archive metadata shown in Fig. 4.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding authors

Correspondence to Gitta Szabó or Tanja Woyke.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Genetics thanks Charles K. Lee, and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

BUSCO: https://busco.ezlab.org/

EukCC: https://github.com/EBI-Metagenomics/EukCC

geNomad: https://portal.nersc.gov/genomad/

Genome Taxonomy Database: https://gtdb.ecogenomic.org

GTDB release 226: https://gtdb.ecogenomic.org/stats/r226

GVClass: https://github.com/NeLLi-team/gvclass

Integrated Microbial Genomes and Microbiomes: https://img.jgi.doe.gov/

MGnify: https://www.ebi.ac.uk/metagenomics

National Center for Biotechnology Information: https://www.ncbi.nlm.nih.gov/

Glossary

Binning

The process of categorizing genomic DNA sequences (contigs and scaffolds) assembled from metagenomic sequencing data into groups that represent individual or highly similar genomes.

Biofilm

A structured biological layer formed on surfaces by microorganisms embedded in a matrix of secreted polymers that enables close microbial interactions and enhanced survival under harsh conditions.

Biogeochemical cycling

The natural transformation and flow of elements (for example, carbon, nitrogen and phosphorus) among the biological, geological and chemical components of Earth, which greatly influence nutrient availability and ecosystem functioning.

DPANN

A superphylum of ultra-small, often symbiotic archaea with reduced genomes and diverse environmental distributions. The name derives from the groups Diapherotrites, Parvarchaeota, Aenigmarchaeota, Nanoarchaeota and Nanohaloarchaeota.

Droplet microfluidics

A high-throughput technology that encapsulates single cells within a water-in-oil emulsion, which creates miniature reaction chambers that can be used for sorting and manipulation of individual cells.

Giant virus

Nucleo-cytoplasmic large DNA viruses within the phylum Nucleocytoviricota have large, often megabase-sized genomes with complex translation machinery and other genes involved in diverse cellular functions and virions comparable in size to bacterial cells.

Hi-C

A methodology that crosslinks and ligates DNA molecules and regions that are in close physical proximity, thereby improving genome assembly, binning and the assignment of mobile genetic elements to genomic bins.

Horizontal gene transfer

(HGT). The transfer of extrachromosomal or integrative mobile genetic elements between organisms, which can be neutral, detrimental or beneficial to the recipient cell by conferring novel functions and therefore have a profound influence on microbial evolution.

Metagenome-assembled genomes

(MAGs). Population-level microbial genomes reconstructed from community-level metagenomic data obtained from an environmental or host-associated sample.

Metagenomics

The sequencing and analysis of DNA directly extracted from the environment, providing insights into microbiome diversity and functional potential.

Metatranscriptomics

An RNA-sequencing approach that aims to capture the collective mRNA in a microbial community to study the diversity and expression levels of microbial genes of the transcriptionally active community members within natural environments.

Microbial guilds

Groups of microorganisms that perform similar ecological functions or use similar resources.

Mobile genetic elements

(MGEs). Genetic elements such as plasmids, transposons, prophages, phages and other viruses that facilitate gene transfer within and between microbial populations.

Pangenome

The set of genes found within a species or clade, which encompasses core genes present in all individuals and dispensable genes that vary between individuals.

Patescibacteria

A ubiquitous bacterial phylum consisting of members with reduced genomes, predicted to have limited metabolic capabilities and symbiotic relationship with other microorganisms. Also referred to as the Candidate Phyla Radiation and recently named Patescibacteriota based on SeqCode and Minisyncoccota according to ICNP (Internal Code of Nomenclature of Prokaryotes), a nomenclature framework for bacteria and archaea that requires a viable cultured representative as type material.

Phylogenetic tree

A graphical diagram representation displaying evolutionary relationships between organisms or groups of organisms based on genetic similarities.

SeqCode

A framework for the nomenclature of bacteria and archaea regardless of cultivation, based on high-quality sequence data.

Single amplified genomes

(SAGs). Genomes obtained from individually isolated microbial cells using single-cell whole-genome amplification before sequencing.

Stable isotope probing

(SIP). A method that uses isotopically labelled substrates to trace microbial water, carbon or nutrient uptake in environmental samples.

Sympatric speciation

The evolution of new species from a common ancestor within the same environment.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szabó, G., Eloe-Fadrosh, E.A., Pett-Ridge, J. et al. A genomic view of Earth’s biomes. Nat Rev Genet (2025). https://doi.org/10.1038/s41576-025-00888-1

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41576-025-00888-1

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载