+
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Bile acid metabolism in type 2 diabetes mellitus

Abstract

Type 2 diabetes mellitus is a complex disorder associated with insulin resistance and hyperinsulinaemia that is insufficient to maintain normal glucose metabolism. Changes in insulin signalling and insulin levels are thought to directly explain many of the metabolic abnormalities that occur in diabetes mellitus, such as impaired glucose disposal. However, molecules that are directly affected by abnormal insulin signalling might subsequently go on to cause secondary metabolic effects that contribute to the pathology of type 2 diabetes mellitus. In the past several years, evidence has linked insulin resistance with the concentration, composition and distribution of bile acids. As bile acids are known to regulate glucose metabolism, lipid metabolism and energy balance, these findings suggest that bile acids are potential mediators of metabolic distress in type 2 diabetes mellitus. In this Review, we highlight advances in our understanding of the complex regulation of bile acids during insulin resistance, as well as how bile acids contribute to metabolic control.

Key points

  • Insulin and glucose regulate bile acid synthesis, composition and transport.

  • In humans, insulin resistance and type 2 diabetes mellitus are associated with increased bile acid synthesis, altered bile acid composition and potential impairments in bile acid transport.

  • Opportunities to study bile acid metabolism exist in model organisms, from non-human primates to cultured cells, which each have unique benefits and limitations.

  • Emerging evidence suggests bile acids control metabolism via effects in multiple tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Bile acid synthesis and transport.
Fig. 2: Regulation of bile acids by factors related to diabetes mellitus.
Fig. 3: Effects of bile acids on metabolic tissues.

Similar content being viewed by others

References

  1. Sudo, K. et al. Quantifying forms and functions of enterohepatic bile acid pools in mice. Cell. Mol. Gastroenterol. Hepatol. 18, 101392 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  2. Alnouti, Y. Bile acid sulfation: a pathway of bile acid elimination and detoxification. Toxicol. Sci. 108, 225–246 (2009).

    PubMed  CAS  Google Scholar 

  3. Nie, Q. et al. Gut symbionts alleviate MASH through a secondary bile acid biosynthetic pathway. Cell 187, 2717–2734.e33 (2024).

    PubMed  CAS  Google Scholar 

  4. Takei, H. et al. Characterization of long-chain fatty acid-linked bile acids: a major conjugation form of 3β-hydroxy bile acids in feces. J. Lipid Res. 63, 100275 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  5. Quinn, R. A. et al. Global chemical effects of the microbiome include new bile-acid conjugations. Nature 579, 123–129 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  6. Mohanty, I. et al. The underappreciated diversity of bile acid modifications. Cell 187, 1801–1818.e20 (2024).

    PubMed  CAS  Google Scholar 

  7. Guzior, D. V. et al. Bile salt hydrolase acyltransferase activity expands bile acid diversity. Nature 626, 852–858 (2024).

    PubMed  CAS  Google Scholar 

  8. Rimal, B. et al. Bile salt hydrolase catalyses formation of amine-conjugated bile acids. Nature 626, 859–863 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  9. Mohanty, I. et al. The changing metabolic landscape of bile acids – keys to metabolism and immune regulation. Nat. Rev. Gastroenterol. Hepatol. 21, 493–516 (2024).

    PubMed  Google Scholar 

  10. Lee, M. H. et al. How bile acids and the microbiota interact to shape host immunity. Nat. Rev. Immunol. 24, 798–809 (2024).

    PubMed  CAS  Google Scholar 

  11. Chiang, J. Y. L. & Ferrell, J. M. Discovery of farnesoid X receptor and its role in bile acid metabolism. Mol. Cell Endocrinol. 548, 111618 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  12. Perino, A., Demagny, H., Velazquez-Villegas, L. & Schoonjans, K. Molecular physiology of bile acid signaling in health, disease, and aging. Physiol. Rev. 101, 683–731 (2021).

    PubMed  CAS  Google Scholar 

  13. Wang, Y. et al. CYP8B1 catalyzes 12alpha-hydroxylation of C27 bile acid: in vitro conversion of dihydroxycoprostanic acid into trihydroxycoprostanic acid. Drug. Metab. Dispos. 52, 1234–1243 (2024).

    PubMed  CAS  Google Scholar 

  14. Bennion, L. J. & Grundy, S. M. Effects of diabetes mellitus on cholesterol metabolism in man. N. Engl. J. Med. 296, 1365–1371 (1977).

    PubMed  CAS  Google Scholar 

  15. Galman, C., Arvidsson, I., Angelin, B. & Rudling, M. Monitoring hepatic cholesterol 7α-hydroxylase activity by assay of the stable bile acid intermediate 7α-hydroxy-4-cholesten-3-one in peripheral blood. J. Lipid Res. 44, 859–866 (2003).

