+
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Primer
  • Published:

Hereditary haemorrhagic telangiectasia

Abstract

Hereditary haemorrhagic telangiectasia (HHT) is a vascular dysplasia inherited as an autosomal dominant trait and caused by loss-of-function pathogenic variants in genes encoding proteins of the BMP signalling pathway. Up to 90% of disease-causal variants are observed in ENG and ACVRL1, with SMAD4 and GDF2 less frequently responsible for HHT. In adults, the most frequent HHT manifestations relate to iron deficiency and anaemia owing to recurrent epistaxis (nosebleeds) or bleeding from gastrointestinal telangiectases. Arteriovenous malformations (AVMs) in the lungs, liver and the central nervous system cause additional major complications and often complex symptoms, primarily due to vascular shunting, which is right-to-left through pulmonary AVMs (causing ischaemic stroke or cerebral abscess) and left-to-right through systemic AVMs (causing high cardiac output). Children usually experience isolated epistaxis; in rare cases, childhood complications occur from large AVMs in the lungs or central nervous system. Management goals encompass control of epistaxis and intestinal bleeding from telangiectases, screening for and treatment of iron deficiency (with or without anaemia) and AVMs, genetic counselling and evaluation of at-risk family members. Novel therapeutics, such as systemic antiangiogenic therapies, are actively being investigated. Although HHT is associated with increased morbidity, the appropriate screening and treatment of visceral AVMs, and the effective management of bleeding and anaemia, improves quality of life and overall survival.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Curaçao criteria and frequency of HHT features.
Fig. 2: Signalling pathways in hereditary haemorrhagic telangiectasia.
Fig. 3: Complications in hereditary haemorrhagic telangiectasia and their mechanisms.
Fig. 4: Physiopathology of pulmonary AVMs.

Similar content being viewed by others

References

  1. McAllister, K. A. et al. Endoglin, a TGF-β binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat. Genet. 8, 345–351 (1994).

    Article  CAS  PubMed  Google Scholar 

  2. Johnson, D. W. et al. Mutations in the activin receptor-like kinase 1 gene in hereditary haemorrhagic telangiectasia type 2. Nat. Genet. 13, 189–195 (1996).

    Article  CAS  PubMed  Google Scholar 

  3. Gallione, C. J. et al. A combined syndrome of juvenile polyposis and hereditary haemorrhagic telangiectasia associated with mutations in MADH4 (SMAD4). Lancet 363, 852–859 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Balachandar, S. et al. Identification and validation of a novel pathogenic variant in GDF2 (BMP9) responsible for hereditary hemorrhagic telangiectasia and pulmonary arteriovenous malformations. Am. J. Med. Genet. A 188, 959–964 (2022).

    Article  CAS  PubMed  Google Scholar 

  5. Wooderchak-Donahue, W. L. et al. BMP9 mutations cause a vascular-anomaly syndrome with phenotypic overlap with hereditary hemorrhagic telangiectasia. Am. J. Hum. Genet. 93, 530–537 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Goumans, M.-J., Zwijsen, A., Ten Dijke, P. & Bailly, S. Bone morphogenetic proteins in vascular homeostasis and disease. Cold Spring Harb. Perspect. Biol. 10, a031989 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Shovlin, C. L. et al. Updates on diagnostic criteria for hereditary haemorrhagic telangiectasia in the light of whole genome sequencing of ‘gene-negative’ individuals recruited to the 100000 Genomes Project. J. Med. Genet. 61, 182–185 (2024).

    Article  CAS  PubMed  Google Scholar 

  8. Shovlin, C. L. et al. Diagnostic criteria for hereditary hemorrhagic telangiectasia (Rendu–Osler–Weber syndrome). Am. J. Med. Genet. 91, 66–67 (2000).

    Article  CAS  PubMed  Google Scholar 

  9. Zhang, E., Virk, Z. M., Rodriguez-Lopez, J. & Al-Samkari, H. Hereditary hemorrhagic telangiectasia may be the most morbid inherited bleeding disorder in women. Blood Adv. 8, 3166–3172 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kelly, C., Buscarini, E., Manfredi, G., Gregory, S. & Heneghan, M. A. Hepatic manifestations of hereditary haemorrhagic telangiectasia. Liver Int. 44, 2220–2234 (2024).

    Article  CAS  PubMed  Google Scholar 

  11. Krings, T. et al. Neurovascular phenotypes in hereditary haemorrhagic telangiectasia patients according to age. Review of 50 consecutive patients aged 1 day–60 years. Neuroradiology 47, 711–720 (2005).

    Article  CAS  PubMed  Google Scholar 

  12. Kjeldsen, A. D., Vase, P. & Green, A. Hereditary haemorrhagic telangiectasia: a population-based study of prevalence and mortality in Danish patients. J. Intern. Med. 245, 31–39 (1999).

    Article  CAS  PubMed  Google Scholar 

  13. Plauchu, H., de Chadarévian, J. P., Bideau, A. & Robert, J. M. Age-related clinical profile of hereditary hemorrhagic telangiectasia in an epidemiologically recruited population. Am. J. Med. Genet. 32, 291–297 (1989).

    Article  CAS  PubMed  Google Scholar 

  14. Lesca, G. et al. Hereditary hemorrhagic telangiectasia: evidence for regional founder effects of ACVRL1 mutations in French and Italian patients. Eur. J. Hum. Genet. 16, 742–749 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Dakeishi, M. et al. Genetic epidemiology of hereditary hemorrhagic telangiectasia in a local community in the northern part of Japan. Hum. Mutat. 19, 140–148 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Serra, M. M., Papi, M. & Serrano, C. Prevalence of hereditary hemorrhagic telangiectasia in a medical care program organization in Buenos Aires, Argentina. Medicina 84, 221–226 (2024).

    PubMed  Google Scholar 

  17. Donaldson, J. W., McKeever, T. M., Hall, I. P., Hubbard, R. B. & Fogarty, A. W. Complications and mortality in hereditary hemorrhagic telangiectasia: a population-based study. Neurology 84, 1886–1893 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  18. McDonald, J. et al. Frequency of epistaxis and telangiectasia in patients with hereditary hemorrhagic telangiectasia (HHT) in comparison with the general population: Curaçao diagnostic criteria revisited. Genet. Med. 25, 100865 (2023).

    Article  CAS  PubMed  Google Scholar 

  19. Kilian, A. et al. Genotype–phenotype correlations in children with HHT. J. Clin. Med. 9, 2714 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  20. Faughnan, M. E. et al. Second international guidelines for the diagnosis and management of hereditary hemorrhagic telangiectasia. Ann. Intern. Med. 173, 989–1001 (2020).

    Article  PubMed  Google Scholar 

  21. Shovlin, C. L. et al. British Thoracic Society clinical statement on pulmonary arteriovenous malformations. Thorax 72, 1154–1163 (2017).

    Article  PubMed  Google Scholar 

  22. European Association for the Study of the Liver. EASL clinical practice guidelines: vascular diseases of the liver. J. Hepatol. 64, 179–202 (2016).

    Article  Google Scholar 

  23. Eker, O. F. et al. European Reference Network for Rare Vascular Diseases (VASCERN) position statement on cerebral screening in adults and children with hereditary haemorrhagic telangiectasia (HHT). Orphanet J. Rare Dis. 15, 165 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  24. Shovlin, C. L. et al. The European Rare Disease Network for HHT Frameworks for management of hereditary haemorrhagic telangiectasia in general and speciality care. Eur. J. Med. Genet. 65, 104370 (2022).

