+
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Manipulation of host phagocytosis by fungal pathogens and therapeutic opportunities

Abstract

An important host defence mechanism against pathogens is intracellular killing, which is achieved through phagocytosis, a cellular process for engulfing and neutralizing extracellular particles. Phagocytosis results in the formation of matured phagolysosomes, which are specialized compartments that provide a hostile environment and are considered the end point of the degradative pathway. However, all fungal pathogens studied to date have developed strategies to manipulate phagosomal function directly and also indirectly by redirecting phagosomes from the degradative pathway to a non-degradative pathway with the expulsion and even transfer of pathogens between cells. Here, using the major human fungal pathogens Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans and Histoplasma capsulatum as examples, we discuss the processes involved in host phagosome–fungal pathogen interactions, with a focus on fungal evasion strategies. We also discuss recent approaches to targeting intraphagosomal pathogens, including the redirection of phagosomes towards degradative pathways for fungal pathogen eradication.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Intracellular processing of fungal pathogens.
Fig. 2: Fungal strategies for hiding from host recognition.
Fig. 3: Manipulation of phagosome maturation by fungal pathogens.
Fig. 4: Survival of fungal pathogens within phagosomes.
Fig. 5: Escape of fungal pathogens from host cells.
Fig. 6: Strategies to enhance the microbicidal activity of phagosomes.

Similar content being viewed by others

References

  1. Feys, S. et al. Lung epithelial and myeloid innate immunity in influenza-associated or COVID-19-associated pulmonary aspergillosis: an observational study. Lancet Respir. Med. 10, 1147–1159 (2022).

    Article  CAS  PubMed  Google Scholar 

  2. Fisher, M. C. et al. Tackling the emerging threat of antifungal resistance to human health. Nat. Rev. Microbiol. 20, 557–571 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lionakis, M. S., Drummond, R. A. & Hohl, T. M. Immune responses to human fungal pathogens and therapeutic prospects. Nat. Rev. Immunol. 23, 433–452 (2023).

    Article  CAS  PubMed  Google Scholar 

  4. WHO Fungal Priority Pathogens List to Guide Research, Development and Public Health Action (World Health Organization, 2022).

  5. Denning, D. W. Global incidence and mortality of severe fungal disease. Lancet Infect. Dis. 24, e428–e438 (2024).

    Article  PubMed  Google Scholar 

  6. Romani, L. Immunity to fungal infections. Nat. Rev. Immunol. 11, 275–288 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Casadevall, A. Immunity to invasive fungal diseases. Annu. Rev. Immunol. 40, 121–141 (2022).

    Article  CAS  PubMed  Google Scholar 

  8. Huizing, M., Helip-Wooley, A., Westbroek, W., Gunay-Aygun, M. & Gahl, W. A. Disorders of lysosome-related organelle biogenesis: clinical and molecular genetics. Annu. Rev. Genom. Hum. Genet. 9, 359–386 (2008).

    Article  CAS  Google Scholar 

  9. Flannagan, R. S., Jaumouillé, V. & Grinstein, S. The cell biology of phagocytosis. Annu. Rev. Pathol. 7, 61–98 (2012).

    Article  CAS  PubMed  Google Scholar 

  10. Chandra, P., Grigsby, S. J. & Philips, J. A. Immune evasion and provocation by Mycobacterium tuberculosis. Nat. Rev. Microbiol. 20, 750–766 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Moldovan, A. & Fraunholz, M. J. In or out: phagosomal escape of Staphylococcus aureus. Cell. Microbiol. 21, e12997 (2019).

    Article  PubMed  Google Scholar 

  12. Jia, L.-J. et al. Aspergillus fumigatus hijacks human p11 to redirect fungal-containing phagosomes to non-degradative pathway. Cell Host Microbe 31, 373–388 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Erwig, L. P. & Gow, N. A. R. Interactions of fungal pathogens with phagocytes. Nat. Rev. Microbiol. 14, 163–176 (2016).

    Article  CAS  PubMed  Google Scholar 

  14. Lange, T., Kasper, L., Gresnigt, M. S., Brunke, S. & Hube, B. “Under pressure”—how fungi evade, exploit, and modulate cells of the innate immune system. Semin. Immunol. 66, 101738 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tucker, S. C. & Casadevall, A. Replication of Cryptococcus neoformansin macrophages is accompanied by phagosomal permeabilization and accumulation of vesicles containing polysaccharide in the cytoplasm. Proc. Natl Acad. Sci. USA 99, 3165–3170 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Shen, Q., Beucler, M. J., Ray, S. C. & Rappleye, C. A. Macrophage activation by IFN-γ triggers restriction of phagosomal copper from intracellular pathogens. PLoS Pathog. 14, e1007444 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gordon, S. Phagocytosis: an immunobiologic process. Immunity 44, 463–475 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Heinekamp, T. et al. Interference of Aspergillus fumigatus with the immune response. Semin. Immunopathol. 37, 141–152 (2015).

    Article  CAS  PubMed  Google Scholar 

  19. Uribe-Querol, E. & Rosales, C. Phagocytosis: our current understanding of a universal biological process. Front. Immunol. 11, 1066 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Brown, G. D. & Gordon, S. A new receptor for β-glucans. Nature 413, 36–37 (2001).

    Article  CAS  PubMed  Google Scholar 

  21. Goodridge, H. S. et al. Activation of the innate immune receptor Dectin-1 upon formation of a ‘phagocytic synapse’. Nature 472, 471–475 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yamasaki, S. et al. C-type lectin Mincle is an activating receptor for pathogenic fungus, Malassezia. Proc. Natl Acad. Sci. USA 106, 1897–1902 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhu, L. L. et al. C-type lectin receptors Dectin-3 and Dectin-2 form a heterodimeric pattern-recognition receptor for host defense against fungal infection. Immunity 39, 324–334 (2013).

