Abstract
An important host defence mechanism against pathogens is intracellular killing, which is achieved through phagocytosis, a cellular process for engulfing and neutralizing extracellular particles. Phagocytosis results in the formation of matured phagolysosomes, which are specialized compartments that provide a hostile environment and are considered the end point of the degradative pathway. However, all fungal pathogens studied to date have developed strategies to manipulate phagosomal function directly and also indirectly by redirecting phagosomes from the degradative pathway to a non-degradative pathway with the expulsion and even transfer of pathogens between cells. Here, using the major human fungal pathogens Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans and Histoplasma capsulatum as examples, we discuss the processes involved in host phagosome–fungal pathogen interactions, with a focus on fungal evasion strategies. We also discuss recent approaches to targeting intraphagosomal pathogens, including the redirection of phagosomes towards degradative pathways for fungal pathogen eradication.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 digital issues and online access to articles
$119.00 per year
only $9.92 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Feys, S. et al. Lung epithelial and myeloid innate immunity in influenza-associated or COVID-19-associated pulmonary aspergillosis: an observational study. Lancet Respir. Med. 10, 1147–1159 (2022).
Fisher, M. C. et al. Tackling the emerging threat of antifungal resistance to human health. Nat. Rev. Microbiol. 20, 557–571 (2022).
Lionakis, M. S., Drummond, R. A. & Hohl, T. M. Immune responses to human fungal pathogens and therapeutic prospects. Nat. Rev. Immunol. 23, 433–452 (2023).
WHO Fungal Priority Pathogens List to Guide Research, Development and Public Health Action (World Health Organization, 2022).
Denning, D. W. Global incidence and mortality of severe fungal disease. Lancet Infect. Dis. 24, e428–e438 (2024).
Romani, L. Immunity to fungal infections. Nat. Rev. Immunol. 11, 275–288 (2011).
Casadevall, A. Immunity to invasive fungal diseases. Annu. Rev. Immunol. 40, 121–141 (2022).
Huizing, M., Helip-Wooley, A., Westbroek, W., Gunay-Aygun, M. & Gahl, W. A. Disorders of lysosome-related organelle biogenesis: clinical and molecular genetics. Annu. Rev. Genom. Hum. Genet. 9, 359–386 (2008).
Flannagan, R. S., Jaumouillé, V. & Grinstein, S. The cell biology of phagocytosis. Annu. Rev. Pathol. 7, 61–98 (2012).
Chandra, P., Grigsby, S. J. & Philips, J. A. Immune evasion and provocation by Mycobacterium tuberculosis. Nat. Rev. Microbiol. 20, 750–766 (2022).
Moldovan, A. & Fraunholz, M. J. In or out: phagosomal escape of Staphylococcus aureus. Cell. Microbiol. 21, e12997 (2019).
Jia, L.-J. et al. Aspergillus fumigatus hijacks human p11 to redirect fungal-containing phagosomes to non-degradative pathway. Cell Host Microbe 31, 373–388 (2023).
Erwig, L. P. & Gow, N. A. R. Interactions of fungal pathogens with phagocytes. Nat. Rev. Microbiol. 14, 163–176 (2016).
Lange, T., Kasper, L., Gresnigt, M. S., Brunke, S. & Hube, B. “Under pressure”—how fungi evade, exploit, and modulate cells of the innate immune system. Semin. Immunol. 66, 101738 (2023).
Tucker, S. C. & Casadevall, A. Replication of Cryptococcus neoformansin macrophages is accompanied by phagosomal permeabilization and accumulation of vesicles containing polysaccharide in the cytoplasm. Proc. Natl Acad. Sci. USA 99, 3165–3170 (2002).
Shen, Q., Beucler, M. J., Ray, S. C. & Rappleye, C. A. Macrophage activation by IFN-γ triggers restriction of phagosomal copper from intracellular pathogens. PLoS Pathog. 14, e1007444 (2018).
Gordon, S. Phagocytosis: an immunobiologic process. Immunity 44, 463–475 (2016).
Heinekamp, T. et al. Interference of Aspergillus fumigatus with the immune response. Semin. Immunopathol. 37, 141–152 (2015).
Uribe-Querol, E. & Rosales, C. Phagocytosis: our current understanding of a universal biological process. Front. Immunol. 11, 1066 (2020).
Brown, G. D. & Gordon, S. A new receptor for β-glucans. Nature 413, 36–37 (2001).
Goodridge, H. S. et al. Activation of the innate immune receptor Dectin-1 upon formation of a ‘phagocytic synapse’. Nature 472, 471–475 (2011).
Yamasaki, S. et al. C-type lectin Mincle is an activating receptor for pathogenic fungus, Malassezia. Proc. Natl Acad. Sci. USA 106, 1897–1902 (2009).
Zhu, L. L. et al. C-type lectin receptors Dectin-3 and Dectin-2 form a heterodimeric pattern-recognition receptor for host defense against fungal infection. Immunity 39, 324–334 (2013).
Vendele, I. et al. Mannan detecting C-type lectin receptor probes recognise immune epitopes with diverse chemical, spatial and phylogenetic heterogeneity in fungal cell walls. PLoS Pathog. 16, e1007927 (2020).