    PubMed  CAS  Google Scholar 

  16. Steiner, C. et al. Bile acid metabolites in serum: intraindividual variation and associations with coronary heart disease, metabolic syndrome and diabetes mellitus. PLoS ONE 6, e25006 (2011).

    PubMed  PubMed Central  CAS  Google Scholar 

  17. Haeusler, R. A. et al. Increased bile acid synthesis and impaired bile acid transport in human obesity. J. Clin. Endocrinol. Metab. 101, 1935–1944 (2016).

    PubMed  CAS  Google Scholar 

  18. Chávez-Talavera, O., Tailleux, A., Lefebvre, P. & Staels, B. Bile acid control of metabolism and inflammation in obesity, type 2 diabetes, dyslipidemia, and nonalcoholic fatty liver disease. Gastroenterology 152, 1679–1694 (2017).

    PubMed  Google Scholar 

  19. Li, T., Chanda, D., Zhang, Y., Choi, H.-S. & Chiang, J. Y. L. Glucose stimulates cholesterol 7α-hydroxylase gene transcription in human hepatocytes. J. Lipid Res. 51, 832–842 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  20. Li, T. et al. Glucose and insulin induction of bile acid synthesis: mechanisms and implication in diabetes and obesity. J. Biol. Chem. 287, 1861–1873 (2012).

    PubMed  CAS  Google Scholar 

  21. Higgins, V. et al. Postprandial dyslipidemia, hyperinsulinemia, and impaired gut peptides/bile acids in adolescents with obesity. J. Clin. Endocrinol. Metab. 105, 1228–1241 (2020).

    PubMed  Google Scholar 

  22. Brufau, G. et al. Improved glycemic control with colesevelam treatment in patients with type 2 diabetes is not directly associated with changes in bile acid metabolism. Hepatology 52, 1455–1464 (2010).

    PubMed  CAS  Google Scholar 

  23. Ferrannini, E. et al. Increased bile acid synthesis and deconjugation after biliopancreatic diversion. Diabetes 64, 3377–3385 (2015).

    PubMed  PubMed Central  CAS  Google Scholar 

  24. Haeusler, R. A., Pratt-Hyatt, M., Welch, C. L., Klaassen, C. D. & Accili, D. Impaired generation of 12-hydroxylated bile acids links hepatic insulin signaling with dyslipidemia. Cell Metab. 15, 65–74 (2012).

    PubMed  CAS  Google Scholar 

  25. Semova, I. et al. Insulin prevents hypercholesterolemia by suppressing 12α-hydroxylated bile acid production. Circulation 145, 969–982 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  26. Hoogerland, J. A. et al. Glucose-6-phosphate regulates hepatic bile acid synthesis in mice. Hepatology 70, 2171–2184 (2019).

    PubMed  CAS  Google Scholar 

  27. Biddinger, S. B. et al. Hepatic insulin resistance directly promotes formation of cholesterol gallstones. Nat. Med. 14, 778–782 (2008).

    PubMed  PubMed Central  CAS  Google Scholar 

  28. Kakiyama, G. et al. Insulin resistance dysregulates CYP7B1 leading to oxysterol accumulation: a pathway for NAFL to NASH transition. J. Lipid Res. 61, 1629–1644 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  29. Axelson, M. & Sjövall, J. Potential bile acid precursors in plasma – possible indicators of biosynthetic pathways to cholic and chenodeoxycholic acids in man. J. Steroid Biochem. 36, 631–640 (1990).

    PubMed  CAS  Google Scholar 

  30. Haeusler, R. A., Astiarraga, B., Camastra, S., Accili, D. & Ferrannini, E. Human insulin resistance is associated with increased plasma levels of 12α-hydroxylated bile acids. Diabetes 62, 4184–4191 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  31. Choucair, I. et al. Quantification of bile acids: a mass spectrometry platform for studying gut microbe connection to metabolic diseases. J. Lipid Res. 61, 159–177 (2019).

    PubMed  PubMed Central  Google Scholar 

  32. Wewalka, M., Patti, M. E., Barbato, C., Houten, S. M. & Goldfine, A. B. Fasting serum taurine-conjugated bile acids are elevated in type 2 diabetes and do not change with intensification of insulin. J. Clin. Endocrinol. Metab. 99, 1442–1451 (2014).

    PubMed  PubMed Central  CAS  Google Scholar 

  33. Lu, J. et al. Association of serum bile acids profile and pathway dysregulation with the risk of developing diabetes among normoglycemic Chinese adults: findings from the 4C study. Diabetes Care 44, 499–510 (2020).

    PubMed  Google Scholar 

  34. Mantovani, A. et al. Plasma bile acid profile in patients with and without type 2 diabetes. Metabolites 11, 453 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  35. So, S. S. Y., Yeung, C. H. C., Schooling, C. M. & El-Nezami, H. Targeting bile acid metabolism in obesity reduction: a systematic review and meta-analysis. Obes. Rev. 21, e13017 (2020).