    Article  CAS  PubMed  Google Scholar 

  24. Vendele, I. et al. Mannan detecting C-type lectin receptor probes recognise immune epitopes with diverse chemical, spatial and phylogenetic heterogeneity in fungal cell walls. PLoS Pathog. 16, e1007927 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Maxson, M. E. et al. Integrin-based diffusion barrier separates membrane domains enabling the formation of microbiostatic frustrated phagosomes. eLife 7, e34798 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bain, J. M. et al. Immune cells fold and damage fungal hyphae. Proc. Natl Acad. Sci. USA 118, e2020484118 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Fairn, G. D. & Grinstein, S. How nascent phagosomes mature to become phagolysosomes. Trends Immunol. 33, 397–405 (2012).

    Article  CAS  PubMed  Google Scholar 

  28. Okai, B., Lyall, N., Gow, N. A., Bain, J. M. & Erwig, L. P. Rab14 regulates maturation of macrophage phagosomes containing the fungal pathogen Candida albicans and outcome of the host–pathogen interaction. Infect. Immun. 83, 1523–1535 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Schmidt, H. et al. Proteomics of Aspergillus fumigatus conidia-containing phagolysosomes identifies processes governing immune evasion. Mol. Cell. Proteom. 17, 1084–1096 (2018).

    Article  CAS  Google Scholar 

  30. Rink, J., Ghigo, E., Kalaidzidis, Y. & Zerial, M. Rab conversion as a mechanism of progression from early to late endosomes. Cell 122, 735–749 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Takahashi, S. et al. Rab11 regulates exocytosis of recycling vesicles at the plasma membrane. J. Cell Sci. 125, 4049–4057 (2012).

    CAS  PubMed  Google Scholar 

  32. Guichard, A., Nizet, V. & Bier, E. RAB11-mediated trafficking in host–pathogen interactions. Nat. Rev. Microbiol. 12, 624–634 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Akoumianaki, T. et al. Aspergillus cell wall melanin blocks LC3-associated phagocytosis to promote pathogenicity. Cell Host Microbe 19, 79–90 (2016).

    Article  CAS  PubMed  Google Scholar 

  34. Cohen-Kedar, S. et al. Human intestinal epithelial cells can internalize luminal fungi via LC3-associated phagocytosis. Front. Immunol. 14, 1142492 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Peña-Martinez, C., Rickman, A. D. & Heckmann, B. L. Beyond autophagy: LC3-associated phagocytosis and endocytosis. Sci. Adv. 8, eabn1702 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Herb, M., Gluschko, A. & Schramm, M. LC3-associated phagocytosis—the highway to hell for phagocytosed microbes. Semin. Cell Dev. Biol. 101, 68–76 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Desai, J. V. et al. BTK drives neutrophil activation for sterilizing antifungal immunity. J. Clin. Invest. 134, e176142 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Herbst, S. et al. Phagocytosis‐dependent activation of a TLR9–BTK–calcineurin–NFAT pathway co‐ordinates innate immunity to Aspergillus fumigatus. EMBO Mol. Med. 7, 240–258 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Seoane, P. I. & May, R. C. Vomocytosis: what we know so far. Cell. Microbiol. 22, e13145 (2019).

    PubMed  Google Scholar 

  40. Pazhakh, V. et al. β-glucan-dependent shuttling of conidia from neutrophils to macrophages occurs during fungal infection establishment. PLoS Biol. 17, e3000113 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gow, N. A. R., Latgé, J. P. & Munro, C. A. The fungal cell wall: structure, biosynthesis, and function. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.FUNK-0035-2016 (2017).

  42. O’Meara, T. R. & Alspaugh, J. A. The Cryptococcus neoformans capsule: a sword and a shield. Clin. Microbiol. Rev. 25, 387–408 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Ueno, K. et al. Cryptococcus gattii evades CD11b‐mediated fungal recognition by coating itself with capsular polysaccharides. Eur. J. Immunol. 51, 2281–2295 (2021).

    Article  CAS  PubMed  Google Scholar 

  44. Aimanianda, V. et al. Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature 460, 1117–1121 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Gravelat, F. N. et al. Aspergillus galactosaminogalactan mediates adherence to host constituents and conceals hyphal β-glucan from the immune system. PLoS Pathog. 9, e1003575 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Voltersen, V. et al. Proteome analysis reveals the conidial surface protein CcpA essential for virulence of the pathogenic fungus Aspergillus fumigatus. mBio 9, e01557-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Rappleye, C. A., Eissenberg, L. G. & Goldman, W. E. Histoplasma capsulatum α-(1,3)-glucan blocks innate immune recognition by the β-glucan receptor. Proc. Natl Acad. Sci. USA 104, 1366–1370 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Beauvais, A. et al. Deletion of the α-(1,3)-glucan synthase genes induces a restructuring of the conidial cell wall responsible for the avirulence of Aspergillus fumigatus. PLoS Pathog. 9, e1003716 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  49. Hall, R. A. & Gow, N. A. R. Mannosylation in Candida albicans: role in cell wall function and immune recognition. Mol. Microbiol. 90, 1147–1161 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Horton, M. V. et al. Candida auris cell wall mannosylation contributes to neutrophil evasion through pathways divergent from Candida albicans and Candida glabrata. mSphere 6, e00406-21 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Yadav, B. et al. Differences in fungal immune recognition by monocytes and macrophages: N-mannan can be a shield or activator of immune recognition. Cell Surf. 6, 100042 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Garcia-Sherman, M. C., Lundberg, T., Sobonya, R. E., Lipke, P. N. & Klotz, S. A. A unique biofilm in human deep mycoses: fungal amyloid is bound by host serum amyloid P component. NPJ Biofilms Microbiomes 1, 15009 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Doni, A. et al. Serum amyloid P component is an essential element of resistance against Aspergillus fumigatus. Nat. Commun. 12, 3739 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Behrens, N. E., Lipke, P. N., Pilling, D., Gomer, R. H. & Klotz, S. A. Serum amyloid P component binds fungal surface amyloid and decreases human macrophage phagocytosis and secretion of inflammatory cytokines. mBio 10, e00218-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Stano, P. et al. App1: an antiphagocytic protein that binds to complement receptors 3 and 2. J. Immunol. 182, 84–91 (2009).