Maxson, M. E. et al. Integrin-based diffusion barrier separates membrane domains enabling the formation of microbiostatic frustrated phagosomes. eLife 7, e34798 (2018).
Bain, J. M. et al. Immune cells fold and damage fungal hyphae. Proc. Natl Acad. Sci. USA 118, e2020484118 (2021).
Fairn, G. D. & Grinstein, S. How nascent phagosomes mature to become phagolysosomes. Trends Immunol. 33, 397–405 (2012).
Okai, B., Lyall, N., Gow, N. A., Bain, J. M. & Erwig, L. P. Rab14 regulates maturation of macrophage phagosomes containing the fungal pathogen Candida albicans and outcome of the host–pathogen interaction. Infect. Immun. 83, 1523–1535 (2015).
Schmidt, H. et al. Proteomics of Aspergillus fumigatus conidia-containing phagolysosomes identifies processes governing immune evasion. Mol. Cell. Proteom. 17, 1084–1096 (2018).
Rink, J., Ghigo, E., Kalaidzidis, Y. & Zerial, M. Rab conversion as a mechanism of progression from early to late endosomes. Cell 122, 735–749 (2005).
Takahashi, S. et al. Rab11 regulates exocytosis of recycling vesicles at the plasma membrane. J. Cell Sci. 125, 4049–4057 (2012).
Guichard, A., Nizet, V. & Bier, E. RAB11-mediated trafficking in host–pathogen interactions. Nat. Rev. Microbiol. 12, 624–634 (2014).
Akoumianaki, T. et al. Aspergillus cell wall melanin blocks LC3-associated phagocytosis to promote pathogenicity. Cell Host Microbe 19, 79–90 (2016).
Cohen-Kedar, S. et al. Human intestinal epithelial cells can internalize luminal fungi via LC3-associated phagocytosis. Front. Immunol. 14, 1142492 (2023).
Peña-Martinez, C., Rickman, A. D. & Heckmann, B. L. Beyond autophagy: LC3-associated phagocytosis and endocytosis. Sci. Adv. 8, eabn1702 (2022).
Herb, M., Gluschko, A. & Schramm, M. LC3-associated phagocytosis—the highway to hell for phagocytosed microbes. Semin. Cell Dev. Biol. 101, 68–76 (2020).
Desai, J. V. et al. BTK drives neutrophil activation for sterilizing antifungal immunity. J. Clin. Invest. 134, e176142 (2024).
Herbst, S. et al. Phagocytosis‐dependent activation of a TLR9–BTK–calcineurin–NFAT pathway co‐ordinates innate immunity to Aspergillus fumigatus. EMBO Mol. Med. 7, 240–258 (2015).
Seoane, P. I. & May, R. C. Vomocytosis: what we know so far. Cell. Microbiol. 22, e13145 (2019).
Pazhakh, V. et al. β-glucan-dependent shuttling of conidia from neutrophils to macrophages occurs during fungal infection establishment. PLoS Biol. 17, e3000113 (2019).
Gow, N. A. R., Latgé, J. P. & Munro, C. A. The fungal cell wall: structure, biosynthesis, and function. Microbiol. Spectr. https://doi.org/10.1128/microbiolspec.FUNK-0035-2016 (2017).
O’Meara, T. R. & Alspaugh, J. A. The Cryptococcus neoformans capsule: a sword and a shield. Clin. Microbiol. Rev. 25, 387–408 (2012).
Ueno, K. et al. Cryptococcus gattii evades CD11b‐mediated fungal recognition by coating itself with capsular polysaccharides. Eur. J. Immunol. 51, 2281–2295 (2021).
Aimanianda, V. et al. Surface hydrophobin prevents immune recognition of airborne fungal spores. Nature 460, 1117–1121 (2009).
Gravelat, F. N. et al. Aspergillus galactosaminogalactan mediates adherence to host constituents and conceals hyphal β-glucan from the immune system. PLoS Pathog. 9, e1003575 (2013).
Voltersen, V. et al. Proteome analysis reveals the conidial surface protein CcpA essential for virulence of the pathogenic fungus Aspergillus fumigatus. mBio 9, e01557-18 (2018).
Rappleye, C. A., Eissenberg, L. G. & Goldman, W. E. Histoplasma capsulatum α-(1,3)-glucan blocks innate immune recognition by the β-glucan receptor. Proc. Natl Acad. Sci. USA 104, 1366–1370 (2007).
Beauvais, A. et al. Deletion of the α-(1,3)-glucan synthase genes induces a restructuring of the conidial cell wall responsible for the avirulence of Aspergillus fumigatus. PLoS Pathog. 9, e1003716 (2013).
Hall, R. A. & Gow, N. A. R. Mannosylation in Candida albicans: role in cell wall function and immune recognition. Mol. Microbiol. 90, 1147–1161 (2013).
Horton, M. V. et al. Candida auris cell wall mannosylation contributes to neutrophil evasion through pathways divergent from Candida albicans and Candida glabrata. mSphere 6, e00406-21 (2021).
Yadav, B. et al. Differences in fungal immune recognition by monocytes and macrophages: N-mannan can be a shield or activator of immune recognition. Cell Surf. 6, 100042 (2020).
Garcia-Sherman, M. C., Lundberg, T., Sobonya, R. E., Lipke, P. N. & Klotz, S. A. A unique biofilm in human deep mycoses: fungal amyloid is bound by host serum amyloid P component. NPJ Biofilms Microbiomes 1, 15009 (2015).