    PubMed  Google Scholar 

  36. Heianza, Y. et al. Changes in bile acid subtypes and long-term successful weight-loss in response to weight-loss diets: the POUNDS lost trial. Liver Int. 42, 363–373 (2022).

    PubMed  CAS  Google Scholar 

  37. Harris, L.-A. et al. Biliopancreatic diversion induces greater metabolic improvement than Roux-en-Y gastric bypass. Cell Metab. 30, 855–864 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  38. Mercer, K. E. et al. Exercise training and diet-induced weight loss increase markers of hepatic bile acid (BA) synthesis and reduce serum total BA concentrations in obese women. Am. J. Physiol. Endocrinol. Metab. 320, E864–E873 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  39. Yoshino, M. et al. Effects of diet versus gastric bypass on metabolic function in diabetes. N. Engl. J. Med. 383, 721–732 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  40. Brønden, A. & Knop, F. K. Gluco-metabolic effects of pharmacotherapy-induced modulation of bile acid physiology. J. Clin. Endocrinol. Metab. 105, 362–373 (2020).

    Google Scholar 

  41. Worthmann, A. et al. Cold-induced conversion of cholesterol to bile acids in mice shapes the gut microbiome and promotes adaptive thermogenesis. Nat. Med. 23, 839–849 (2017).

    PubMed  CAS  Google Scholar 

  42. van Berge-Henegouwen, G. P. & Hofmann, A. F. Systemic spill-over of bile acids. Eur. J. Clin. Invest. 13, 433–437 (1983).

    PubMed  Google Scholar 

  43. Wang, X. et al. Serum bile acid response to oral glucose is attenuated in patients with early type 2 diabetes and correlates with 2-hour plasma glucose in individuals without diabetes. Diabetes Obes. Metab. 24, 1132–1142 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  44. Glicksman, C. et al. Postprandial plasma bile acid responses in normal weight and obese subjects. Ann. Clin. Biochem. 47, 482–484 (2010).

    PubMed  CAS  Google Scholar 

  45. Bishay, R. H. et al. Plasma bile acids more closely align with insulin resistance, visceral and hepatic adiposity than total adiposity. J. Clin. Endocrinol. Metab. 106, e1131–e1139 (2021).

    PubMed  Google Scholar 

  46. Ørntoft, N. W. et al. Hepatic bile acid transport increases in the postprandial state: a functional 11C-CSar PET/CT study in healthy humans. JHEP Rep. 3, 100288 (2021).

    PubMed  PubMed Central  Google Scholar 

  47. Baskin, A. S. et al. Regulation of human adipose tissue activation, gallbladder size, and bile acid metabolism by a β3-adrenergic receptor agonist. Diabetes 67, 2113–2125 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  48. O’Mara, A. E. et al. Chronic mirabegron treatment increases human brown fat, HDL cholesterol, and insulin sensitivity. J. Clin. Invest. 130, 2209–2219 (2020).

    PubMed  PubMed Central  Google Scholar 

  49. He, L. et al. Association of glucagon-like peptide-1 receptor agonist use with risk of gallbladder and biliary diseases. JAMA Intern. Med. 182, 513–519 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  50. Smits, M. M. et al. Biliary effects of liraglutide and sitagliptin, a 12‐week randomized placebo‐controlled trial in type 2 diabetes patients. Diabetes Obes. Metab. 18, 1217–1225 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  51. Nunez, D. J. et al. Glucose and lipid effects of the ileal apical sodium-dependent bile acid transporter inhibitor GSK2330672: double-blind randomized trials with type 2 diabetes subjects taking metformin. Diabetes Obes. Metab. 18, 654–662 (2016).

    PubMed  CAS  Google Scholar 

  52. Yusta, B. et al. Glucagon-like peptide-2 promotes gallbladder refilling via a TGR5-independent, GLP-2R-dependent pathway. Mol. Metab. 6, 503–511 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  53. Bove, K. E., Heubi, J. E., Balistreri, W. F. & Setchell, K. D. R. Bile acid synthetic defects and liver disease: a comprehensive review. Pediatr. Dev. Pathol. 7, 315–334 (2004).

    PubMed  Google Scholar 

  54. Ibrahim, S. H., Kamath, B. M., Loomes, K. M. & Karpen, S. J. Cholestatic liver diseases of genetic etiology: advances and controversies. Hepatology 75, 1627 (2022).

    PubMed  Google Scholar 

  55. Sangaraju, D. et al. Establishment of baseline profiles of 50 bile acids in preclinical toxicity species: a comprehensive assessment of translational differences and study design considerations for biomarker development. Toxicol. Appl. Pharmacol. 443, 116008 (2022).