    Article  CAS  PubMed  Google Scholar 

  56. Luberto, C. et al. Identification of App1 as a regulator of phagocytosis and virulence of Cryptococcus neoformans. J. Clin. Invest. 112, 1080–1094 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Bloom, A. L. M. et al. Thermotolerance in the pathogen Cryptococcus neoformans is linked to antigen masking via mRNA decay-dependent reprogramming. Nat. Commun. 10, 4950 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  58. O’Meara, T. R., Holmer, S. M., Selvig, K., Dietrich, F. & Alspaugh, J. A. Cryptococcus neoformans Rim101 is associated with cell wall remodeling and evasion of the host immune responses. mBio 4, e00522-12 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  59. Pradhan, A. et al. Non-canonical signalling mediates changes in fungal cell wall PAMPs that drive immune evasion. Nat. Commun. 10, 5315 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  60. Pradhan, A. et al. Hypoxia promotes immune evasion by triggering β-glucan masking on the Candida albicans cell surface via mitochondrial and cAMP–protein kinase A signaling. mBio 9, e01318-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Sherrington, S. L. et al. Adaptation of Candida albicans to environmental pH induces cell wall remodelling and enhances innate immune recognition. PLoS Pathog. 13, e1006403 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  62. Ballou, E. R. et al. Lactate signalling regulates fungal β-glucan masking and immune evasion. Nat. Microbiol. 2, 16238 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Yang, M. et al. Control of β-glucan exposure by the endo-1,3-glucanase Eng1 in Candida albicans modulates virulence. PLoS Pathog. 18, e1010192 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Childers, D. S. et al. Epitope shaving promotes fungal immune evasion. mBio 11, e00984-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Garfoot, A. L., Shen, Q., Wüthrich, M., Klein, B. S. & Rappleye, C. A. The Eng1 β-glucanase enhances Histoplasma virulence by reducing β-glucan exposure. mBio 7, e01388-15 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  66. Luo, S., Poltermann, S., Kunert, A., Rupp, S. & Zipfel, P. F. Immune evasion of the human pathogenic yeast Candida albicans: Pra1 is a factor H, FHL-1 and plasminogen binding surface protein. Mol. Immunol. 47, 541–550 (2009).

    Article  CAS  PubMed  Google Scholar 

  67. Luo, S., Hoffmann, R., Skerka, C. & Zipfel, P. F. Glycerol-3-phosphate dehydrogenase 2 is a novel factor H-, factor H-like protein 1-, and plasminogen-binding surface protein of Candida albicans. J. Infect. Dis. 207, 594–603 (2013).

    Article  CAS  PubMed  Google Scholar 

  68. Dasari, P. et al. Aspf2 from Aspergillus fumigatus recruits human immune regulators for immune evasion and cell damage. Front. Immunol. 9, 1635 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  69. Dasari, P. et al. Enolase from Aspergillus fumigatus is a moonlighting protein that binds the human plasma complement proteins factor H, FHL-1, C4BP, and plasminogen. Front. Immunol. 10, 2573 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Jia, L.-J. et al. Biotinylated surfome profiling identifies potential biomarkers for diagnosis and therapy of Aspergillus fumigatus infection. mSphere 5, e00535-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  71. Poltermann, S. et al. Gpm1p is a factor H-, FHL-1-, and plasminogen-binding surface protein of Candida albicans. J. Biol. Chem. 282, 37537–37544 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Behnsen, J. et al. Secreted Aspergillus fumigatus protease Alp1 degrades human complement proteins C3, C4, and C5. Infect. Immun. 78, 3585–3594 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Shende, R. et al. Aspergillus fumigatus conidial metalloprotease Mep1p cleaves host complement proteins. J. Biol. Chem. 293, 15538–15555 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Svoboda, E. et al. Secreted aspartic protease 2 of Candida albicans inactivates factor H and the macrophage factor H-receptors CR3 (CD11b/CD18) and CR4 (CD11c/CD18). Immunol. Lett. 168, 13–21 (2015).

    Article  CAS  PubMed  Google Scholar 

  75. Singh, D. K. et al. Functional characterization of secreted aspartyl proteases in Candida parapsilosis. mSphere 4, e00484-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  76. Gropp, K. et al. The yeast Candida albicans evades human complement attack by secretion of aspartic proteases. Mol. Immunol. 47, 465–475 (2009).

    Article  CAS  PubMed  Google Scholar 

  77. Luo, S. et al. The secreted Candida albicans protein Pra1 disrupts host defense by broadly targeting and blocking complement C3 and C3 activation fragments. Mol. Immunol. 93, 266–277 (2018).