Doni, A. et al. Serum amyloid P component is an essential element of resistance against Aspergillus fumigatus. Nat. Commun. 12, 3739 (2021).
Behrens, N. E., Lipke, P. N., Pilling, D., Gomer, R. H. & Klotz, S. A. Serum amyloid P component binds fungal surface amyloid and decreases human macrophage phagocytosis and secretion of inflammatory cytokines. mBio 10, e00218-19 (2019).
Stano, P. et al. App1: an antiphagocytic protein that binds to complement receptors 3 and 2. J. Immunol. 182, 84–91 (2009).
Luberto, C. et al. Identification of App1 as a regulator of phagocytosis and virulence of Cryptococcus neoformans. J. Clin. Invest. 112, 1080–1094 (2003).
Bloom, A. L. M. et al. Thermotolerance in the pathogen Cryptococcus neoformans is linked to antigen masking via mRNA decay-dependent reprogramming. Nat. Commun. 10, 4950 (2019).
O’Meara, T. R., Holmer, S. M., Selvig, K., Dietrich, F. & Alspaugh, J. A. Cryptococcus neoformans Rim101 is associated with cell wall remodeling and evasion of the host immune responses. mBio 4, e00522-12 (2013).
Pradhan, A. et al. Non-canonical signalling mediates changes in fungal cell wall PAMPs that drive immune evasion. Nat. Commun. 10, 5315 (2019).
Pradhan, A. et al. Hypoxia promotes immune evasion by triggering β-glucan masking on the Candida albicans cell surface via mitochondrial and cAMP–protein kinase A signaling. mBio 9, e01318-18 (2018).
Sherrington, S. L. et al. Adaptation of Candida albicans to environmental pH induces cell wall remodelling and enhances innate immune recognition. PLoS Pathog. 13, e1006403 (2017).
Ballou, E. R. et al. Lactate signalling regulates fungal β-glucan masking and immune evasion. Nat. Microbiol. 2, 16238 (2016).
Yang, M. et al. Control of β-glucan exposure by the endo-1,3-glucanase Eng1 in Candida albicans modulates virulence. PLoS Pathog. 18, e1010192 (2022).
Childers, D. S. et al. Epitope shaving promotes fungal immune evasion. mBio 11, e00984-20 (2020).
Garfoot, A. L., Shen, Q., Wüthrich, M., Klein, B. S. & Rappleye, C. A. The Eng1 β-glucanase enhances Histoplasma virulence by reducing β-glucan exposure. mBio 7, e01388-15 (2016).
Luo, S., Poltermann, S., Kunert, A., Rupp, S. & Zipfel, P. F. Immune evasion of the human pathogenic yeast Candida albicans: Pra1 is a factor H, FHL-1 and plasminogen binding surface protein. Mol. Immunol. 47, 541–550 (2009).
Luo, S., Hoffmann, R., Skerka, C. & Zipfel, P. F. Glycerol-3-phosphate dehydrogenase 2 is a novel factor H-, factor H-like protein 1-, and plasminogen-binding surface protein of Candida albicans. J. Infect. Dis. 207, 594–603 (2013).
Dasari, P. et al. Aspf2 from Aspergillus fumigatus recruits human immune regulators for immune evasion and cell damage. Front. Immunol. 9, 1635 (2018).
Dasari, P. et al. Enolase from Aspergillus fumigatus is a moonlighting protein that binds the human plasma complement proteins factor H, FHL-1, C4BP, and plasminogen. Front. Immunol. 10, 2573 (2019).
Jia, L.-J. et al. Biotinylated surfome profiling identifies potential biomarkers for diagnosis and therapy of Aspergillus fumigatus infection. mSphere 5, e00535-20 (2020).
Poltermann, S. et al. Gpm1p is a factor H-, FHL-1-, and plasminogen-binding surface protein of Candida albicans. J. Biol. Chem. 282, 37537–37544 (2007).
Behnsen, J. et al. Secreted Aspergillus fumigatus protease Alp1 degrades human complement proteins C3, C4, and C5. Infect. Immun. 78, 3585–3594 (2010).
Shende, R. et al. Aspergillus fumigatus conidial metalloprotease Mep1p cleaves host complement proteins. J. Biol. Chem. 293, 15538–15555 (2018).
Svoboda, E. et al. Secreted aspartic protease 2 of Candida albicans inactivates factor H and the macrophage factor H-receptors CR3 (CD11b/CD18) and CR4 (CD11c/CD18). Immunol. Lett. 168, 13–21 (2015).
Singh, D. K. et al. Functional characterization of secreted aspartyl proteases in Candida parapsilosis. mSphere 4, e00484-19 (2019).
Gropp, K. et al. The yeast Candida albicans evades human complement attack by secretion of aspartic proteases. Mol. Immunol. 47, 465–475 (2009).
Luo, S. et al. The secreted Candida albicans protein Pra1 disrupts host defense by broadly targeting and blocking complement C3 and C3 activation fragments. Mol. Immunol. 93, 266–277 (2018).
Kyrmizi, I. et al. Calcium sequestration by fungal melanin inhibits calcium–calmodulin signalling to prevent LC3-associated phagocytosis. Nat. Microbiol. 3, 791–803 (2018).