    PubMed  CAS  Google Scholar 

  56. Thakare, R., Alamoudi, J. A., Gautam, N., Rodrigues, A. D. & Alnouti, Y. Species differences in bile acids I. Plasma and urine bile acid composition. J. Appl. Toxicol. 38, 1323–1335 (2018).

    PubMed  CAS  Google Scholar 

  57. Krasowski, M. D., Ni, A., Hagey, L. R. & Ekins, S. Evolution of promiscuous nuclear hormone receptors: LXR, FXR, VDR, PXR, and CAR. Mol. Cell. Endocrinol. 334, 39–48 (2011).

    PubMed  CAS  Google Scholar 

  58. Yu, H. et al. MRGPRX4 is a bile acid receptor for human cholestatic itch. eLife 8, e48431 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  59. Hov, J. R. et al. Mutational characterization of the bile acid receptor TGR5 in primary sclerosing cholangitis. PLoS ONE 5, e12403 (2010).

    PubMed  PubMed Central  Google Scholar 

  60. Pound, L. D., Kievit, P. & Grove, K. L. The nonhuman primate as a model for type 2 diabetes. Curr. Opin. Endocrinol. Diabetes Obes. 21, 89–94 (2014).

    PubMed  CAS  Google Scholar 

  61. Yang, Z. et al. Multi-omics comparison of the spontaneous diabetes mellitus and diet-induced prediabetic macaque models. Front. Pharmacol. 12, 784231 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  62. Jiang, C. et al. Alterations in microbiota and metabolites related to spontaneous diabetes and pre-diabetes in rhesus macaques. Genes 13, 1513 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  63. Zou, C. et al. Characterizing the induction of diabetes in juvenile cynomolgus monkeys with different doses of streptozotocin. Sci. China Life Sci. 55, 210–218 (2012).

    PubMed  CAS  Google Scholar 

  64. Sfakianos, M. K., Wilson, L., Sakalian, M., Falany, C. N. & Barnes, S. Conserved residues in the putative catalytic triad of human bile acid coenzyme A:amino acid N-acyltransferase. J. Biol. Chem. 277, 47270–47275 (2002).

    PubMed  CAS  Google Scholar 

  65. Kirilenko, B. M., Hagey, L. R., Barnes, S., Falany, C. N. & Hiller, M. Evolutionary analysis of bile acid-conjugating enzymes reveals a complex duplication and reciprocal loss history. Genome Biol. Evol. 11, 3256–3268 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  66. Honda, A. et al. Regulation of bile acid metabolism in mouse models with hydrophobic bile acid composition. J. Lipid Res. 61, 54–69 (2020).

    PubMed  CAS  Google Scholar 

  67. Boer, J. F.de et al. A human-like bile acid pool induced by deletion of hepatic Cyp2c70 modulates effects of FXR activation in mice. J. Lipid Res. 61, 291–305 (2020).

    PubMed  Google Scholar 

  68. Colombo, C., Zuliani, G., Ronchi, M., Breidenstein, J. & Setchell, K. D. Biliary bile acid composition of the human fetus in early gestation. Pediatr. Res. 21, 197–200 (1987).

    PubMed  CAS  Google Scholar 

  69. Takahashi, S. et al. Cyp2c70 is responsible for the species difference in bile acid metabolism between mice and humans. J. Lipid Res. 57, 2130–2137 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  70. Straniero, S. et al. Of mice and men: murine bile acids explain species differences in the regulation of bile acid and cholesterol metabolism. J. Lipid Res. 61, 480–491 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  71. Oteng, A.-B., Higuchi, S., Banks, A. S. & Haeusler, R. A. Cyp2c-deficiency depletes muricholic acids and protects against high-fat diet-induced obesity in male mice but promotes liver damage. Mol. Metab. 53, 101326 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  72. Li, R. et al. Low production of 12α-hydroxylated bile acids prevents hepatic steatosis in Cyp2c70−/− mice by reducing fat absorption. J. Lipid Res. 62, 100134 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  73. Li-Hawkins, J. et al. Cholic acid mediates negative feedback regulation of bile acid synthesis in mice. J. Clin. Invest. 110, 1191–1200 (2002).

    PubMed  PubMed Central  CAS  Google Scholar 

  74. Bertaggia, E. et al. Cyp8b1 ablation prevents western diet-induced weight gain and hepatic steatosis due to impaired fat absorption. Am. J. Physiol. Endocrinol. Metab. 313, E121–E133 (2017).

    PubMed  PubMed Central  Google Scholar 

  75. Truong, J. K. et al. Ileal bile acid transporter inhibition in Cyp2c70 KO mice ameliorates cholestatic liver injury. J. Lipid Res. 63, 100261 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  76. de Boer, J. F. et al. Cholangiopathy and biliary fibrosis in Cyp2c70-deficient mice are fully reversed by ursodeoxycholic acid. Cell Mol. Gastroenterol. Hepatol. 11, 1045–1069 (2021).