    Article  CAS  PubMed  Google Scholar 

  78. Kyrmizi, I. et al. Calcium sequestration by fungal melanin inhibits calcium–calmodulin signalling to prevent LC3-associated phagocytosis. Nat. Microbiol. 3, 791–803 (2018).

    Article  CAS  PubMed  Google Scholar 

  79. Schmidt, F. et al. Flotillin-dependent membrane microdomains are required for functional phagolysosomes against fungal infections. Cell Rep. 32, 108017 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Goldmann, M. et al. The lipid raft-associated protein stomatin is required for accumulation of Dectin-1 in the phagosomal membrane and for full activity of macrophages against Aspergillus fumigatus. mSphere 8, e00523-22 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  81. Andrianaki, A. M. et al. Iron restriction inside macrophages regulates pulmonary host defense against Rhizopus species. Nat. Commun. 9, 3333 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  82. De Leon-Rodriguez, C. M., Fu, M. S., Çorbali, M. O., Cordero, R. J. B. & Casadevall, A. The capsule of Cryptococcus neoformans modulates phagosomal pH through its acid–base properties. mSphere 3, e00437-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  83. Fu, M. S. et al. Cryptococcus neoformans urease affects the outcome of intracellular pathogenesis by modulating phagolysosomal pH. PLoS Pathog. 14, e1007144 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  84. Westman, J., Moran, G., Mogavero, S., Hube, B. & Grinstein, S. Candida albicans hyphal expansion causes phagosomal membrane damage and luminal alkalinization. mBio 9, e01226-18 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  85. Chen, T. et al. The nucleotide receptor STING translocates to the phagosomes to negatively regulate anti-fungal immunity. Immunity 56, 1727–1742.e6 (2023).

    Article  CAS  PubMed  Google Scholar 

  86. Liu, B. et al. Human STING is a proton channel. Science 381, 508–514 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Jahn, B., Langfelder, K., Schneider, U., Schindel, C. & Brakhage, A. A. PKSP-dependent reduction of phagolysosome fusion and intracellular kill of Aspergillus fumigatus conidia by human monocyte-derived macrophages. Cell. Microbiol. 4, 793–803 (2002).

    Article  CAS  PubMed  Google Scholar 

  88. Levitz, S. M. et al. Cryptococcus neoformans resides in an acidic phagolysosome of human macrophages. Infect. Immun. 67, 885–890 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wasylnka, J. A. & Moore, M. M. Aspergillus fumigatus conidia survive and germinate in acidic organelles of A549 epithelial cells. J. Cell Sci. 116, 1579–1587 (2003).

    Article  CAS  PubMed  Google Scholar 

  90. Westman, J. et al. Lysosome fusion maintains phagosome integrity during fungal infection. Cell Host Microbe 28, 798–812 (2020).

    Article  CAS  PubMed  Google Scholar 

  91. Zaragoza, O. et al. Capsule enlargement in Cryptococcus neoformans confers resistance to oxidative stress suggesting a mechanism for intracellular survival. Cell. Microbiol. 10, 2043–2057 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Langfelder, K., Streibel, M., Jahn, B., Haase, G. & Brakhage, A. A. Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Genet. Biol. 38, 143–158 (2003).

    Article  CAS  PubMed  Google Scholar 

  93. Frohner, I. E., Bourgeois, C., Yatsyk, K., Majer, O. & Kuchler, K. Candida albicans cell surface superoxide dismutases degrade host-derived reactive oxygen species to escape innate immune surveillance. Mol. Microbiol. 71, 240–252 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Youseff, B. H., Holbrook, E. D., Smolnycki, K. A. & Rappleye, C. A. Extracellular superoxide dismutase protects Histoplasma yeast cells from host-derived oxidative stress. PLoS Pathog. 8, e1002713 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Paris, S. et al. Catalases of Aspergillus fumigatus. Infect. Immun. 71, 3551–3562 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Brinkmann, V. & Zychlinsky, A. Entering the neutrophil trap. Nat. Rev. Immunol. 21, 615 (2021).

    Article  CAS  PubMed  Google Scholar 

  97. Murdoch, C. C. & Skaar, E. P. Nutritional immunity: the battle for nutrient metals at the host–pathogen interface. Nat. Rev. Microbiol. 20, 657–670 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Flannagan, R. S., Farrell, T. J., Trothen, S. M., Dikeakos, J. D. & Heinrichs, D. E. Rapid removal of phagosomal ferroportin in macrophages contributes to nutritional immunity. Blood Adv. 5, 459–474 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Rossi, D. C. P. et al. A metabolic inhibitor arms macrophages to kill intracellular fungal pathogens by manipulating zinc homeostasis. J. Clin. Invest. 131, e147268 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Li, C., Li, Y. & Ding, C. The role of copper homeostasis at the host–pathogen axis: from bacteria to fungi. Int. J. Mol. Sci. 20, 175 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  101. Gerwien, F., Skrahina, V., Kasper, L., Hube, B. & Brunke, S. Metals in fungal virulence. FEMS Microbiol. Rev. 42, fux050 (2017).