    Article  CAS  PubMed  Google Scholar 

  25. Dupuis-Girod, S. et al. European Reference Network for Rare Vascular Diseases (VASCERN): when and how to use intravenous bevacizumab in hereditary haemorrhagic telangiectasia (HHT)? Eur. J. Med. Genet. 65, 104575 (2022).

    Article  CAS  PubMed  Google Scholar 

  26. Thompson, K. P. et al. Predictors of mortality in patients with hereditary hemorrhagic telangiectasia. Orphanet J. Rare Dis. 16, 12 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kjeldsen, A., Aagaard, K. S., Tørring, P. M., Möller, S. & Green, A. 20-year follow-up study of Danish HHT patients—survival and causes of death. Orphanet J. Rare Dis. 11, 157 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  28. de Gussem, E. M. et al. Life expectancy of parents with hereditary haemorrhagic telangiectasia. Orphanet J. Rare Dis. 11, 46 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Droege, F. et al. Life expectancy and comorbidities in patients with hereditary hemorrhagic telangiectasia. Vasc. Med. 23, 377–383 (2018).

    Article  PubMed  Google Scholar 

  30. Duarte, C. W. et al. Improved survival outcomes in cancer patients with hereditary hemorrhagic telangiectasia. Cancer Epidemiol. Biomark. Prev. 23, 117–125 (2014).

    Article  CAS  Google Scholar 

  31. Hosman, A. E., Devlin, H. L., Silva, B. M. & Shovlin, C. L. Specific cancer rates may differ in patients with hereditary haemorrhagic telangiectasia compared to controls. Orphanet J. Rare Dis. 8, 195 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Jain, K. et al. Pathogenic variant frequencies in hereditary haemorrhagic telangiectasia support clinical evidence of protection from myocardial infarction. J. Clin. Med. 13, 250 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Shovlin, C. L., Awan, I., Cahilog, Z., Abdulla, F. N. & Guttmacher, A. E. Reported cardiac phenotypes in hereditary hemorrhagic telangiectasia emphasize burdens from arrhythmias, anemia and its treatments, but suggest reduced rates of myocardial infarction. Int. J. Cardiol. 215, 179–185 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Brown, M. A. et al. Crystal structure of BMP-9 and functional interactions with pro-region and receptors. J. Biol. Chem. 280, 25111–25118 (2005).

    Article  CAS  PubMed  Google Scholar 

  35. David, L., Mallet, C., Mazerbourg, S., Feige, J.-J. & Bailly, S. Identification of BMP9 and BMP10 as functional activators of the orphan activin receptor-like kinase 1 (ALK1) in endothelial cells. Blood 109, 1953–1961 (2007).

    Article  CAS  PubMed  Google Scholar 

  36. Scharpfenecker, M. et al. BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGF-stimulated angiogenesis. J. Cell. Sci. 120, 964–972 (2007).

    Article  CAS  PubMed  Google Scholar 

  37. Oh, S. P. et al. Activin receptor-like kinase 1 modulates transforming growth factor-β1 signaling in the regulation of angiogenesis. Proc. Natl Acad. Sci. USA 97, 2626–2631 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Goumans, M. J. et al. Activin receptor-like kinase (ALK)1 is an antagonistic mediator of lateral TGFβ/ALK5 signaling. Mol. Cell 12, 817–828 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Desroches-Castan, A., Tillet, E., Bouvard, C. & Bailly, S. BMP9 and BMP10: two close vascular quiescence partners that stand out. Dev. Dyn. 251, 178–197 (2022).

    Article  CAS  PubMed  Google Scholar 

  40. Saito, T. et al. Structural basis of the human endoglin–BMP9 interaction: insights into BMP signaling and HHT1. Cell Rep. 19, 1917–1928 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Al Tabosh, T. et al. Impact of heterozygous ALK1 mutations on the transcriptomic response to BMP9 and BMP10 in endothelial cells from hereditary hemorrhagic telangiectasia and pulmonary arterial hypertension donors. Angiogenesis 27, 211–227 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Cao, K., Plazzer, J.-P. & Macrae, F. SMAD4 variants and its genotype-phenotype correlations to juvenile polyposis syndrome. Hered. Cancer Clin. Pract. 21, 27 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Orlova, V. V. et al. Vascular defects associated with hereditary hemorrhagic telangiectasia revealed in patient-derived isogenic iPSCs in 3D vessels on chip. Stem Cell Rep. 17, 1536–1545 (2022). This shows that HHT genotype alone is not sufficient to make endothelial cells behave differently to isogenic control endothelial cells, emphasizing the importance of second or third hits arising in three-dimensional culture.

    Article  CAS  Google Scholar 

  44. Bernabéu-Herrero, M. E. et al. Mutations causing premature termination codons discriminate and generate cellular and clinical variability in HHT. Blood 143, 2314–2331 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bernabeu, C., Bayrak-Toydemir, P., McDonald, J. & Letarte, M. Potential second-hits in hereditary hemorrhagic telangiectasia. J. Clin. Med. 9, 3571 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Snellings, D. A. et al. Somatic mutations in vascular malformations of hereditary hemorrhagic telangiectasia result in bi-allelic loss of ENG or ACVRL1. Am. J. Hum. Genet. 105, 894–906 (2019). This was the first demonstration of a biallelic loss in HHT telangiectases.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Xiao, S. et al. Functional filter for whole-genome sequencing data identifies HHT and stress-associated non-coding SMAD4 polyadenylation site variants >5 kb from coding DNA. Am. J. Hum. Genet. 110, 1903–1918 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Lee, S. et al. Genetic or therapeutic neutralization of ALK1 reduces LDL transcytosis and atherosclerosis in mice. Nat. Cardiovasc. Res. 2, 438–448 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tao, B. et al. BMP-9 and LDL crosstalk regulates ALK-1 endocytosis and LDL transcytosis in endothelial cells. J. Biol. Chem. 295, 18179–18188 (2020).

    Article  CAS  PubMed  Google Scholar 

  50. Rossi, E. & Bernabeu, C. Novel vascular roles of human endoglin in pathophysiology. J. Thromb. Haemost. 21, 2327–2338 (2023).

    Article  PubMed  Google Scholar 

  51. Rossi, E. et al. Human endoglin as a potential new partner involved in platelet–endothelium interactions. Cell Mol. Life Sci. 75, 1269–1284 (2018).

    Article  CAS  PubMed  Google Scholar 

  52. Rossi, E. et al. Soluble endoglin reduces thrombus formation and platelet aggregation via interaction with αIIbβ3 integrin. J. Thromb. Haemost. 21, 1943–1956 (2023). This opened up an interesting line of clinical and basic research about HHT bleeding mechanisms other than the rupture of telangiectases.

    Article  PubMed  Google Scholar 

  53. Arthur, H. M. & Roman, B. L. An update on preclinical models of hereditary haemorrhagic telangiectasia: insights into disease mechanisms. Front. Med. 9, 973964 (2022).

    Article  Google Scholar 

  54. Lamouille, S., Mallet, C., Feige, J.-J. & Bailly, S. Activin receptor-like kinase 1 is implicated in the maturation phase of angiogenesis. Blood 100, 4495–4501 (2002).

    Article  CAS  PubMed  Google Scholar 

  55. Genet, G. et al. Induced endothelial cell cycle arrest prevents arteriovenous malformations in hereditary hemorrhagic telangiectasia. Circulation 149, 944–962 (2024).