Schmidt, F. et al. Flotillin-dependent membrane microdomains are required for functional phagolysosomes against fungal infections. Cell Rep. 32, 108017 (2020).
Goldmann, M. et al. The lipid raft-associated protein stomatin is required for accumulation of Dectin-1 in the phagosomal membrane and for full activity of macrophages against Aspergillus fumigatus. mSphere 8, e00523-22 (2023).
Andrianaki, A. M. et al. Iron restriction inside macrophages regulates pulmonary host defense against Rhizopus species. Nat. Commun. 9, 3333 (2018).
De Leon-Rodriguez, C. M., Fu, M. S., Çorbali, M. O., Cordero, R. J. B. & Casadevall, A. The capsule of Cryptococcus neoformans modulates phagosomal pH through its acid–base properties. mSphere 3, e00437-18 (2018).
Fu, M. S. et al. Cryptococcus neoformans urease affects the outcome of intracellular pathogenesis by modulating phagolysosomal pH. PLoS Pathog. 14, e1007144 (2018).
Westman, J., Moran, G., Mogavero, S., Hube, B. & Grinstein, S. Candida albicans hyphal expansion causes phagosomal membrane damage and luminal alkalinization. mBio 9, e01226-18 (2018).
Chen, T. et al. The nucleotide receptor STING translocates to the phagosomes to negatively regulate anti-fungal immunity. Immunity 56, 1727–1742.e6 (2023).
Liu, B. et al. Human STING is a proton channel. Science 381, 508–514 (2023).
Jahn, B., Langfelder, K., Schneider, U., Schindel, C. & Brakhage, A. A. PKSP-dependent reduction of phagolysosome fusion and intracellular kill of Aspergillus fumigatus conidia by human monocyte-derived macrophages. Cell. Microbiol. 4, 793–803 (2002).
Levitz, S. M. et al. Cryptococcus neoformans resides in an acidic phagolysosome of human macrophages. Infect. Immun. 67, 885–890 (1999).
Wasylnka, J. A. & Moore, M. M. Aspergillus fumigatus conidia survive and germinate in acidic organelles of A549 epithelial cells. J. Cell Sci. 116, 1579–1587 (2003).
Westman, J. et al. Lysosome fusion maintains phagosome integrity during fungal infection. Cell Host Microbe 28, 798–812 (2020).
Zaragoza, O. et al. Capsule enlargement in Cryptococcus neoformans confers resistance to oxidative stress suggesting a mechanism for intracellular survival. Cell. Microbiol. 10, 2043–2057 (2008).
Langfelder, K., Streibel, M., Jahn, B., Haase, G. & Brakhage, A. A. Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Genet. Biol. 38, 143–158 (2003).
Frohner, I. E., Bourgeois, C., Yatsyk, K., Majer, O. & Kuchler, K. Candida albicans cell surface superoxide dismutases degrade host-derived reactive oxygen species to escape innate immune surveillance. Mol. Microbiol. 71, 240–252 (2009).
Youseff, B. H., Holbrook, E. D., Smolnycki, K. A. & Rappleye, C. A. Extracellular superoxide dismutase protects Histoplasma yeast cells from host-derived oxidative stress. PLoS Pathog. 8, e1002713 (2012).
Paris, S. et al. Catalases of Aspergillus fumigatus. Infect. Immun. 71, 3551–3562 (2003).
Brinkmann, V. & Zychlinsky, A. Entering the neutrophil trap. Nat. Rev. Immunol. 21, 615 (2021).
Murdoch, C. C. & Skaar, E. P. Nutritional immunity: the battle for nutrient metals at the host–pathogen interface. Nat. Rev. Microbiol. 20, 657–670 (2022).
Flannagan, R. S., Farrell, T. J., Trothen, S. M., Dikeakos, J. D. & Heinrichs, D. E. Rapid removal of phagosomal ferroportin in macrophages contributes to nutritional immunity. Blood Adv. 5, 459–474 (2021).
Rossi, D. C. P. et al. A metabolic inhibitor arms macrophages to kill intracellular fungal pathogens by manipulating zinc homeostasis. J. Clin. Invest. 131, e147268 (2021).
Li, C., Li, Y. & Ding, C. The role of copper homeostasis at the host–pathogen axis: from bacteria to fungi. Int. J. Mol. Sci. 20, 175 (2019).
Gerwien, F., Skrahina, V., Kasper, L., Hube, B. & Brunke, S. Metals in fungal virulence. FEMS Microbiol. Rev. 42, fux050 (2017).
Smith, A. D., Logeman, B. L. & Thiele, D. J. Copper acquisition and utilization in fungi. Annu. Rev. Microbiol. 71, 597–623 (2017).
Wildeman, A. S., Patel, N. K., Cormack, B. P. & Culotta, V. C. The role of manganese in morphogenesis and pathogenesis of the opportunistic fungal pathogen Candida albicans. PLoS Pathog. 19, e1011478 (2023).
Wiemann, P. et al. Aspergillus fumigatus copper export machinery and reactive oxygen intermediate defense counter host copper-mediated oxidative antimicrobial offense. Cell Rep. 19, 1008–1021 (2017).