    PubMed Central  Google Scholar 

  102. Smith, A. D., Logeman, B. L. & Thiele, D. J. Copper acquisition and utilization in fungi. Annu. Rev. Microbiol. 71, 597–623 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wildeman, A. S., Patel, N. K., Cormack, B. P. & Culotta, V. C. The role of manganese in morphogenesis and pathogenesis of the opportunistic fungal pathogen Candida albicans. PLoS Pathog. 19, e1011478 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Wiemann, P. et al. Aspergillus fumigatus copper export machinery and reactive oxygen intermediate defense counter host copper-mediated oxidative antimicrobial offense. Cell Rep. 19, 1008–1021 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Li, C. X. et al. Candida albicans adapts to host copper during infection by swapping metal cofactors for superoxide dismutase. Proc. Natl Acad. Sci. USA 112, E5336–E5342 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Ding, C. et al. Cryptococcus neoformans copper detoxification machinery is critical for fungal virulence. Cell Host Microbe 13, 265–276 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Sun, T. S. et al. Reciprocal functions of Cryptococcus neoformans copper homeostasis machinery during pulmonary infection and meningoencephalitis. Nat. Commun. 5, 5550 (2014).

    Article  CAS  PubMed  Google Scholar 

  108. Mohamed, S. H. et al. Microglia are not protective against cryptococcal meningitis. Nat. Commun. 14, 7202 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Labbé, K. & Saleh, M. Cell death in the host response to infection. Cell Death Differ. 15, 1339–1349 (2008).

    Article  PubMed  Google Scholar 

  110. Camilli, G., Blagojevic, M., Naglik, J. R. & Richardson, J. P. Programmed cell death: central player in fungal infections. Trends Cell Biol. 31, 179–196 (2021).

    Article  CAS  PubMed  Google Scholar 

  111. Volling, K., Thywissen, A., Brakhage, A. A. & Saluz, H. P. Phagocytosis of melanized Aspergillus conidia by macrophages exerts cytoprotective effects by sustained PI3K/Akt signalling. Cell. Microbiol. 13, 1130–1148 (2011).

    Article  CAS  PubMed  Google Scholar 

  112. Acorci, M. J. et al. Inhibition of human neutrophil apoptosis by Paracoccidioides brasiliensis: role of interleukin-8. Scand. J. Immunol. 69, 73–79 (2009).

    Article  CAS  PubMed  Google Scholar 

  113. Deepe, G. S. Jr & Buesing, W. R. Deciphering the pathways of death of Histoplasma capsulatum-infected macrophages: implications for the immunopathogenesis of early infection. J. Immunol. 188, 334–344 (2012).

    Article  CAS  PubMed  Google Scholar 

  114. Amin, S., Thywissen, A., Heinekamp, T., Saluz, H. P. & Brakhage, A. A. Melanin dependent survival of Apergillus fumigatus conidia in lung epithelial cells. Int. J. Med. Microbiol. 304, 626–636 (2014).

    Article  CAS  PubMed  Google Scholar 

  115. Ding, X. et al. Inflammasome-mediated GSDMD activation facilitates escape of Candida albicans from macrophages. Nat. Commun. 12, 6699 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Geissler, A. et al. Apoptosis induced by the fungal pathogen gliotoxin requires a triple phosphorylation of Bim by JNK. Cell Death Differ. 20, 1317–1329 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Olivier, F. A. B. et al. The escape of Candida albicans from macrophages is enabled by the fungal toxin candidalysin and two host cell death pathways. Cell Rep. 40, 111374 (2022).

    Article  CAS  PubMed  Google Scholar 

  118. Stanzani, M. et al. Aspergillus fumigatus suppresses the human cellular immune response via gliotoxin-mediated apoptosis of monocytes. Blood 105, 2258–2265 (2005).

    Article  CAS  PubMed  Google Scholar 

  119. Briard, B. et al. Galactosaminogalactan activates the inflammasome to provide host protection. Nature 588, 688–692 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Mogavero, S. et al. Candidalysin delivery to the invasion pocket is critical for host epithelial damage induced by Candida albicans. Cell. Microbiol. 23, e13378 (2021).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Kasper, L. et al. The fungal peptide toxin Candidalysin activates the NLRP3 inflammasome and causes cytolysis in mononuclear phagocytes. Nat. Commun. 9, 4260 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  122. Weerasinghe, H. et al. Candida auris uses metabolic strategies to escape and kill macrophages while avoiding robust activation of the NLRP3 inflammasome response. Cell Rep. 42, 112522 (2023).

    Article  CAS  PubMed  Google Scholar 

  123. Azimova, D. et al. Cbp1, a fungal virulence factor under positive selection, forms an effector complex that drives macrophage lysis. PLoS Pathog. 18, e1010417 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Villena, S. N. et al. Capsular polysaccharides galactoxylomannan and glucuronoxylomannan from Cryptococcus neoformans induce macrophage apoptosis mediated by Fas ligand. Cell. Microbiol. 10, 1274–1285 (2008).

    Article  CAS  PubMed  Google Scholar 

  125. Alvarez, M. & Casadevall, A. Phagosome extrusion and host-cell survival after Cryptococcus neoformans phagocytosis by macrophages. Curr. Biol. 16, 2161–2165 (2006).

    Article  CAS  PubMed  Google Scholar 

  126. Bain, J. M. et al. Non-lytic expulsion/exocytosis of Candida albicans from macrophages. Fungal Genet. Biol. 49, 677–678 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Ma, H., Croudace, J. E., Lammas, D. A. & May, R. C. Expulsion of live pathogenic yeast by macrophages. Curr. Biol. 16, 2156–2160 (2006).

    Article  CAS  PubMed  Google Scholar 

  128. Nicola, A. M., Robertson, E. J., Albuquerque, P., Derengowski Lda, S. & Casadevall, A. Nonlytic exocytosis of Cryptococcus neoformans from macrophages occurs in vivo and is influenced by phagosomal pH. mBio 2, e00167-11 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  129. Onyishi, C. U. et al. Loss of the scavenger receptor MARCO results in uncontrolled vomocytosis of fungi from macrophages. Eur. J. Immunol. 54, e2350771 (2024).