    PubMed  Google Scholar 

  77. Sayin, S. I. et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metab. 17, 225–235 (2013).

    PubMed  CAS  Google Scholar 

  78. Hu, X., Bonde, Y., Eggertsen, G. & Rudling, M. Muricholic bile acids are potent regulators of bile acid synthesis via a positive feedback mechanism. J. Intern. Med. 275, 27–38 (2014).

    PubMed  CAS  Google Scholar 

  79. Jiang, C. et al. Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction. Nat. Commun. 6, 10166 (2015).

    PubMed  CAS  Google Scholar 

  80. Dawson, P. A., Lan, T. & Rao, A. Bile acid transporters. J. Lipid Res. 50, 2340–2357 (2009).

    PubMed  PubMed Central  CAS  Google Scholar 

  81. Briand, F., Brousseau, E., Quinsat, M., Burcelin, R. & Sulpice, T. Obeticholic acid raises LDL-cholesterol and reduces HDL-cholesterol in the Diet-Induced NASH (DIN) hamster model. Eur. J. Pharmacol. 818, 449–456 (2018).

    PubMed  CAS  Google Scholar 

  82. Wang, Y. et al. A novel bile acid analog, A17, ameliorated non-alcoholic steatohepatitis in high-fat diet-fed hamsters. Toxicol. Appl. Pharmacol. 404, 115169 (2020).

    PubMed  CAS  Google Scholar 

  83. Taghibiglou, C. et al. Mechanisms of hepatic very low density lipoprotein overproduction in insulin resistance: evidence for enhanced lipoprotein assembly, reduced intracellular ApoB degradation, and increased microsomal triglyceride transfer protein in a fructose-fed hamster model. J. Biol. Chem. 275, 8416–8425 (2000).

    PubMed  CAS  Google Scholar 

  84. Wang, L. et al. Phenotypic characterization of a novel type 2 diabetes animal model in a SHANXI MU colony of Chinese hamsters. Endocrine 65, 61–72 (2019).

    PubMed  CAS  Google Scholar 

  85. Saxton, S. H. & Stevens, K. R. 2D and 3D liver models. J. Hepatol. 78, 873–875 (2023).

    PubMed  Google Scholar 

  86. Serras, A. S. et al. A critical perspective on 3D liver models for drug metabolism and toxicology studies. Front. Cell Dev. Biol. 9, 626805 (2021).

    PubMed  PubMed Central  Google Scholar 

  87. Swift, B., Pfeifer, N. D. & Brouwer, K. L. R. Sandwich-cultured hepatocytes: an in vitro model to evaluate hepatobiliary transporter-based drug interactions and hepatotoxicity. Drug. Metab. Rev. 42, 446–471 (2010).

    PubMed  PubMed Central  CAS  Google Scholar 

  88. Yang, K. et al. Sandwich-cultured hepatocytes as a tool to study drug disposition and drug-induced liver injury. J. Pharm. Sci. 105, 443–459 (2016).

    PubMed  PubMed Central  CAS  Google Scholar 

  89. de Bruijn, V. M. P. et al. Hepatic bile acid synthesis and secretion: comparison of in vitro methods. Toxicol. Lett. 365, 46–60 (2022).

    PubMed  Google Scholar 

  90. Afonso, M. B., Marques, V., van Mil, S. W. C. & Rodrigues, C. M. P. Human liver organoids: from generation to applications. Hepatology 79, 1432–1451 (2024).

    PubMed  Google Scholar 

  91. Du, Y. et al. Human vascularized bile duct-on-a chip: a multi-cellular micro-physiological system for studying cholestatic liver disease. Biofabrication 16, 015004 (2024).

    CAS  Google Scholar 

  92. Blutt, S. E. et al. Use of human tissue stem cell-derived organoid cultures to model enterohepatic circulation. Am. J. Physiol. Gastrointest. Liver Physiol. 321, G270–G279 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  93. Pullinger, C. R. et al. Human cholesterol 7α-hydroxylase (CYP7A1) deficiency has a hypercholesterolemic phenotype. J. Clin. Invest. 110, 109–117 (2002).

    PubMed  PubMed Central  CAS  Google Scholar 

  94. Deaton, A. M. et al. A rare missense variant in NR1H4 associates with lower cholesterol levels. Commun. Biol. 1, 14 (2018).

    PubMed  PubMed Central  Google Scholar 

  95. Zhong, S. et al. Haploinsufficiency for CYP8B1 associates with increased insulin sensitivity in humans. J. Clin. Invest. 132, e152961 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  96. Syring, K. E. et al. Systemic bile acids induce insulin resistance in a TGR5-independent manner. Am. J. Physiol. Endocrinol. Metab. 316, E782–E793 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  97. Ridlon, J. M. & Gaskins, H. R. Another renaissance for bile acid gastrointestinal microbiology. Nat. Rev. Gastroenterol. Hepatol. 21, 348–364 (2024).