Li, C. X. et al. Candida albicans adapts to host copper during infection by swapping metal cofactors for superoxide dismutase. Proc. Natl Acad. Sci. USA 112, E5336–E5342 (2015).
Ding, C. et al. Cryptococcus neoformans copper detoxification machinery is critical for fungal virulence. Cell Host Microbe 13, 265–276 (2013).
Sun, T. S. et al. Reciprocal functions of Cryptococcus neoformans copper homeostasis machinery during pulmonary infection and meningoencephalitis. Nat. Commun. 5, 5550 (2014).
Mohamed, S. H. et al. Microglia are not protective against cryptococcal meningitis. Nat. Commun. 14, 7202 (2023).
Labbé, K. & Saleh, M. Cell death in the host response to infection. Cell Death Differ. 15, 1339–1349 (2008).
Camilli, G., Blagojevic, M., Naglik, J. R. & Richardson, J. P. Programmed cell death: central player in fungal infections. Trends Cell Biol. 31, 179–196 (2021).
Volling, K., Thywissen, A., Brakhage, A. A. & Saluz, H. P. Phagocytosis of melanized Aspergillus conidia by macrophages exerts cytoprotective effects by sustained PI3K/Akt signalling. Cell. Microbiol. 13, 1130–1148 (2011).
Acorci, M. J. et al. Inhibition of human neutrophil apoptosis by Paracoccidioides brasiliensis: role of interleukin-8. Scand. J. Immunol. 69, 73–79 (2009).
Deepe, G. S. Jr & Buesing, W. R. Deciphering the pathways of death of Histoplasma capsulatum-infected macrophages: implications for the immunopathogenesis of early infection. J. Immunol. 188, 334–344 (2012).
Amin, S., Thywissen, A., Heinekamp, T., Saluz, H. P. & Brakhage, A. A. Melanin dependent survival of Apergillus fumigatus conidia in lung epithelial cells. Int. J. Med. Microbiol. 304, 626–636 (2014).
Ding, X. et al. Inflammasome-mediated GSDMD activation facilitates escape of Candida albicans from macrophages. Nat. Commun. 12, 6699 (2021).
Geissler, A. et al. Apoptosis induced by the fungal pathogen gliotoxin requires a triple phosphorylation of Bim by JNK. Cell Death Differ. 20, 1317–1329 (2013).
Olivier, F. A. B. et al. The escape of Candida albicans from macrophages is enabled by the fungal toxin candidalysin and two host cell death pathways. Cell Rep. 40, 111374 (2022).
Stanzani, M. et al. Aspergillus fumigatus suppresses the human cellular immune response via gliotoxin-mediated apoptosis of monocytes. Blood 105, 2258–2265 (2005).
Briard, B. et al. Galactosaminogalactan activates the inflammasome to provide host protection. Nature 588, 688–692 (2020).
Mogavero, S. et al. Candidalysin delivery to the invasion pocket is critical for host epithelial damage induced by Candida albicans. Cell. Microbiol. 23, e13378 (2021).
Kasper, L. et al. The fungal peptide toxin Candidalysin activates the NLRP3 inflammasome and causes cytolysis in mononuclear phagocytes. Nat. Commun. 9, 4260 (2018).
Weerasinghe, H. et al. Candida auris uses metabolic strategies to escape and kill macrophages while avoiding robust activation of the NLRP3 inflammasome response. Cell Rep. 42, 112522 (2023).
Azimova, D. et al. Cbp1, a fungal virulence factor under positive selection, forms an effector complex that drives macrophage lysis. PLoS Pathog. 18, e1010417 (2022).
Villena, S. N. et al. Capsular polysaccharides galactoxylomannan and glucuronoxylomannan from Cryptococcus neoformans induce macrophage apoptosis mediated by Fas ligand. Cell. Microbiol. 10, 1274–1285 (2008).
Alvarez, M. & Casadevall, A. Phagosome extrusion and host-cell survival after Cryptococcus neoformans phagocytosis by macrophages. Curr. Biol. 16, 2161–2165 (2006).
Bain, J. M. et al. Non-lytic expulsion/exocytosis of Candida albicans from macrophages. Fungal Genet. Biol. 49, 677–678 (2012).
Ma, H., Croudace, J. E., Lammas, D. A. & May, R. C. Expulsion of live pathogenic yeast by macrophages. Curr. Biol. 16, 2156–2160 (2006).
Nicola, A. M., Robertson, E. J., Albuquerque, P., Derengowski Lda, S. & Casadevall, A. Nonlytic exocytosis of Cryptococcus neoformans from macrophages occurs in vivo and is influenced by phagosomal pH. mBio 2, e00167-11 (2011).
Onyishi, C. U. et al. Loss of the scavenger receptor MARCO results in uncontrolled vomocytosis of fungi from macrophages. Eur. J. Immunol. 54, e2350771 (2024).
Kissick, H. T. et al. The scavenger receptor MARCO modulates TLR-induced responses in dendritic cells. PLoS ONE 9, e104148 (2014).
Nicola, A. M. et al. Macrophage autophagy in immunity to Cryptococcus neoformans and Candida albicans. Infect. Immun. 80, 3065–3076 (2012).