    Article  PubMed  Google Scholar 

  130. Kissick, H. T. et al. The scavenger receptor MARCO modulates TLR-induced responses in dendritic cells. PLoS ONE 9, e104148 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  131. Nicola, A. M. et al. Macrophage autophagy in immunity to Cryptococcus neoformans and Candida albicans. Infect. Immun. 80, 3065–3076 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Stukes, S. et al. The membrane phospholipid binding protein annexin A2 promotes phagocytosis and nonlytic exocytosis of Cryptococcus neoformans and impacts survival in fungal infection. J. Immunol. 197, 1252–1261 (2016).

    Article  CAS  PubMed  Google Scholar 

  133. Gerke, V., Creutz, C. E. & Moss, S. E. Annexins: linking Ca2+ signalling to membrane dynamics. Nat. Rev. Mol. Cell Biol. 6, 449–461 (2005).

    Article  CAS  PubMed  Google Scholar 

  134. Seidel, C. et al. Phagolysosomal survival enables non-lytic hyphal escape and ramification through lung epithelium during Aspergillus fumigatus infection. Front. Microbiol. 11, 1955 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  135. Dang, E. V. et al. Secreted fungal virulence effector triggers allergic inflammation via TLR4. Nature 608, 161–167 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Strickland, A. B., Chen, Y., Sun, D. & Shi, M. Alternatively activated lung alveolar and interstitial macrophages promote fungal growth. iScience 26, 106717 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Wang, L., Hu, C. & Shao, L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomed. 12, 1227–1249 (2017).

    Article  CAS  Google Scholar 

  138. Fu, Z., Li, S., Han, S., Shi, C. & Zhang, Y. Antibody drug conjugate: the “biological missile” for targeted cancer therapy. Signal Transduct. Target. Ther. 7, 93 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Lehar, S. M. et al. Novel antibody–antibiotic conjugate eliminates intracellular S. aureus. Nature 527, 323–328 (2015).

    Article  CAS  PubMed  Google Scholar 

  140. Patra, J. K. et al. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnol. 16, 71 (2018).

    Article  Google Scholar 

  141. Valiante, V., Macheleidt, J., Föge, M. & Brakhage, A. A. The Aspergillus fumigatus cell wall integrity signaling pathway: drug target, compensatory pathways, and virulence. Front. Microbiol. 6, 325 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  142. Nami, S., Aghebati-Maleki, A. & Aghebati-Maleki, L. Current applications and prospects of nanoparticles for antifungal drug delivery. EXCLI J. 20, 562–584 (2021).

    PubMed  PubMed Central  Google Scholar 

  143. Adler-Moore, J. & Proffitt, R. T. AmBisome: liposomal formulation, structure, mechanism of action and pre-clinical experience. J. Antimicrob. Chemother. 49, 21–30 (2002).

    Article  CAS  PubMed  Google Scholar 

  144. Ambati, S. et al. Dectin-1-targeted antifungal liposomes exhibit enhanced efficacy. mSphere 4, e00025-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  145. Ambati, S. et al. Dectin-2-targeted antifungal liposomes exhibit enhanced efficacy. mSphere 4, e00715-19 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  146. Ruge, C. A. et al. Uptake of nanoparticles by alveolar macrophages is triggered by surfactant protein A. Nanomedicine 7, 690–693 (2011).

    Article  CAS  PubMed  Google Scholar 

  147. Nahar, M. & Jain, N. K. Preparation, characterization and evaluation of targeting potential of amphotericin B-loaded engineered PLGA nanoparticles. Pharm. Res. 26, 2588–2598 (2009).

    Article  CAS  PubMed  Google Scholar 

  148. Nasti, T. H., Khan, M. A. & Owais, M. Enhanced efficacy of pH-sensitive nystatin liposomes against Cryptococcus neoformans in murine model. J. Antimicrob. Chemother. 57, 349–352 (2006).

    Article  CAS  PubMed  Google Scholar 

  149. Rajesh, S. et al. Application of fluconazole-loaded pH-sensitive lipid nanoparticles for enhanced antifungal therapy. ACS Appl. Mater. Interfaces 14, 32845–32854 (2022).

    Article  CAS  Google Scholar 

  150. Su, F.-Y. et al. Macrophage-targeted drugamers with enzyme-cleavable linkers deliver high intracellular drug dosing and sustained drug pharmacokinetics against alveolar pulmonary infections. J. Control. Release 287, 1–11 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. González, K. et al. Targeting of phagolysosomes containing conidia of the fungus Aspergillus fumigatus with polymeric particles. Appl. Microbiol. Biotechnol. 107, 819–834 (2023).

    Article  PubMed  Google Scholar 

  152. De Angelis, G. et al. A novel approach to control Botrytis cinerea fungal infections: uptake and biological activity of antifungals encapsulated in nanoparticle based vectors. Sci. Rep. 12, 7989 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  153. Patel, N. R., Damann, K., Leonardi, C. & Sabliov, C. M. Size dependency of PLGA-nanoparticle uptake and antifungal activity against Aspergillus flavus. Nanomedicine (Lond.) 6, 1381–1395 (2011).

    Article  CAS  PubMed  Google Scholar 

  154. Horvat, S. et al. Nanogels as antifungal‐drug delivery system against Aspergillus fumigatus. Adv. Nanobiomed Res. 1, 2000060 (2021).

    Article  CAS  Google Scholar 

  155. Orasch, T. et al. Polymer-based particles against pathogenic fungi: a non-uptake delivery of compounds. Biomater. Adv. 146, 213300 (2023).