    Article  CAS  PubMed  Google Scholar 

  56. Al Tarrass, M. et al. Large-scale phosphoproteomics reveals activation of the MAPK/GADD45β/P38 axis and cell cycle inhibition in response to BMP9 and BMP10 stimulation in endothelial cells. Cell Commun. Signal. 22, 158 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Baeyens, N. et al. Defective fluid shear stress mechanotransduction mediates hereditary hemorrhagic telangiectasia. J. Cell Biol. 214, 807–816 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Roman, B. L. & Hinck, A. P. ALK1 signaling in development and disease: new paradigms. Cell Mol. Life Sci. 74, 4539–4560 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Desroches-Castan, A. et al. Bone morphogenetic protein 9 is a paracrine factor controlling liver sinusoidal endothelial cell fenestration and protecting against hepatic fibrosis. Hepatology 70, 1392–1408 (2019).

    Article  CAS  PubMed  Google Scholar 

  60. Lin, Y. et al. Role of endothelial PDGFB in arterio-venous malformations pathogenesis. Angiogenesis 27, 193–209 (2024).

    Article  CAS  PubMed  Google Scholar 

  61. Ola, R. et al. PI3 kinase inhibition improves vascular malformations in mouse models of hereditary haemorrhagic telangiectasia. Nat. Commun. 7, 13650 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Al Tabosh, T. et al. Hereditary hemorrhagic telangiectasia: from signaling insights to therapeutic advances. J. Clin. Invest. 134, e176379 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Snodgrass, R. O., Chico, T. J. A. & Arthur, H. M. Hereditary haemorrhagic telangiectasia, an inherited vascular disorder in need of improved evidence-based pharmaceutical interventions. Genes 12, 174 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Robert, F., Desroches-Castan, A., Bailly, S., Dupuis-Girod, S. & Feige, J.-J. Future treatments for hereditary hemorrhagic telangiectasia. Orphanet J. Rare Dis. 15, 4 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Srinivasan, S. et al. A mouse model for hereditary hemorrhagic telangiectasia (HHT) type 2. Hum. Mol. Genet. 12, 473–482 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Bourdeau, A., Dumont, D. J. & Letarte, M. A murine model of hereditary hemorrhagic telangiectasia. J. Clin. Invest. 104, 1343–1351 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tual-Chalot, S., Oh, S. P. & Arthur, H. M. Mouse models of hereditary hemorrhagic telangiectasia: recent advances and future challenges. Front. Genet. 6, 25 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  68. Shovlin, C. L. Supermodels and disease: insights from the HHT mice. J. Clin. Invest. 104, 1335–1336 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Desroches-Castan, A. et al. Differential consequences of Bmp9 deletion on sinusoidal endothelial cell differentiation and liver fibrosis in 129/Ola and C57BL/6 mice. Cells 8, E1079 (2019).

    Article  Google Scholar 

  70. Park, H. et al. Defective flow-migration coupling causes arteriovenous malformations in hereditary hemorrhagic telangiectasia. Circulation 144, 805–822 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Singh, E., Redgrave, R. E., Phillips, H. M. & Arthur, H. M. Arterial endoglin does not protect against arteriovenous malformations. Angiogenesis 23, 559–566 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Benn, A. et al. BMP–SMAD1/5 signaling regulates retinal vascular development. Biomolecules 10, 488 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Chen, H. et al. Context-dependent signaling defines roles of BMP9 and BMP10 in embryonic and postnatal development. Proc. Natl Acad. Sci. USA 110, 11887–11892 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Ruiz, S. et al. A mouse model of hereditary hemorrhagic telangiectasia generated by transmammary-delivered immunoblocking of BMP9 and BMP10. Sci. Rep. 5, 37366 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  75. Desroches-Castan, A. et al. BMP9 is a key player in endothelial identity and its loss is sufficient to induce arteriovenous malformations. Cardiovasc. Res. 120, 782–795 (2024).

    Article  CAS  PubMed  Google Scholar 

  76. Shaligram, S. S. et al. Bone marrow-derived Alk1 mutant endothelial cells and clonally expanded somatic Alk1 mutant endothelial cells contribute to the development of brain arteriovenous malformations in mice. Transl. Stroke Res. 13, 494–504 (2022).

    Article  CAS  PubMed  Google Scholar 

  77. Hwan Kim, Y. et al. Overexpression of activin receptor-like kinase 1 in endothelial cells suppresses development of arteriovenous malformations in mouse models of hereditary hemorrhagic telangiectasia. Circ. Res. 127, 1122–1137 (2020).

    Article  CAS  PubMed  Google Scholar 

  78. Snodgrass, R. O. et al. Therapeutic targeting of vascular malformation in a zebrafish model of hereditary haemorrhagic telangiectasia. Dis. Model. Mech. 16, dmm049567 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Hyldahl, S. J., El-Jaji, M. Q., Schuster, A. & Kjeldsen, A. D. Skin and mucosal telangiectatic lesions in hereditary hemorrhagic telangiectasia patients. Int. J. Dermatol. 61, 1497–1505 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Geisthoff, U. et al. Trauma can induce telangiectases in hereditary hemorrhagic telangiectasia. J. Clin. Med. 9, 1507 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Sindhar, S., O’Bryhim, B. E., Licata, J., Piccirillo, J. F. & Apte, R. S. Identification of retinal vascular lesions using ultra-widefield angiography in hereditary hemorrhagic telangiectasia patients. Ophthalmol. Retin. 3, 510–515 (2019).

    Article  Google Scholar 

  82. Gaillard, S. et al. Tranexamic acid for epistaxis in hereditary hemorrhagic telangiectasia patients: a European cross-over controlled trial in a rare disease. J. Thromb. Haemost. 12, 1494–1502 (2014).

    Article  CAS  PubMed  Google Scholar 

  83. Ingrand, I. et al. Altered quality of life in Rendu–Osler–Weber disease related to recurrent epistaxis. Rhinology 49, 155–162 (2011).

    Article  CAS  PubMed  Google Scholar 

  84. Haubner, F. et al. Classification of endonasal HHT lesions using digital microscopy. Orphanet J. Rare Dis. 16, 182 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Folz, B. J., Wollstein, A. C., Lippert, B. M. & Werner, J. A. Morphology and distribution of nasal telangiectasia in HHT patients with epistaxis. Am. J. Rhinol. 19, 65–70 (2005).

    Article  PubMed  Google Scholar 

  86. Mlynski, G., Grützenmacher, S., Plontke, S., Mlynski, B. & Lang, C. Correlation of nasal morphology and respiratory function. Rhinology 39, 197–201 (2001).

    CAS  PubMed  Google Scholar 

  87. Canzonieri, C. et al. Endoscopic evaluation of gastrointestinal tract in patients with hereditary hemorrhagic telangiectasia and correlation with their genotypes. Genet. Med. 16, 3–10 (2014).

    Article  CAS  PubMed  Google Scholar 

  88. Grève, E. et al. High diagnostic and clinical impact of small-bowel capsule endoscopy in patients with hereditary hemorrhagic telangiectasia with overt digestive bleeding and/or severe anemia. Gastrointest. Endosc. 71, 760–767 (2010).

    Article  PubMed  Google Scholar 

  89. Chamberlain, S. M., Patel, J., Carter Balart, J., Gossage, J. R. & Sridhar, S. Evaluation of patients with hereditary hemorrhagic telangiectasia with video capsule endoscopy: a single-center prospective study. Endoscopy 39, 516–520 (2007).