Stukes, S. et al. The membrane phospholipid binding protein annexin A2 promotes phagocytosis and nonlytic exocytosis of Cryptococcus neoformans and impacts survival in fungal infection. J. Immunol. 197, 1252–1261 (2016).
Gerke, V., Creutz, C. E. & Moss, S. E. Annexins: linking Ca2+ signalling to membrane dynamics. Nat. Rev. Mol. Cell Biol. 6, 449–461 (2005).
Seidel, C. et al. Phagolysosomal survival enables non-lytic hyphal escape and ramification through lung epithelium during Aspergillus fumigatus infection. Front. Microbiol. 11, 1955 (2020).
Dang, E. V. et al. Secreted fungal virulence effector triggers allergic inflammation via TLR4. Nature 608, 161–167 (2022).
Strickland, A. B., Chen, Y., Sun, D. & Shi, M. Alternatively activated lung alveolar and interstitial macrophages promote fungal growth. iScience 26, 106717 (2023).
Wang, L., Hu, C. & Shao, L. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int. J. Nanomed. 12, 1227–1249 (2017).
Fu, Z., Li, S., Han, S., Shi, C. & Zhang, Y. Antibody drug conjugate: the “biological missile” for targeted cancer therapy. Signal Transduct. Target. Ther. 7, 93 (2022).
Lehar, S. M. et al. Novel antibody–antibiotic conjugate eliminates intracellular S. aureus. Nature 527, 323–328 (2015).
Patra, J. K. et al. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnol. 16, 71 (2018).
Valiante, V., Macheleidt, J., Föge, M. & Brakhage, A. A. The Aspergillus fumigatus cell wall integrity signaling pathway: drug target, compensatory pathways, and virulence. Front. Microbiol. 6, 325 (2015).
Nami, S., Aghebati-Maleki, A. & Aghebati-Maleki, L. Current applications and prospects of nanoparticles for antifungal drug delivery. EXCLI J. 20, 562–584 (2021).
Adler-Moore, J. & Proffitt, R. T. AmBisome: liposomal formulation, structure, mechanism of action and pre-clinical experience. J. Antimicrob. Chemother. 49, 21–30 (2002).
Ambati, S. et al. Dectin-1-targeted antifungal liposomes exhibit enhanced efficacy. mSphere 4, e00025-19 (2019).
Ambati, S. et al. Dectin-2-targeted antifungal liposomes exhibit enhanced efficacy. mSphere 4, e00715-19 (2019).
Ruge, C. A. et al. Uptake of nanoparticles by alveolar macrophages is triggered by surfactant protein A. Nanomedicine 7, 690–693 (2011).
Nahar, M. & Jain, N. K. Preparation, characterization and evaluation of targeting potential of amphotericin B-loaded engineered PLGA nanoparticles. Pharm. Res. 26, 2588–2598 (2009).
Nasti, T. H., Khan, M. A. & Owais, M. Enhanced efficacy of pH-sensitive nystatin liposomes against Cryptococcus neoformans in murine model. J. Antimicrob. Chemother. 57, 349–352 (2006).
Rajesh, S. et al. Application of fluconazole-loaded pH-sensitive lipid nanoparticles for enhanced antifungal therapy. ACS Appl. Mater. Interfaces 14, 32845–32854 (2022).
Su, F.-Y. et al. Macrophage-targeted drugamers with enzyme-cleavable linkers deliver high intracellular drug dosing and sustained drug pharmacokinetics against alveolar pulmonary infections. J. Control. Release 287, 1–11 (2018).
González, K. et al. Targeting of phagolysosomes containing conidia of the fungus Aspergillus fumigatus with polymeric particles. Appl. Microbiol. Biotechnol. 107, 819–834 (2023).
De Angelis, G. et al. A novel approach to control Botrytis cinerea fungal infections: uptake and biological activity of antifungals encapsulated in nanoparticle based vectors. Sci. Rep. 12, 7989 (2022).
Patel, N. R., Damann, K., Leonardi, C. & Sabliov, C. M. Size dependency of PLGA-nanoparticle uptake and antifungal activity against Aspergillus flavus. Nanomedicine (Lond.) 6, 1381–1395 (2011).
Horvat, S. et al. Nanogels as antifungal‐drug delivery system against Aspergillus fumigatus. Adv. Nanobiomed Res. 1, 2000060 (2021).
Orasch, T. et al. Polymer-based particles against pathogenic fungi: a non-uptake delivery of compounds. Biomater. Adv. 146, 213300 (2023).
Ben Shlomo, S., Mouhadeb, O., Cohen, K., Varol, C. & Gluck, N. COMMD10-guided phagolysosomal maturation promotes clearance of Staphylococcus aureus in macrophages. iScience 14, 147–163 (2019).
Breyer, F. et al. TPL-2 kinase induces phagosome acidification to promote macrophage killing of bacteria. EMBO J. 40, e106188 (2021).
Newman, S. L., Bhugra, B., Holly, A. & Morris, R. E. Enhanced killing of Candida albicans by human macrophages adherent to type 1 collagen matrices via induction of phagolysosomal fusion. Infect. Immun. 73, 770–777 (2005).
Ray, S. C. & Rappleye, C. A. Mac1-dependent copper sensing promotes Histoplasma adaptation to the phagosome during adaptive immunity. mBio 13, e03773-21 (2022).