    Article  CAS  PubMed  Google Scholar 

  156. Ben Shlomo, S., Mouhadeb, O., Cohen, K., Varol, C. & Gluck, N. COMMD10-guided phagolysosomal maturation promotes clearance of Staphylococcus aureus in macrophages. iScience 14, 147–163 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  157. Breyer, F. et al. TPL-2 kinase induces phagosome acidification to promote macrophage killing of bacteria. EMBO J. 40, e106188 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Newman, S. L., Bhugra, B., Holly, A. & Morris, R. E. Enhanced killing of Candida albicans by human macrophages adherent to type 1 collagen matrices via induction of phagolysosomal fusion. Infect. Immun. 73, 770–777 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Ray, S. C. & Rappleye, C. A. Mac1-dependent copper sensing promotes Histoplasma adaptation to the phagosome during adaptive immunity. mBio 13, e03773-21 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Espinosa, V. et al. Cutting edge: neutrophils license the maturation of monocytes into effective antifungal effectors. J. Immunol. 209, 1827–1831 (2022).

    Article  CAS  PubMed  Google Scholar 

  161. Casanova, J. L., MacMicking, J. D. & Nathan, C. F. Interferon-γ and infectious diseases: lessons and prospects. Science 384, eadl2016 (2024).

    Article  CAS  PubMed  Google Scholar 

  162. Citiulo, F. et al. Candida albicans scavenges host zinc via Pra1 during endothelial invasion. PLoS Pathog. 8, e1002777 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Marcil, A. et al. Analysis of PRA1 and its relationship to Candida albicans–macrophage interactions. Infect. Immun. 76, 4345–4358 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Roselletti, E. et al. Zinc prevents vaginal candidiasis by inhibiting expression of an inflammatory fungal protein. Sci. Transl. Med. 15, eadi3363 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Mills, K. A. M. et al. GM-CSF-mediated epithelial-immune cell crosstalk orchestrates pulmonary immunity to Aspergillus fumigatus. Preprint at bioRxiv https://doi.org/10.1101/2024.01.03.574062 (2024).

  166. Guo, Y. et al. During Aspergillus infection, monocyte-derived DCs, neutrophils, and plasmacytoid DCs enhance innate immune defense through CXCR3-dependent crosstalk. Cell Host Microbe 28, 104–116.e4 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Akoumianaki, T. et al. Uncoupling of IL-6 signaling and LC3-associated phagocytosis drives immunoparalysis during sepsis. Cell Host Microbe 29, 1277–1293.e6 (2021).

    Article  CAS  PubMed  Google Scholar 

  168. Li, K. et al. Profiling phagosome proteins identifies PD-L1 as a fungal-binding receptor. Nature 630, 736–743 (2024).

    Article  CAS  PubMed  Google Scholar 

  169. Hillmann, F. et al. Virulence determinants of the human pathogenic fungus Aspergillus fumigatus protect against soil amoeba predation. Environ. Microbiol. 17, 2858–2869 (2015).

    Article  CAS  PubMed  Google Scholar 

  170. Schwarz, C. et al. Antigen specificity and cross-reactivity drive functionally diverse anti-Aspergillus fumigatus T cell responses in cystic fibrosis. J. Clin. Invest. 133, e161593 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Alonso-Roman, R. et al. Organ-on-chip models for infectious disease research. Nat. Microbiol. 9, 891–904 (2024).

    Article  CAS  PubMed  Google Scholar 

  172. Ishikawa, T. et al. Identification of distinct ligands for the C-type lectin receptors Mincle and Dectin-2 in the pathogenic fungus Malassezia. Cell Host Microbe 13, 477–488 (2013).

    Article  CAS  PubMed  Google Scholar 

  173. Kostarnoy, A. V. et al. A mechanism of self-lipid endocytosis mediated by the receptor Mincle. Proc. Natl Acad. Sci. USA 119, e2120489119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Kitai, Y. et al. Role of Dectin-2 in the phagocytosis of Cryptococcus neoformans by dendritic cells. Infect. Immun. 89, e0033021 (2021).

    Article  PubMed  Google Scholar 

  175. Reedy, J. L. et al. The C-type lectin receptor Dectin-2 is a receptor for Aspergillus fumigatus galactomannan. mBio 14, e03184-22 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  176. Huang, H. R. et al. Dectin-3 recognizes glucuronoxylomannan of Cryptococcus neoformans serotype AD and Cryptococcus gattii serotype B to initiate host defense against cryptococcosis. Front. Immunol. 9, 1781 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  177. Kottom, T. J. et al. Myeloid C-type lectin receptors that recognize fungal mannans interact with Pneumocystis organisms and major surface glycoprotein. J. Med. Microbiol. 68, 1649–1654 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Preite, N. W. et al. The Syk-coupled C-type lectin receptors Dectin-2 and Dectin-3 are involved in Paracoccidioides brasiliensis recognition by human plasmacytoid dendritic cells. Front. Immunol. 9, 464 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  179. Choudhury, Q. J. et al. Dectin-3-targeted antifungal liposomes efficiently bind and kill diverse fungal pathogens. Mol. Microbiol. 120, 723–739 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Krylov, V. B. et al. Identification of a new DC-SIGN binding pentamannoside epitope within the complex structure of Candida albicans mannan. Cell Surf. 10, 100109 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Serrano-Gómez, D. et al. Dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin mediates binding and internalization of Aspergillus fumigatus conidia by dendritic cells and macrophages. J. Immunol. 173, 5635–5643 (2004).