    Article  CAS  PubMed  Google Scholar 

  90. Thielemans, L., Layton, D. M. & Shovlin, C. L. Low serum haptoglobin and blood films suggest intravascular hemolysis contributes to severe anemia in hereditary hemorrhagic telangiectasia. Haematologica 104, e127–e130 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Kjeldsen, A. D. & Kjeldsen, J. Gastrointestinal bleeding in patients with hereditary hemorrhagic telangiectasia. Am. J. Gastroenterol. 95, 415–418 (2000).

    Article  CAS  PubMed  Google Scholar 

  92. Shovlin, C. L. et al. Mutational and phenotypic characterization of hereditary hemorrhagic telangiectasia. Blood 136, 1907–1918 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  93. Shovlin, C. L. Pulmonary arteriovenous malformations. Am. J. Respir. Crit. Care Med. 190, 1217–1228 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  94. Hessels, J. et al. Evolution of pulmonary arteriovenous malformations: the role of contrast echocardiography. Chest 163, 669–677 (2023).

    Article  CAS  PubMed  Google Scholar 

  95. Topiwala, K. K., Patel, S. D., Pervez, M., Shovlin, C. L. & Alberts, M. J. Ischemic stroke in patients with pulmonary arteriovenous fistulas. Stroke 52, e311–e315 (2021).

    Article  CAS  PubMed  Google Scholar 

  96. Boother, E. J. et al. Cerebral abscess associated with odontogenic bacteremias, hypoxemia, and iron loading in immunocompetent patients with right-to-left shunting through pulmonary arteriovenous malformations. Clin. Infect. Dis. 65, 595–603 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Topiwala, K. K., Patel, S. D., Saver, J. L., Streib, C. D. & Shovlin, C. L. Ischemic stroke and pulmonary arteriovenous malformations: a review. Neurology 98, 188–198 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Müller-Hülsbeck, S. et al. CIRSE standards of practice on diagnosis and treatment of pulmonary arteriovenous malformations. Cardiovasc. Interv. Radiol. 43, 353–361 (2020).

    Article  Google Scholar 

  99. Buscarini, E. et al. Natural history and outcome of hepatic vascular malformations in a large cohort of patients with hereditary hemorrhagic teleangiectasia. Dig. Dis. Sci. 56, 2166–2178 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  100. Buscarini, E. et al. Doppler ultrasonographic grading of hepatic vascular malformations in hereditary hemorrhagic telangiectasia—results of extensive screening. Ultraschall Med. 25, 348–355 (2004).

    Article  CAS  PubMed  Google Scholar 

  101. Buscarini, E. et al. High prevalence of hepatic focal nodular hyperplasia in subjects with hereditary hemorrhagic telangiectasia. Ultrasound Med. Biol. 30, 1089–1097 (2004).

    Article  PubMed  Google Scholar 

  102. Serra, M. M. et al. Central nervous system manganese induced lesions and clinical consequences in patients with hereditary hemorrhagic telangiectasia. Orphanet J. Rare Dis. 12, 92 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Brinjikji, W., Iyer, V. N., Wood, C. P. & Lanzino, G. Prevalence and characteristics of brain arteriovenous malformations in hereditary hemorrhagic telangiectasia: a systematic review and meta-analysis. J. Neurosurg. 127, 302–310 (2017).

    Article  PubMed  Google Scholar 

  104. Kim, H. et al. Hemorrhage rates from brain arteriovenous malformation in patients with hereditary hemorrhagic telangiectasia. Stroke 46, 1362–1364 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Brinjikji, W. et al. Neurovascular manifestations of hereditary hemorrhagic telangiectasia: a consecutive series of 376 patients during 15 years. AJNR Am. J. Neuroradiol. 37, 1479–1486 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Schimmel, K. et al. Arteriovenous malformations—current understanding of the pathogenesis with implications for treatment. Int. J. Mol. Sci. 22, 9037 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Beslow, L. A. et al. De novo brain vascular malformations in hereditary hemorrhagic telangiectasia. Pediat. Neurol. 155, 120–125 (2024).

    Article  PubMed  Google Scholar 

  108. Anderson, E., Sharma, L., Alsafi, A. & Shovlin, C. L. Pulmonary arteriovenous malformations may be the only clinical criterion present in genetically confirmed hereditary haemorrhagic telangiectasia. Thorax 77, 628–630 (2022).

    Article  PubMed  Google Scholar 

  109. Dupuis, O., Delagrange, L. & Dupuis-Girod, S. Hereditary haemorrhagic telangiectasia and pregnancy: a review of the literature. Orphanet J. Rare Dis. 15, 5 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  110. Mora-Luján, J. M. et al. Gastrointestinal bleeding in patients with hereditary hemorrhagic telangiectasia: risk factors and endoscopic findings. J. Clin. Med. 9, 82 (2020).

    Article  Google Scholar 

  111. Shovlin, C. L. et al. European Reference Network for Rare Vascular Diseases (VASCERN) outcome measures for hereditary haemorrhagic telangiectasia (HHT). Orphanet J. Rare Dis. 13, 136 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  112. Velthuis, S. et al. Grade of pulmonary right-to-left shunt on contrast echocardiography and cerebral complications: a striking association. Chest 144, 542–548 (2013).

    Article  PubMed  Google Scholar 

  113. Lovering, A. T., Duke, J. W. & Elliott, J. E. Intrapulmonary arteriovenous anastomoses in humans—response to exercise and the environment. J. Physiol. 593, 507–520 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Laurie, S. S., Elliott, J. E., Goodman, R. D. & Lovering, A. T. Catecholamine-induced opening of intrapulmonary arteriovenous anastomoses in healthy humans at rest. J. Appl. Physiol. 113, 1213–1222 (2012).

    Article  CAS  PubMed  Google Scholar 

  115. Davis, J. T., Elliott, J. E., Duke, J. W., Cristobal, A. & Lovering, A. T. Hyperoxia-induced stepwise reduction in blood flow through intrapulmonary, but not intracardiac, shunt during exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 325, R96–R105 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Alyafaie, A. et al. Arterial spin-labeling MR imaging in the detection of intracranial arteriovenous malformations in patients with hereditary hemorrhagic telangiectasia. AJNR Am. J. Neuroradiol. 45, 1019–1024 (2024).

    Article  PubMed  Google Scholar 

  117. Beslow, L. A. et al. Current practice: rationale for screening children with hereditary hemorrhagic telangiectasia for brain vascular malformations. AJNR Am. J. Neuroradiol. 45, 1177–1184 (2024).

    Article  PubMed  Google Scholar 

  118. Cenzato, M. et al. European consensus conference on unruptured brain AVMs treatment (supported by EANS, ESMINT, EGKS, and SINCH). Acta Neurochir. 159, 1059–1064 (2017).

    Article  PubMed  Google Scholar 

  119. Mowers, K. L., Sekarski, L., White, A. J. & Grady, R. M. Pulmonary arteriovenous malformations in children with hereditary hemorrhagic telangiectasia: a longitudinal study. Pulm. Circ. 8, 2045894018786696 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  120. Hosman, A. E. et al. Screening children for pulmonary arteriovenous malformations: evaluation of 18 years of experience. Pediatr. Pulmonol. 52, 1206–1211 (2017).

    Article  PubMed  Google Scholar 

  121. White, A. J. et al. Brain abscess and stroke in children and adults with hereditary hemorrhagic telangiectasia: analysis of a large national claims database. Neurology 100, e2324–e2330 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Ratjen, A., Au, J., Carpenter, S., John, P. & Ratjen, F. Growth of pulmonary arteriovenous malformations in pediatric patients with hereditary hemorrhagic telangiectasia. J. Pediat. 208, 279–281 (2019).