Espinosa, V. et al. Cutting edge: neutrophils license the maturation of monocytes into effective antifungal effectors. J. Immunol. 209, 1827–1831 (2022).
Casanova, J. L., MacMicking, J. D. & Nathan, C. F. Interferon-γ and infectious diseases: lessons and prospects. Science 384, eadl2016 (2024).
Citiulo, F. et al. Candida albicans scavenges host zinc via Pra1 during endothelial invasion. PLoS Pathog. 8, e1002777 (2012).
Marcil, A. et al. Analysis of PRA1 and its relationship to Candida albicans–macrophage interactions. Infect. Immun. 76, 4345–4358 (2008).
Roselletti, E. et al. Zinc prevents vaginal candidiasis by inhibiting expression of an inflammatory fungal protein. Sci. Transl. Med. 15, eadi3363 (2023).
Mills, K. A. M. et al. GM-CSF-mediated epithelial-immune cell crosstalk orchestrates pulmonary immunity to Aspergillus fumigatus. Preprint at bioRxiv https://doi.org/10.1101/2024.01.03.574062 (2024).
Guo, Y. et al. During Aspergillus infection, monocyte-derived DCs, neutrophils, and plasmacytoid DCs enhance innate immune defense through CXCR3-dependent crosstalk. Cell Host Microbe 28, 104–116.e4 (2020).
Akoumianaki, T. et al. Uncoupling of IL-6 signaling and LC3-associated phagocytosis drives immunoparalysis during sepsis. Cell Host Microbe 29, 1277–1293.e6 (2021).
Li, K. et al. Profiling phagosome proteins identifies PD-L1 as a fungal-binding receptor. Nature 630, 736–743 (2024).
Hillmann, F. et al. Virulence determinants of the human pathogenic fungus Aspergillus fumigatus protect against soil amoeba predation. Environ. Microbiol. 17, 2858–2869 (2015).
Schwarz, C. et al. Antigen specificity and cross-reactivity drive functionally diverse anti-Aspergillus fumigatus T cell responses in cystic fibrosis. J. Clin. Invest. 133, e161593 (2023).
Alonso-Roman, R. et al. Organ-on-chip models for infectious disease research. Nat. Microbiol. 9, 891–904 (2024).
Ishikawa, T. et al. Identification of distinct ligands for the C-type lectin receptors Mincle and Dectin-2 in the pathogenic fungus Malassezia. Cell Host Microbe 13, 477–488 (2013).
Kostarnoy, A. V. et al. A mechanism of self-lipid endocytosis mediated by the receptor Mincle. Proc. Natl Acad. Sci. USA 119, e2120489119 (2022).
Kitai, Y. et al. Role of Dectin-2 in the phagocytosis of Cryptococcus neoformans by dendritic cells. Infect. Immun. 89, e0033021 (2021).
Reedy, J. L. et al. The C-type lectin receptor Dectin-2 is a receptor for Aspergillus fumigatus galactomannan. mBio 14, e03184-22 (2023).
Huang, H. R. et al. Dectin-3 recognizes glucuronoxylomannan of Cryptococcus neoformans serotype AD and Cryptococcus gattii serotype B to initiate host defense against cryptococcosis. Front. Immunol. 9, 1781 (2018).
Kottom, T. J. et al. Myeloid C-type lectin receptors that recognize fungal mannans interact with Pneumocystis organisms and major surface glycoprotein. J. Med. Microbiol. 68, 1649–1654 (2019).
Preite, N. W. et al. The Syk-coupled C-type lectin receptors Dectin-2 and Dectin-3 are involved in Paracoccidioides brasiliensis recognition by human plasmacytoid dendritic cells. Front. Immunol. 9, 464 (2018).
Choudhury, Q. J. et al. Dectin-3-targeted antifungal liposomes efficiently bind and kill diverse fungal pathogens. Mol. Microbiol. 120, 723–739 (2023).
Krylov, V. B. et al. Identification of a new DC-SIGN binding pentamannoside epitope within the complex structure of Candida albicans mannan. Cell Surf. 10, 100109 (2023).
Serrano-Gómez, D. et al. Dendritic cell-specific intercellular adhesion molecule 3-grabbing nonintegrin mediates binding and internalization of Aspergillus fumigatus conidia by dendritic cells and macrophages. J. Immunol. 173, 5635–5643 (2004).
Onyishi, C. U. et al. Toll-like receptor 4 and macrophage scavenger receptor 1 crosstalk regulates phagocytosis of a fungal pathogen. Nat. Commun. 14, 4895 (2023).
Goodridge, H. S., Wolf, A. J. & Underhill, D. M. β-glucan recognition by the innate immune system. Immunol. Rev. 230, 38–50 (2009).
Jaumouillé, V., Cartagena-Rivera, A. X. & Waterman, C. M. Coupling of β2 integrins to actin by a mechanosensitive molecular clutch drives complement receptor-mediated phagocytosis. Nat. Cell Biol. 21, 1357–1369 (2019).
Long, K. H., Gomez, F. J., Morris, R. E. & Newman, S. L. Identification of heat shock protein 60 as the ligand on Histoplasma capsulatum that mediates binding to CD18 receptors on human macrophages. J. Immunol. 170, 487–494 (2003).