    Article  PubMed  Google Scholar 

  182. Onyishi, C. U. et al. Toll-like receptor 4 and macrophage scavenger receptor 1 crosstalk regulates phagocytosis of a fungal pathogen. Nat. Commun. 14, 4895 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Goodridge, H. S., Wolf, A. J. & Underhill, D. M. β-glucan recognition by the innate immune system. Immunol. Rev. 230, 38–50 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Jaumouillé, V., Cartagena-Rivera, A. X. & Waterman, C. M. Coupling of β2 integrins to actin by a mechanosensitive molecular clutch drives complement receptor-mediated phagocytosis. Nat. Cell Biol. 21, 1357–1369 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  185. Long, K. H., Gomez, F. J., Morris, R. E. & Newman, S. L. Identification of heat shock protein 60 as the ligand on Histoplasma capsulatum that mediates binding to CD18 receptors on human macrophages. J. Immunol. 170, 487–494 (2003).

    Article  CAS  PubMed  Google Scholar 

  186. Vorup-Jensen, T. & Jensen, R. K. Structural immunology of complement receptors 3 and 4. Front. Immunol. 9, 2716 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  187. Xu, S., Wang, J., Wang, J.-H. & Springer, T. A. Distinct recognition of complement iC3b by integrins αXβ2 and αMβ2. Proc. Natl Acad. Sci. USA 114, 3403–3408 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Wang, Y. & Jönsson, F. Expression, role, and regulation of neutrophil Fcγ receptors. Front. Immunol. 10, 1958 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  189. Moalli, F. et al. Role of complement and Fcγ receptors in the protective activity of the long pentraxin PTX3 against Aspergillus fumigatus. Blood 116, 5170–5180 (2010).

    Article  CAS  PubMed  Google Scholar 

  190. Alqarihi, A. et al. GRP78 and integrins play different roles in host cell invasion during mucormycosis. mBio 11, e01087-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  191. Liu, H. et al. Aspergillus fumigatus CalA binds to integrin α5β1 and mediates host cell invasion. Nat. Microbiol. 2, 16211 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Keizer, E. M., Wösten, H. A. B. & de Cock, H. EphA2-dependent internalization of A. fumigatus conidia in A549 lung cells is modulated by DHN-melanin. Front. Microbiol. 11, 534118 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  193. Swidergall, M., Solis, N. V., Lionakis, M. S. & Filler, S. G. EphA2 is an epithelial cell pattern recognition receptor for fungal β-glucans. Nat. Microbiol. 3, 53–61 (2018).

    Article  CAS  PubMed  Google Scholar 

  194. Aaron, P. A., Jamklang, M., Uhrig, J. P. & Gelli, A. The blood–brain barrier internalises Cryptococcus neoformans via the EphA2-tyrosine kinase receptor. Cell. Microbiol. 20, e12811 (2018).

    Article  Google Scholar 

  195. Wong, S. S. W. et al. Differential interactions of serum and bronchoalveolar lavage fluid complement proteins with conidia of airborne fungal pathogen Aspergillus fumigatus. Infect. Immun. 88, e00212-20 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  196. Ma, Y. G. et al. Human mannose-binding lectin and l-ficolin function as specific pattern recognition proteins in the lectin activation pathway of complement. J. Biol. Chem. 279, 25307–25312 (2004).

    Article  CAS  PubMed  Google Scholar 

  197. Ma, Y. J. et al. Synergy between Ficolin-2 and pentraxin 3 boosts innate immune recognition and complement deposition. J. Biol. Chem. 284, 28263–28275 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Van Asbeck, E. C., Hoepelman, A. I. M., Scharringa, J., Herpers, B. L. & Verhoef, J. Mannose binding lectin plays a crucial role in innate immunity against yeast by enhanced complement activation and enhanced uptake of polymorphonuclear cells. BMC Microbiol. 8, 229 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  199. Wong, S. S. W. et al. Fungal melanin stimulates surfactant protein D-mediated opsonization of and host immune response to Aspergillus fumigatus spores. J. Biol. Chem. 293, 4901–4912 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Foo, S.-S., Reading, P. C., Jaillon, S., Mantovani, A. & Mahalingam, S. Pentraxins and collectins: friend or foe during pathogen invasion? Trends Microbiol. 23, 799–811 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank T. Heinekamp and M. Blango for critical reading of the manuscript. The work in the authors’ laboratories is funded by the Free State of Thuringia and European Social Fund Plus (PhagoInf; 2023FGR0043), the Deutsche Forschungsgemeinschaft (DFG) Cluster of Excellence Balance of the Microverse (project ID 390713860; Gepris 2051), the DFG–Agence Nationale de la Recherche project AfuInf (316898429), DFG Collaborative Research Center/Transregio 124 (FungiNet) (projects A1 and Z2; 210879364), DFG Collaborative Research Center 1278 (PolyTarget) (project B02; 316213987) and a Leibniz project (K217/2016).

Author information

Authors and Affiliations

Authors

Contributions

L.-J.J. and A.A.B. conceptualized and supervised the study. L.-J.J. performed literature research and prepared the figures. All authors wrote and edited the manuscript.

Corresponding authors

Correspondence to Lei-Jie Jia or Axel A. Brakhage.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Microbiology thanks Rebecca Drummond, Neil Gow and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jia, LJ., González, K., Orasch, T. et al. Manipulation of host phagocytosis by fungal pathogens and therapeutic opportunities. Nat Microbiol 9, 2216–2231 (2024). https://doi.org/10.1038/s41564-024-01780-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41564-024-01780-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载