    Article  PubMed  Google Scholar 

  123. Al-Saleh, S. et al. Utility of contrast echocardiography for pulmonary arteriovenous malformation screening in pediatric hereditary hemorrhagic telangiectasia. J. Pediat. 160, 1039–1043.e1 (2012).

    Article  PubMed  Google Scholar 

  124. Kilian, A. et al. Comparing characteristics and treatment of brain vascular malformations in children and adults with HHT. J. Clin. Med. 12, 2704 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Krings, T. et al. Neurovascular manifestations in hereditary hemorrhagic telangiectasia: imaging features and genotype-phenotype correlations. AJNR Am. J. Neuroradiol. 36, 863–870 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Pahl, K. S. et al. Applicability of the Curaçao criteria for the diagnosis of hereditary hemorrhagic telangiectasia in the pediatric population. J. Pediatr. 197, 207–213 (2018).

    Article  PubMed  Google Scholar 

  127. Letteboer, T. G. W. et al. Genotype–phenotype relationship in hereditary haemorrhagic telangiectasia. J. Med. Genet. 43, 371–377 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. Giordano, P. et al. Screening for children from families with Rendu–Osler–Weber disease: from geneticist to clinician. J. Thromb. Haemost. 4, 1237–1245 (2006).

    Article  CAS  PubMed  Google Scholar 

  129. Kasthuri, R. S. et al. Prevalence and predictors of anemia in hereditary hemorrhagic telangiectasia. Am. J. Hematol. https://doi.org/10.1002/ajh.24832 (2017).

  130. Camaschella, C. Iron-deficiency anemia. N. Engl. J. Med. 372, 1832–1843 (2015).

    Article  PubMed  Google Scholar 

  131. Livesey, J. A. et al. Low serum iron levels are associated with elevated plasma levels of coagulation factor VIII and pulmonary emboli/deep venous thromboses in replicate cohorts of patients with hereditary haemorrhagic telangiectasia. Thorax 67, 328–333 (2012).

    Article  PubMed  Google Scholar 

  132. Jørgensen, O. J. et al. Elevated FVIII levels in hereditary hemorrhagic telangiectasia: implications for clinical management. Laryngoscope Investig. Otolaryngol. 9, e1196 (2024).

    Article  PubMed  Google Scholar 

  133. Shovlin, C. L. et al. Ischaemic strokes in patients with pulmonary arteriovenous malformations and hereditary hemorrhagic telangiectasia: associations with iron deficiency and platelets. PLoS ONE 9, e88812 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  134. Santhirapala, V., Williams, L. C., Tighe, H. C., Jackson, J. E. & Shovlin, C. L. Arterial oxygen content is precisely maintained by graded erythrocytotic responses in settings of high/normal serum iron levels, and predicts exercise capacity: an observational study of hypoxaemic patients with pulmonary arteriovenous malformations. PLoS ONE 9, e90777 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Gawecki, F. et al. Exercise capacity reflects airflow limitation rather than hypoxaemia in patients with pulmonary arteriovenous malformations. QJM 112, 335–342 (2019).

    Article  CAS  PubMed  Google Scholar 

  136. Finnamore, H. et al. Hemorrhage-adjusted iron requirements, hematinics and hepcidin define hereditary hemorrhagic telangiectasia as a model of hemorrhagic iron deficiency. PLoS ONE 8, e76516 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Joyce, K. E. et al. Whole genome sequences discriminate hereditary hemorrhagic telangiectasia phenotypes by non-HHT deleterious DNA variation. Blood Adv. 6, 3956–3969 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Sharma, L. et al. Iron deficiency responses and integrated compensations in patients according to hereditary hemorrhagic telangiectasia ACVRL1, ENG and SMAD4 genotypes. Haematologica 109, 958–962 (2024).

    Article  CAS  PubMed  Google Scholar 

  139. Rizvi, A. et al. Hemoglobin is a vital determinant of arterial oxygen content in hypoxemic patients with pulmonary arteriovenous malformations. Ann. Am. Thorac. Soc. 14, 903–911 (2017).

    Article  PubMed  Google Scholar 

  140. Geisthoff, U. W. et al. Treatment of epistaxis in hereditary hemorrhagic telangiectasia with tranexamic acid—a double-blind placebo-controlled cross-over phase IIIB study. Thromb. Res. 134, 565–571 (2014).

    Article  CAS  PubMed  Google Scholar 

  141. Yaniv, E., Preis, M., Hadar, T., Shvero, J. & Haddad, M. Antiestrogen therapy for hereditary hemorrhagic telangiectasia: a double-blind placebo-controlled clinical trial. Laryngoscope 119, 284–288 (2009).

    Article  CAS  PubMed  Google Scholar 

  142. Yaniv, E., Preis, M., Shevro, J., Nageris, B. & Hadar, T. Anti-estrogen therapy for hereditary hemorrhagic telangiectasia—a long-term clinical trial. Rhinology 49, 214–216 (2011).

    Article  CAS  PubMed  Google Scholar 

  143. de Gussem, E. M. et al. The effect of N-acetylcysteine on epistaxis and quality of life in patients with HHT: a pilot study. Rhinology 47, 85–88 (2009).

    PubMed  Google Scholar 

  144. Guilhem, A. et al. Intra-venous bevacizumab in hereditary hemorrhagic telangiectasia (HHT): a retrospective study of 46 patients. PLoS ONE 12, e0188943 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Thompson, A. B. et al. Very low dose bevacizumab for the treatment of epistaxis in patients with hereditary hemorrhagic telangiectasia. Allergy Rhinol. 5, 91–95 (2014).

    Article  Google Scholar 

  146. Al-Samkari, H. et al. An international, multicenter study of intravenous bevacizumab for bleeding in hereditary hemorrhagic telangiectasia: the InHIBIT-Bleed study. Haematologica 106, 2161–2169 (2021).

    Article  CAS  PubMed  Google Scholar 

  147. Chavan, A. et al. Systemic therapy with bevacizumab in patients with hereditary hemorrhagic telangiectasia (HHT). Vasa 42, 106–110 (2013).

    Article  PubMed  Google Scholar 

  148. Dupuis-Girod, S. et al. Bevacizumab in patients with hereditary hemorrhagic telangiectasia and severe hepatic vascular malformations and high cardiac output. JAMA 307, 948–955 (2012). This was the first prospective study to offer a targeted antiangiogenic therapeutic option for managing HHT.

    Article  CAS  PubMed  Google Scholar 

  149. Dupuis-Girod, S. et al. Efficacy and safety of intravenous bevacizumab on severe bleeding associated with hemorrhagic hereditary telangiectasia: a national, randomized multicenter trial. J. Intern. Med. 294, 761–774 (2023).

    Article  CAS  PubMed  Google Scholar 

  150. Faughnan, M. E. et al. Pazopanib may reduce bleeding in hereditary hemorrhagic telangiectasia. Angiogenesis 22, 145–155 (2019). This summarizes an international effort to standardize practices and consider the management of patients with HHT.

    Article  CAS  PubMed  Google Scholar 

  151. Hermann, R. et al. Effect of oral nintedanib vs placebo on epistaxis in hereditary hemorrhagic telangiectasia: the EPICURE multicenter randomized double-blind trial. Angiogenesis 28, 9 (2025).

    Article  CAS  Google Scholar 

  152. Lebrin, F. et al. Thalidomide stimulates vessel maturation and reduces epistaxis in individuals with hereditary hemorrhagic telangiectasia. Nat. Med. 16, 420–428 (2010).