Vorup-Jensen, T. & Jensen, R. K. Structural immunology of complement receptors 3 and 4. Front. Immunol. 9, 2716 (2018).
Xu, S., Wang, J., Wang, J.-H. & Springer, T. A. Distinct recognition of complement iC3b by integrins αXβ2 and αMβ2. Proc. Natl Acad. Sci. USA 114, 3403–3408 (2017).
Wang, Y. & Jönsson, F. Expression, role, and regulation of neutrophil Fcγ receptors. Front. Immunol. 10, 1958 (2019).
Moalli, F. et al. Role of complement and Fcγ receptors in the protective activity of the long pentraxin PTX3 against Aspergillus fumigatus. Blood 116, 5170–5180 (2010).
Alqarihi, A. et al. GRP78 and integrins play different roles in host cell invasion during mucormycosis. mBio 11, e01087-20 (2020).
Liu, H. et al. Aspergillus fumigatus CalA binds to integrin α5β1 and mediates host cell invasion. Nat. Microbiol. 2, 16211 (2016).
Keizer, E. M., Wösten, H. A. B. & de Cock, H. EphA2-dependent internalization of A. fumigatus conidia in A549 lung cells is modulated by DHN-melanin. Front. Microbiol. 11, 534118 (2020).
Swidergall, M., Solis, N. V., Lionakis, M. S. & Filler, S. G. EphA2 is an epithelial cell pattern recognition receptor for fungal β-glucans. Nat. Microbiol. 3, 53–61 (2018).
Aaron, P. A., Jamklang, M., Uhrig, J. P. & Gelli, A. The blood–brain barrier internalises Cryptococcus neoformans via the EphA2-tyrosine kinase receptor. Cell. Microbiol. 20, e12811 (2018).
Wong, S. S. W. et al. Differential interactions of serum and bronchoalveolar lavage fluid complement proteins with conidia of airborne fungal pathogen Aspergillus fumigatus. Infect. Immun. 88, e00212-20 (2020).
Ma, Y. G. et al. Human mannose-binding lectin and l-ficolin function as specific pattern recognition proteins in the lectin activation pathway of complement. J. Biol. Chem. 279, 25307–25312 (2004).
Ma, Y. J. et al. Synergy between Ficolin-2 and pentraxin 3 boosts innate immune recognition and complement deposition. J. Biol. Chem. 284, 28263–28275 (2009).
Van Asbeck, E. C., Hoepelman, A. I. M., Scharringa, J., Herpers, B. L. & Verhoef, J. Mannose binding lectin plays a crucial role in innate immunity against yeast by enhanced complement activation and enhanced uptake of polymorphonuclear cells. BMC Microbiol. 8, 229 (2008).
Wong, S. S. W. et al. Fungal melanin stimulates surfactant protein D-mediated opsonization of and host immune response to Aspergillus fumigatus spores. J. Biol. Chem. 293, 4901–4912 (2018).
Foo, S.-S., Reading, P. C., Jaillon, S., Mantovani, A. & Mahalingam, S. Pentraxins and collectins: friend or foe during pathogen invasion? Trends Microbiol. 23, 799–811 (2015).
Acknowledgements
We thank T. Heinekamp and M. Blango for critical reading of the manuscript. The work in the authors’ laboratories is funded by the Free State of Thuringia and European Social Fund Plus (PhagoInf; 2023FGR0043), the Deutsche Forschungsgemeinschaft (DFG) Cluster of Excellence Balance of the Microverse (project ID 390713860; Gepris 2051), the DFG–Agence Nationale de la Recherche project AfuInf (316898429), DFG Collaborative Research Center/Transregio 124 (FungiNet) (projects A1 and Z2; 210879364), DFG Collaborative Research Center 1278 (PolyTarget) (project B02; 316213987) and a Leibniz project (K217/2016).
Author information
Authors and Affiliations
Contributions
L.-J.J. and A.A.B. conceptualized and supervised the study. L.-J.J. performed literature research and prepared the figures. All authors wrote and edited the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Microbiology thanks Rebecca Drummond, Neil Gow and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Jia, LJ., González, K., Orasch, T. et al. Manipulation of host phagocytosis by fungal pathogens and therapeutic opportunities. Nat Microbiol 9, 2216–2231 (2024). https://doi.org/10.1038/s41564-024-01780-0
Received:
Accepted:
Published:
Version of record:
Issue date:
DOI: https://doi.org/10.1038/s41564-024-01780-0
This article is cited by
-
Mesomycoplasma hyopneumoniae lipoprotein Mhp390 serves as a plasminogen receptor mediating extracellular matrix degradation and respiratory epithelial cells injury
Veterinary Research (2025)
-
A Candidatus liberibacter Asiaticus effector, CLIBASIA_00185 controls sugar metabolism, phenylpropanoid biosynthesis, and endocytosis pathway in Citrus sinensis
BMC Genomics (2025)
-
Phagocytosis: a process that shapes immune responses to engulfed meals
Nature Reviews Immunology (2025)
-
Epidemiology, antifungal susceptibility and biological characteristics of clinical Aspergillus fumigatus in a tertiary hospital
Scientific Reports (2025)
-
Comprehensive Molecular Profiling of AcrAB-TolC Efflux Pump Genes in Salmonella typhi Isolates from Typhoid Infected Patients
Current Microbiology (2025)