    PubMed  PubMed Central  CAS  Google Scholar 

  98. Bany Bakar, R., Reimann, F. & Gribble, F. M. The intestine as an endocrine organ and the role of gut hormones in metabolic regulation. Nat. Rev. Gastroenterol. Hepatol. 20, 784–796 (2023).

    PubMed  CAS  Google Scholar 

  99. Fuchs, C. D. & Trauner, M. Role of bile acids and their receptors in gastrointestinal and hepatic pathophysiology. Nat. Rev. Gastroenterol. Hepatol. 19, 432–450 (2022).

    PubMed  CAS  Google Scholar 

  100. Adorini, L. & Trauner, M. FXR agonists in NASH treatment. J. Hepatol. 79, 1317–1331 (2023).

    PubMed  CAS  Google Scholar 

  101. Trampert, D. C., Kunst, R. F. & van de Graaf, S. F. J. Targeting bile salt homeostasis in biliary diseases. Curr. Opin. Gastroenterol. 40, 62 (2024).

    PubMed  CAS  Google Scholar 

  102. Ahmad, T. R. & Haeusler, R. A. Bile acids in glucose metabolism and insulin signalling – mechanisms and research needs. Nat. Rev. Endocrinol. 15, 701–712 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  103. Perino, A. & Schoonjans, K. Metabolic messengers: bile acids. Nat. Metab. 4, 416–423 (2022).

    PubMed  CAS  Google Scholar 

  104. Chávez-Talavera, O., Haas, J., Grzych, G., Tailleux, A. & Staels, B. Bile acid alterations in nonalcoholic fatty liver disease, obesity, insulin resistance and type 2 diabetes: what do the human studies tell? Curr. Opin. Lipidol. 30, 244–254 (2019).

    PubMed  Google Scholar 

  105. de Aguiar Vallim, T. Q., Tarling, E. J. & Edwards, P. A. Pleiotropic roles of bile acids in metabolism. Cell Metab. 17, 657–669 (2013).

    PubMed  PubMed Central  Google Scholar 

  106. Düfer, M. et al. Bile acids acutely stimulate insulin secretion of mouse β-cells via farnesoid X receptor activation and KATP channel inhibition. Diabetes 61, 1479–1489 (2012).

    PubMed  PubMed Central  Google Scholar 

  107. Lee, Y. Y. et al. Tauroursodeoxycholate (TUDCA), chemical chaperone, enhances function of islets by reducing ER stress. Biochem. Biophys. Res. Commun. 397, 735–739 (2010).

    PubMed  CAS  Google Scholar 

  108. Maczewsky, J. et al. TGR5 activation promotes stimulus-secretion coupling of pancreatic β-cells via a PKA-dependent pathway. Diabetes 68, 324–336 (2019).

    PubMed  CAS  Google Scholar 

  109. Kong, X. et al. Roux-en-Y gastric bypass enhances insulin secretion in type 2 diabetes via FXR-mediated TRPA1 expression. Mol. Metab. 29, 1–11 (2019).

    PubMed  PubMed Central  CAS  Google Scholar 

  110. Yan, D. et al. FXR controls insulin content by regulating Foxa2-mediated insulin transcription. Biochim. Biophys. Acta Mol. Cell Res. 1871, 119655 (2024).

    PubMed  CAS  Google Scholar 

  111. Kuhre, R. E. et al. Bile acids are important direct and indirect regulators of the secretion of appetite- and metabolism-regulating hormones from the gut and pancreas. Mol. Metab. 11, 84–95 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  112. Tamai, Y. et al. Association of lithocholic acid with skeletal muscle hypertrophy through TGR5-IGF-1 and skeletal muscle mass in cultured mouse myotubes, chronic liver disease rats and humans. eLife 11, e80638 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  113. Sasaki, T. et al. The exercise-inducible bile acid receptor Tgr5 improves skeletal muscle function in mice. J. Biol. Chem. 293, 10322–10332 (2018).

    PubMed  PubMed Central  CAS  Google Scholar 

  114. Sasaki, T. et al. Muscle-specific TGR5 overexpression improves glucose clearance in glucose-intolerant mice. J. Biol. Chem. 296, 100131 (2020).

    PubMed  PubMed Central  Google Scholar 

  115. Huang, S. et al. TGR5 agonist ameliorates insulin resistance in the skeletal muscles and improves glucose homeostasis in diabetic mice. Metabolism 99, 45–56 (2019).