    Article  CAS  PubMed  Google Scholar 

  153. Invernizzi, R. et al. Efficacy and safety of thalidomide for the treatment of severe recurrent epistaxis in hereditary haemorrhagic telangiectasia: results of a non-randomised, single-centre, phase 2 study. Lancet Haematol. 2, e465–e473 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  154. H, A. S. et al. Pomalidomide for epistaxis in hereditary hemorrhagic telangiectasia. N. Engl. J. Med. 391, 1015–1027 (2024).

    Article  Google Scholar 

  155. Abiri, A. et al. Laser-assisted control of epistaxis in hereditary hemorrhagic telangiectasia: a systematic review. Lasers Surg. Med. 52, 293–300 (2020).

    Article  PubMed  Google Scholar 

  156. Thiele, B., Abdel-Aty, Y., Marks, L., Lal, D. & Marino, M. Sclerotherapy for hereditary hemorrhagic telangiectasia-related epistaxis: a systematic review. Ann. Otol. Rhinol. Laryngol. 132, 82–90 (2023).

    Article  PubMed  Google Scholar 

  157. Luk, L., Mace, J. C., Bhandarkar, N. D. & Sautter, N. B. Comparison of electrosurgical plasma coagulation and potassium-titanyl-phosphate laser photocoagulation for treatment of hereditary hemorrhagic telangiectasia-related epistaxis. Int. Forum Allergy Rhinol. 4, 640–645 (2014).

    Article  PubMed  Google Scholar 

  158. Lund, V. J., Darby, Y., Rimmer, J., Amin, M. & Husain, S. Nasal closure for severe hereditary haemorrhagic telangiectasia in 100 patients. The Lund modification of the Young’s procedure: a 22-year experience. Rhinology 55, 135–141 (2017).

    Article  CAS  PubMed  Google Scholar 

  159. Lee, J. M. et al. Prospective pilot study of Floseal® for the treatment of anterior epistaxis in patients with hereditary hemorrhagic telangiectasia (HHT). J. Otolaryngol. Head. Neck Surg. 48, 48 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Pyne, J. M. et al. Surgiflo® hemostatic matrix versus NasoPore® nasal packing following postassium titanyl phosphate laser surgery for hereditary hemorrhagic telangiectasia: a randomized controlled trial. Laryngoscope Investig. Otolaryngol. 8, 328–334 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  161. May, A., Friesing-Sosnik, T., Manner, H., Pohl, J. & Ell, C. Long-term outcome after argon plasma coagulation of small-bowel lesions using double-balloon enteroscopy in patients with mid-gastrointestinal bleeding. Endoscopy 43, 759–765 (2011).

    Article  CAS  PubMed  Google Scholar 

  162. Tortora, A., Marmo, C., Gasbarrini, A., Costamagna, G. & Riccioni, M. E. Management of gastrointestinal bleeding in Rendu–Osler disease. Rev. Recent Clin. Trials 15, 321–327 (2020).

    Article  CAS  PubMed  Google Scholar 

  163. Manfredi, G. et al. Gastrointestinal bleeding in patients with hereditary hemorrhagic telangiectasia: long-term results of endoscopic treatment. Endosc. Int. Open. 11, E1145–E1152 (2023). This is the largest study of people with HHT with gastrointestinal bleeding, showing that endoscopic treatment of gastrointestinal telangiectases is effective in the long term and safe.

    Article  PubMed  PubMed Central  Google Scholar 

  164. Iyer, V. N. et al. Intravenous bevacizumab for refractory hereditary hemorrhagic telangiectasia-related epistaxis and gastrointestinal bleeding. Mayo Clin. Proc. 93, 155–166 (2018).

    Article  CAS  PubMed  Google Scholar 

  165. Hosman, A. et al. Follow-up of thalidomide treatment in patients with hereditary haemorrhagic telangiectasia. Rhinology 53, 340–344 (2015).

    Article  CAS  PubMed  Google Scholar 

  166. Torres-Iglesias, R. et al. Long-term use of somatostatin analogs for chronic gastrointestinal bleeding in hereditary hemorrhagic telangiectasia. Front. Med. 10, 1146080 (2023).

    Article  Google Scholar 

  167. Shovlin, C. et al. Prevention of serious infections in hereditary hemorrhagic telangiectasia: roles for prophylactic antibiotics, the pulmonary capillaries—but not vaccination. Haematologica 104, e85–e86 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Al-Sahaf, M., Anderson, J., Nandi, J., Alsafi, A. & Shovlin, C. L. S32 elective cardiothoracic surgical resections for pulmonary arteriovenous malformations—a 16 year single-centre experience. Thorax 79, A29 (2024).

    Google Scholar 

  169. Alsafi, A. et al. Patients with in-situ metallic coils and Amplatzer vascular plugs used to treat pulmonary arteriovenous malformations since 1984 can safely undergo magnetic resonance imaging. Br. J. Radiol. 92, 20180752 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  170. Lerut, J. et al. Liver transplantation for hereditary hemorrhagic telangiectasia: report of the European liver transplant registry. Ann. Surg. 244, 854–862 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  171. Dupuis-Girod, S. et al. Long-term outcome of patients with hereditary hemorrhagic telangiectasia and severe hepatic involvement after orthotopic liver transplantation: a single-center study. Liver Transpl. 16, 340–347 (2010).

    Article  PubMed  Google Scholar 

  172. Dumortier, J. et al. Recurrence of hereditary hemorrhagic telangiectasia after liver transplantation: clinical implications and physiopathological insights. Hepatology 69, 2232–2240 (2019).

    Article  PubMed  Google Scholar 

  173. Vlachou, P. A. et al. Improvement of ischemic cholangiopathy in three patients with hereditary hemorrhagic telangiectasia following treatment with bevacizumab. J. Hepatol. 59, 186–189 (2013).

    Article  CAS  PubMed  Google Scholar 

  174. Dupuis-Girod, S. & Buscarini, E. Hereditary hemorrhagic telangiectasia: to transplant or not to transplant? Liver Int. 36, 1741–1744 (2016).

    Article  PubMed  Google Scholar 

  175. Mohr, J. P. et al. Medical management with or without interventional therapy for unruptured brain arteriovenous malformations (ARUBA): a multicentre, non-blinded, randomised trial. Lancet 383, 614–621 (2014).

    Article  CAS  PubMed  Google Scholar 

  176. Pasculli, G. et al. Health-related quality of life in a rare disease: hereditary hemorrhagic telangiectasia (HHT) or Rendu–Osler–Weber disease. Qual. Life Res. 13, 1715–1723 (2004).

    Article  PubMed  Google Scholar 

  177. Geisthoff, U. W. et al. Health-related quality of life in hereditary hemorrhagic telangiectasia. Otolaryngol. Head. Neck Surg. 136, 726–733 (2007).

    Article  PubMed  Google Scholar 

  178. Geirdal, A, Ø., Dheyauldeen, S., Bachmann-Harildstad, G. & Heimdal, K. Quality of life in patients with hereditary hemorrhagic telangiectasia in Norway: a population based study. Am. J. Med. Genet. A 158, 1269–1278 (2012).

    Article  Google Scholar 

  179. Zarrabeitia, R. et al. Quality of life in patients with hereditary haemorrhagic telangiectasia (HHT). Health Qual. Life Outcomes 15, 19 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  180. Merlo, C. A., Yin, L. X., Hoag, J. B., Mitchell, S. E. & Reh, D. D. The effects of epistaxis on health-related quality of life in patients with hereditary hemorrhagic telangiectasia. Int. Forum Allergy Rhinol. 4, 921–925 (2014).