    PubMed  CAS  Google Scholar 

  116. Abrigo, J. et al. Sarcopenia induced by chronic liver disease in mice requires the expression of the bile acids membrane receptor TGR5. Int. J. Mol. Sci. 21, 7922 (2020).

    PubMed  PubMed Central  CAS  Google Scholar 

  117. Abrigo, J. et al. Cholic acid and deoxycholic acid induce skeletal muscle atrophy through a mechanism dependent on TGR5 receptor. J. Cell Physiol. 236, 260–272 (2021).

    PubMed  CAS  Google Scholar 

  118. Watanabe, M. et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 439, 484–489 (2006).

    PubMed  CAS  Google Scholar 

  119. Broeders, E. P. et al. The bile acid chenodeoxycholic acid increases human brown adipose tissue activity. Cell Metab. 22, 418–426 (2015).

    PubMed  CAS  Google Scholar 

  120. Zietak, M. & Kozak, L. P. Bile acids induce uncoupling protein 1-dependent thermogenesis and stimulate energy expenditure at thermoneutrality in mice. Am. J. Physiol. Endocrinol. Metab. 310, E346–E354 (2016).

    PubMed  Google Scholar 

  121. Donkers, J. M. et al. NTCP deficiency in mice protects against obesity and hepatosteatosis. JCI Insight 4, e127197 (2019).

    PubMed Central  Google Scholar 

  122. Fan, M. et al. Bile acid-mediated activation of brown fat protects from alcohol-induced steatosis and liver injury in mice. Cell. Mol. Gastroenterol. Hepatol. 13, 809–826 (2022).

    PubMed  CAS  Google Scholar 

  123. Wu, Q. et al. Intestinal hypoxia-inducible factor 2α regulates lactate levels to shape the gut microbiome and alter thermogenesis. Cell Metab. 33, 1988–2003 (2021).

    PubMed  CAS  Google Scholar 

  124. Zhou, W. et al. Pathological bile acid concentrations in chronic cholestasis cause adipose mitochondrial defects. JHEP Rep. 5, 100714 (2023).

    PubMed  PubMed Central  Google Scholar 

  125. Velazquez-Villegas, L. A. et al. TGR5 signalling promotes mitochondrial fission and beige remodelling of white adipose tissue. Nat. Commun. 9, 245 (2018).

    PubMed  PubMed Central  Google Scholar 

  126. Dehondt, H. et al. Adipocyte-specific FXR-deficiency protects adipose tissue from oxidative stress and insulin resistance and improves glucose homeostasis. Mol. Metab. 69, 101686 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  127. van Zutphen, T. et al. FXR overexpression alters adipose tissue architecture in mice and limits its storage capacity leading to metabolic derangements. J. Lipid Res. 60, 1547–1561 (2019).

    PubMed  PubMed Central  Google Scholar 

  128. Morton, G. J. et al. FGF19 action in the brain induces insulin-independent glucose lowering. J. Clin. Invest. 123, 4799–4808 (2013).

    PubMed  PubMed Central  CAS  Google Scholar 

  129. Lan, T. et al. FGF19, FGF21, and an FGFR1/β-Klotho-activating antibody act on the nervous system to regulate body weight and glycemia. Cell Metab. 26, 709–718.e3 (2017).

    PubMed  PubMed Central  CAS  Google Scholar 

  130. Marcelin, G. et al. Central action of FGF19 reduces hypothalamic AGRP/NPY neuron activity and improves glucose metabolism. Mol. Metab. 3, 19–28 (2014).

    PubMed  CAS  Google Scholar 

  131. Liu, S. et al. A gut–brain axis regulating glucose metabolism mediated by bile acids and competitive fibroblast growth factor actions at the hypothalamus. Mol. Metab. 8, 37–50 (2017).

    PubMed  PubMed Central  Google Scholar 

  132. Liu, S.-M. et al. The gut signals to AGRP-expressing cells of the pituitary to control glucose homeostasis. J. Clin. Invest. 133, e164185 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  133. Bozadjieva-Kramer, N. et al. Intestinal FGF15 regulates bile acid and cholesterol metabolism but not glucose and energy balance. JCI Insight 9, e174164 (2024).

    PubMed  PubMed Central  Google Scholar 

  134. Castellanos-Jankiewicz, A. et al. Hypothalamic bile acid-TGR5 signaling protects from obesity. Cell Metab. 33, 1483–1492 (2021).

    PubMed  CAS  Google Scholar 

  135. Perino, A. et al. Central anorexigenic actions of bile acids are mediated by TGR5. Nat. Metab. 3, 595–603 (2021).

    PubMed  PubMed Central  CAS  Google Scholar 

  136. Chung, E. et al. A synthesis of a rationally designed inhibitor of cytochrome P450 8B1, a therapeutic target to treat obesity. Steroids 178, 108952 (2022).