    Article  PubMed  Google Scholar 

  181. Martinent, G. et al. Hereditary hemorrhagic telangiectasia and health-related quality of life: a qualitative investigation. Qual. Life Res. 29, 1291–1299 (2020).

    Article  PubMed  Google Scholar 

  182. Le, T. T. T. et al. Development and validation of a quality of life measurement scale specific to hereditary hemorrhagic telangiectasia: the QoL-HHT. Orphanet J. Rare Dis. 17, 281 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  183. Kasthuri, R. S. et al. Development and performance of a hereditary hemorrhagic telangiectasia-specific quality-of-life instrument. Blood Adv. 6, 4301–4309 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Hanes, F. Multiple hereditary telangiectases causing hemorrhage (hereditary haemorrhagic telangiectasia). Bull. Johns Hopkins Med. Soc. 63, 73 (1909).

    Google Scholar 

  185. Park, S. O. et al. Real-time imaging of de novo arteriovenous malformation in a mouse model of hereditary hemorrhagic telangiectasia. J. Clin. Invest. 119, 3487–3496 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  186. Anzell, A. R. et al. Blood flow regulates acvrl1 transcription via ligand-dependent Alk1 activity. Angiogenesis 27, 501–522 (2024).

    Article  CAS  PubMed  Google Scholar 

  187. Cheng, Y.-W. et al. Shear stress and sub-femtomolar levels of ligand synergize to activate ALK1 signaling in endothelial cells. Cells 13, 285 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Shovlin, C. L. et al. MEK 1 inhibition and bleeding in hereditary haemorrhagic telangiectasia. Br. J. Haematol. 204, 361–365 (2024).

    Article  CAS  PubMed  Google Scholar 

  189. Gariballa, N., Badawi, S. & Ali, B. R. Endoglin mutants retained in the endoplasmic reticulum exacerbate loss of function in hereditary hemorrhagic telangiectasia type 1 (HHT1) by exerting dominant negative effects on the wild type allele. Traffic 25, e12928 (2024).

    Article  CAS  PubMed  Google Scholar 

  190. Soukarieh, O. et al. uAUG creating variants in the 5′UTR of ENG causing hereditary hemorrhagic telangiectasia. npj Genom. Med. 8, 32 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Parambil, J. G. et al. Pazopanib for severe bleeding and transfusion-dependent anemia in hereditary hemorrhagic telangiectasia. Angiogenesis 25, 87–97 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  192. Kovacs-Sipos, E., Holzmann, D., Scherer, T. & Soyka, M. B. Nintedanib as a novel treatment option in hereditary haemorrhagic telangiectasia. BMJ Case Rep. 2017, bcr2017219393 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Modaressi, A. & Shovlin, C. L. Integration of genotypic data into clinical trial design and reporting in hereditary hemorrhagic telangiectasia could help personalize treatment. Haematologica https://doi.org/10.3324/haematol.2024.285809 (2024).

  194. McCarley, S. C., Murphy, D. A., Thompson, J. & Shovlin, C. L. Pharmacogenomic considerations for anticoagulant prescription in patients with hereditary haemorrhagic telangiectasia. J. Clin. Med. 12, 7710 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Velasco, B. et al. Vascular gene transfer driven by endoglin and ICAM-2 endothelial-specific promoters. Gene Ther. 8, 897–904 (2001).

    Article  CAS  PubMed  Google Scholar 

  196. Yadav, A. et al. Evaluation of Aav capsids and delivery approaches for hereditary hemorrhagic telangiectasia gene therapy. Transl. Stroke Res. https://doi.org/10.1007/s12975-024-01275-4 (2024).

  197. Zaffar, N., Ravichakaravarthy, T., Faughnan, M. E. & Shehata, N. The use of anti-fibrinolytic agents in patients with HHT: a retrospective survey. Ann. Hematol. 94, 145–152 (2015).

    Article  CAS  PubMed  Google Scholar 

  198. Whitehead, K. J. et al. Effect of topical intranasal therapy on epistaxis frequency in patients with hereditary hemorrhagic telangiectasia: a randomized clinical trial. JAMA 316, 943–951 (2016).

    Article  CAS  PubMed  Google Scholar 

  199. Minami, K. & Haji, T. Intranasal topical estrogen in the management of epistaxis in hereditary hemorrhagic telangiectasia. Acta Otolaryngol. 136, 528–531 (2016).

    Article  CAS  PubMed  Google Scholar 

  200. Reh, D. D., Hur, K. & Merlo, C. A. Efficacy of a topical sesame/rose geranium oil compound in patients with hereditary hemorrhagic telangiectasia associated epistaxis. Laryngoscope 123, 820–822 (2013).

    Article  CAS  PubMed  Google Scholar 

  201. Chavan, A. et al. Emerging role of bevacizumab in management of patients with symptomatic hepatic involvement in hereditary hemorrhagic telangiectasia. Am. J. Hematol. 92, E641–E644 (2017).

    Article  CAS  PubMed  Google Scholar 

  202. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04404881 (2024).

  203. Vázquez, C., Gonzalez, M. L., Ferraris, A., Bandi, J. C. & Serra, M. M. Bevacizumab for treating hereditary hemorrhagic telangiectasia patients with severe hepatic involvement or refractory anemia. PLoS ONE 15, e0228486 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  204. Dupuis-Girod, S. et al. Effect of bevacizumab nasal spray on epistaxis duration in hereditary hemorrhagic telangectasia: a randomized clinical trial. JAMA 316, 934–942 (2016).

    Article  CAS  PubMed  Google Scholar 

  205. Riss, D. et al. Intranasal submucosal bevacizumab for epistaxis in hereditary hemorrhagic telangiectasia: a double-blind, randomized, placebo-controlled trial. Head Neck 37, 783–787 (2015).

    Article  PubMed  Google Scholar 

  206. Steineger, J., Osnes, T., Heimdal, K. & Dheyauldeen, S. Long-term experience with intranasal bevacizumab therapy. Laryngoscope 128, 2237–2244 (2018).

    Article  CAS  PubMed  Google Scholar 

  207. Karnezis, T. T. & Davidson, T. M. Efficacy of intranasal bevacizumab (Avastin) treatment in patients with hereditary hemorrhagic telangiectasia-associated epistaxis. Laryngoscope 121, 636–638 (2011).

    Article  CAS  PubMed  Google Scholar 

  208. Khoueir, N., Borsik, M., Camous, D., Herman, P. & Verillaud, B. Injection of bevacizumab and cyanoacrylate glue for hereditary hemorrhagic telangiectasia. Laryngoscope 129, 2210–2215 (2019).

    Article  CAS  PubMed  Google Scholar 

  209. Dheyauldeen, S., Østertun Geirdal, A., Osnes, T., Vartdal, L. S. & Dollner, R. Bevacizumab in hereditary hemorrhagic telangiectasia-associated epistaxis: effectiveness of an injection protocol based on the vascular anatomy of the nose. Laryngoscope 122, 1210–1214 (2012).

    Article  CAS  PubMed  Google Scholar 

  210. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT03850964 (2024).

  211. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04976036 (2022).

  212. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05406362 (2023).

  213. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT05269849 (2024).