    PubMed  CAS  Google Scholar 

  137. Liu, J., Carlson, H. A. & Scott, E. E. The structure and characterization of human cytochrome P450 8B1 supports future drug design for nonalcoholic fatty liver disease and diabetes. J. Biol. Chem. 298, 102344 (2022).

    PubMed  PubMed Central  CAS  Google Scholar 

  138. Liu, J., Offei, S. D., Yoshimoto, F. K. & Scott, E. E. Pyridine-containing substrate analogs are restricted from accessing the human cytochrome P450 8B1 active site by tryptophan 281. J. Biol. Chem. 299, 103032 (2023).

    PubMed  PubMed Central  CAS  Google Scholar 

  139. Zheng, X. et al. Hyocholic acid species improve glucose homeostasis through a distinct TGR5 and FXR signaling mechanism. Cell Metab. 33, 791–803 (2021).

    PubMed  CAS  Google Scholar 

  140. Kuang, J. et al. Hyodeoxycholic acid alleviates non-alcoholic fatty liver disease through modulating the gut-liver axis. Cell Metab. 35, 1752–1766 (2023).

    PubMed  CAS  Google Scholar 

  141. Chaudhari, S. N. et al. Bariatric surgery reveals a gut-restricted TGR5 agonist with anti-diabetic effects. Nat. Chem. Biol. 17, 20–29 (2021).

    PubMed  CAS  Google Scholar 

  142. Zhang, J. et al. Decreased abundance of Akkermansia muciniphila leads to the impairment of insulin secretion and glucose homeostasis in lean type 2 diabetes. Adv. Sci. 8, 2100536 (2021).

    CAS  Google Scholar 

  143. Higuchi, S. et al. The 16α-hydroxylated bile acid, pythocholic acid decreases food intake and increases oleoylethanolamide in male mice. Endocrinology 164, bqad116 (2023).

    PubMed  PubMed Central  Google Scholar 

  144. Jones, R. S., Putnam, W., Andersen, D. K., Hanks, J. B. & Lebovitz, H. E. Insulin’s effect on bile flow and lipid excretion during euglycemia and hypoglycemia. Dig. Dis. Sci. 29, 33–39 (1984).

    PubMed  CAS  Google Scholar 

  145. Chávez-Talavera, O. et al. Roux-en-Y gastric bypass increases systemic but not portal bile acid concentrations by decreasing hepatic bile acid uptake in minipigs. Int. J. Obes. 41, 664–668 (2017).

    Google Scholar 

  146. Wahlström, A. et al. Alterations in bile acid kinetics after bariatric surgery in patients with obesity with or without type 2 diabetes. eBioMedicine 106, 105265 (2024).

    PubMed  PubMed Central  Google Scholar 

  147. Boyer, J. L. Bile formation and secretion. Compr. Physiol. 3, 1035–1078 (2013).

    PubMed  PubMed Central  Google Scholar 

  148. Tso, P., Kendrick, H., Balint, J. A. & Simmonds, W. J. Role of biliary phosphatidylcholine in the absorption and transport of dietary triolein in the rat. Gastroenterology 80, 60–65 (1981).

    PubMed  CAS  Google Scholar 

  149. Cohen, D. E. Balancing cholesterol synthesis and absorption in the gastrointestinal tract. J. Clin. Lipidol. 2, S1–S3 (2008).

    PubMed  PubMed Central  Google Scholar 

  150. Roberts, M. S., Magnusson, B. M., Burczynski, F. J. & Weiss, M. Enterohepatic circulation. Clin. Pharmacokinet. 41, 751–790 (2002).

    PubMed  CAS  Google Scholar 

  151. Gurol, K. C., Aschner, M., Smith, D. R. & Mukhopadhyay, S. Role of excretion in manganese homeostasis and neurotoxicity: a historical perspective. Am. J. Physiol. Gastrointest. Liver Physiol. 322, G79–G92 (2022).

    PubMed  Google Scholar 

  152. Tao, T. Y. & Gitlin, J. D. Hepatic copper metabolism: insights from genetic disease. Hepatology 37, 1241 (2003).

    PubMed  CAS  Google Scholar 

  153. Fan, Y. & Pedersen, O. Gut microbiota in human metabolic health and disease. Nat. Rev. Microbiol. 19, 55–71 (2021).

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to S. Basu from Columbia University for helpful discussions. The authors acknowledge the support of NIDDK grants R01DK115825, R01DK135298, P30DK063608 and P30DK132710.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Rebecca A. Haeusler.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Endocrinology thanks Pieter Dorrestein and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cadena Sandoval, M., Haeusler, R.A. Bile acid metabolism in type 2 diabetes mellitus. Nat Rev Endocrinol 21, 203–213 (2025). https://doi.org/10.1038/s41574-024-01067-8

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41574-024-01067-8

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载