  214. Hessels, J. et al. Efficacy and safety of tacrolimus as treatment for bleeding caused by hereditary hemorrhagic telangiectasia: an open-label, pilot study. J. Clin. Med. 11, 5280 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Álvarez-Hernández, P. et al. Tacrolimus as a promising drug for epistaxis and gastrointestinal bleeding in HHT. J. Clin. Med. 12, 7410 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  216. Dupuis-Girod, S. et al. Efficacy and safety of a 0.1% tacrolimus nasal ointment as a treatment for epistaxis in hereditary hemorrhagic telangiectasia: a double-blind, randomized, placebo-controlled, multicenter trial. J. Clin. Med. 9, 1262 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Fang, J. et al. Thalidomide for epistaxis in patients with hereditary hemorrhagic telangiectasia: a preliminary study. Otolaryngol. Head. Neck Surg. 157, 217–221 (2017).

    Article  PubMed  Google Scholar 

  218. Baysal, M., Ümit, E. G., Kırkızlar, H. O., Özdöver, A. C. & Demir, A. M. Thalidomide for the management of bleeding episodes in patients with hereditary hemorrhagic telangiectasia: effects on epistaxis severity score and quality of life. Turk. J. Haematol. 36, 43–47 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  219. Contis, A. et al. Efficacy and safety of propranolol for epistaxis in hereditary haemorrhagic telangiectasia: retrospective, then prospective study, in a total of 21 patients. Clin. Otolaryngol. 42, 911–917 (2017).

    Article  CAS  PubMed  Google Scholar 

  220. US National Library of Medicine. ClinicalTrials.gov https://clinicaltrials.gov/study/NCT04113187 (2022).

  221. Dupuis-Girod, S. et al. Efficacy of TIMOLOL nasal spray as a treatment for epistaxis in hereditary hemorrhagic telangiectasia. A double-blind, randomized, placebo-controlled trial. Sci. Rep. 9, 11986 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  222. Peterson, A. M. et al. Efficacy of timolol in a novel intranasal thermosensitive gel for hereditary hemorrhagic telangiectasia-associated epistaxis: a randomized clinical trial. JAMA Otolaryngol. Head. Neck Surg. 146, 1006–1014 (2020).

    Article  PubMed  Google Scholar 

  223. Andorfer, K. E. C. et al. TIMolol nasal spray as a treatment for epistaxis in hereditary hemorrhagic telangiectasia (TIM-HHT)—a prospective, randomized, double-blind, controlled, cross-over trial. Pharmaceutics 14, 2335 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Ichimura, K., Kikuchi, H., Imayoshi, S. & Dias, M. S. Topical application of timolol decreases the severity and frequency of epistaxis in patients who have previously undergone nasal dermoplasty for hereditary hemorrhagic telangiectasia. Auris Nasus Larynx 43, 429–432 (2016).

    Article  PubMed  Google Scholar 

  225. Mei-Zahav, M., Blau, H., Bruckheimer, E., Zur, E. & Goldschmidt, N. Topical propranolol improves epistaxis in patients with hereditary hemorrhagic telangiectasia—a preliminary report. J. Otolaryngol. Head. Neck Surg. 46, 58 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  226. Mei-Zahav, M. et al. Topical propranolol improves epistaxis control in hereditary hemorrhagic telangiectasia (HHT): a randomized double-blind placebo-controlled trial. J. Clin. Med. 9, 3130 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Lesca, G. et al. Genotype–phenotype correlations in hereditary hemorrhagic telangiectasia: data from the French–Italian HHT network. Genet. Med. 9, 14–22 (2007).

    Article  PubMed  Google Scholar 

  228. Caillot, C. et al. Phenotypic characterisation of SMAD4 variant carriers. J. Med. Genet. 61, 734–740 (2024).

    Article  PubMed  Google Scholar 

  229. Buonamico, P. et al. Liver involvement in a large cohort of patients with hereditary hemorrhagic telangiectasia: echo-color-Doppler vs multislice computed tomography study. J. Hepatol. 48, 811–820 (2008).

    Article  PubMed  Google Scholar 

  230. Boland, C. R. Diagnosis and management of cancer risk in the gastrointestinal hamartomatous polyposis syndromes. Recommendations from the US multi-society task force on colorectal cancer. Am. J. Gastroenterol. 117, 846–864 (2022).

  231. Shovlin, C. L. et al. Estimates of maternal risks of pregnancy for women with hereditary haemorrhagic telangiectasia (Osler–Weber–Rendu syndrome): suggested approach for obstetric services. BJOG 115, 1108–1115 (2008).

    Article  CAS  PubMed  Google Scholar 

  232. de Gussem, E. M. et al. Outcomes of pregnancy in women with hereditary hemorrhagic telangiectasia. Obstet. Gynecol. 123, 514–520 (2014).

    Article  PubMed  Google Scholar 

  233. Delagrange, L. et al. Obstetrical and neonatal complications in hereditary haemorrhagic telangiectasia: a retrospective study. BJOG 130, 303–311 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  234. Pavord, S. et al. UK guidelines on the management of iron deficiency in pregnancy. Br. J. Haematol. 156, 588–600 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the patients for their valuable testimonials. C.L.S. acknowledges support from the National Institute for Health Research Imperial Biomedical Research Centre, London, UK.

Author information

Authors and Affiliations

Authors

Contributions

Introduction (R.H., C.L.S. and S.D.-G.); Epidemiology (C.L.S, M.S., R.H., R.S.K. and S.D.-G.); Mechanisms/pathophysiology (S.B., C.L.S., R.H., E.B., M.S., R.S.K., O.F.E. and S.D.-G.); Diagnosis, screening and prevention (R.H., C.L.S., E.B., M.S., R.S.K., O.F.E. and S.D.-G.); Management (R.H., C.L.S., E.B., M.S., R.S.K., O.F.E. and S.D.-G.); Quality of life (R.S.K. and S.D.-G.); Outlook (R.H., C.S., E.B., M.S., R.S.K, O.F.E., S.B. and S.D.-G.); overview of the Primer (S.D.-G. and R.H.).

Corresponding author

Correspondence to Sophie Dupuis-Girod.

Ethics declarations

Competing interests

C.L.S. is listed as the inventor in the patent application filed by Imperial College London for the use of MEK1 inhibitors to treat telangiectasia in HHT (European Patent Application 23705641.1). O.F.E. is a consultant for Microvention, CERENOVUS and Balt, and is also a member of DSMB and on the advisory board for STREAM Study. All other authors declare no competing interests.

Peer review

Peer review information

Nature Reviews Disease Primers thanks C. Bernabeu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Informed consent

The authors affirm that patient participants provided informed consent for publication of their experiences.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Glossary

Cyanosis

A blue appearance of the mucous membranes caused by the presence of high quantities of deoxygenated haemoglobin in the bloodstream.

Haemoptysis

Coughing up blood from the lungs.

Haemothorax

Bleeding into the pleural cavity between the linings of the lung and chest wall.

Hypoxaemia

Low levels of oxygen in the blood.

Kiesselbach’s plexus

Also known as Little’s area, is a physiological network of small blood vessels located in the anterior part of the nasal septum.

Liver function tests

A series of blood tests used in clinical practice to determine whether the liver is likely to be healthy, or whether it shows signs of cytolysis (transaminase enzymes), biliary duct ischaemic injury (gamma glutamyl transferase, alkaline phosphatase, bilirubin) and impaired synthetic function (albumin).

proBNP test

A measure of circulating levels of a precursor of brain natriuretic peptide (BNP) that is released in high levels from a failing heart.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hermann, R., Shovlin, C.L., Kasthuri, R.S. et al. Hereditary haemorrhagic telangiectasia. Nat Rev Dis Primers 11, 1 (2025). https://doi.org/10.1038/s41572-024-00585-z

Download citation

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41572-024-00585-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载