+
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Immune-compatible designs of semiconducting polymers for bioelectronics with suppressed foreign-body response

Abstract

One of the greatest obstacles to achieving implantable electronics with long-term functionality and minimized inflammatory reactions is the immune-mediated foreign-body response (FBR). Recently, semiconducting polymers with mixed electron–ion conductivity have been demonstrated as promising candidates to achieve direct electrical interfacing on bio-tissues. However, there is limited understanding of their immune compatibility in vivo, and strategies for minimizing the FBR through molecular design remain underexplored. Here we introduce a set of molecular design strategies for enhancing the immune compatibility of semiconducting polymers. Specifically, we show that selenophene, when incorporated in the backbone, can mitigate the FBR by suppressing macrophage activation. In addition, side-chain functionalization with immunomodulatory groups decreases the FBR further by downregulating the expression of inflammatory biomarkers. Together, our synthesized polymers achieve suppression of the FBR by as much as 68% (as indicated by the collagen density). In the meantime, these immune-compatible designs still provide a high charge-carrier mobility of around 1 cm2 V−1 s−1. We anticipate that such immune-compatible design principles can be translated to a variety of conjugated polymers to suppress the FBR for implantable applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Immune-compatible designs of semiconducting polymers with suppressed FBR.
Fig. 2: Reduced collagen deposition and immune cell populations on the polymer films with immune-compatible designs.
Fig. 3: The immune-compatible designs induce more anti-inflammatory macrophages.
Fig. 4: Macrophage activation was suppressed by selenophene through in vitro study.
Fig. 5: OECT characterization and implantable application for the immune-compatible semiconducting polymers.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available within this Article and its Supplementary Information. Additional data are available from the corresponding authors upon request. Source data are provided with this paper.

References

  1. Fitzpatrick, D. Implantable Electronic Medical Devices (Elsevier, 2015)

  2. Someya, T., Bao, Z. & Malliaras, G. G. The rise of plastic bioelectronics. Nature 540, 379–385 (2016).

    Article  CAS  PubMed  Google Scholar 

  3. Sunwoo, S.-H., Ha, K.-H., Lee, S., Lu, N. & Kim, D.-H. Wearable and implantable soft bioelectronics: device designs and material strategies. Annu. Rev. Chem. Biomol. Eng. 12, 359–391 (2021).

    Article  CAS  PubMed  Google Scholar 

  4. Luo, Y. et al. Technology roadmap for flexible sensors. ACS Nano 17, 5211–5295 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Capuani, S., Malgir, G., Chua, C. Y. X. & Grattoni, A. Advanced strategies to thwart foreign body response to implantable devices. Bioeng. Transl. Med. 7, e10300 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  6. Zhang, D. et al. Dealing with the foreign-body response to implanted biomaterials: strategies and applications of new materials. Adv. Funct. Mater. 31, 2007226 (2021).

    Article  CAS  Google Scholar 

  7. Welch, N. G., Winkler, D. A. & Thissen, H. Antifibrotic strategies for medical devices. Adv. Drug Deliv. Rev. 167, 109–120 (2020).

    Article  CAS  PubMed  Google Scholar 

  8. Anderson, J. M., Rodriguez, A. & Chang, D. T. Foreign body reaction to biomaterials. Semin. Immunol. 20, 86–100 (2008).

    Article  CAS  PubMed  Google Scholar 

  9. Barrese, J. C., Aceros, J. & Donoghue, J. P. Scanning electron microscopy of chronically implanted intracortical microelectrode arrays in non-human primates. J. Neural Eng. 13, 026003 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Biran, R., Martin, D. C. & Tresco, P. A. Neuronal cell loss accompanies the brain tissue response to chronically implanted silicon microelectrode arrays. Exp. Neurol. 195, 115–126 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Venkatraman, S. et al. In vitro and in vivo evaluation of PEDOT microelectrodes for neural stimulation and recording. IEEE Trans. Neural Syst. Rehabil. Eng. 19, 307–316 (2011).

    Article  PubMed  Google Scholar 

  12. Rahmati, M., Silva, E. A., Reseland, J. E., Heyward, C. A. & Haugen, H. J. Biological responses to physicochemical properties of biomaterial surface. Chem. Soc. Rev. 49, 5178–5224 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Carnicer-Lombarte, A., Chen, S.-T., Malliaras, G. G. & Barone, D. G. Foreign body reaction to implanted biomaterials and its impact in nerve neuroprosthetics. Front. Bioeng. Biotechnol. 9, 622524 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Veiseh, O. et al. Size- and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nat. Mater. 14, 643–651 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Doloff, J. C. et al. The surface topography of silicone breast implants mediates the foreign body response in mice, rabbits and humans. Nat. Biomed. Eng. 5, 1115–1130 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Zhang, L. et al. Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat. Biotechnol. 31, 553–556 (2013).

    Article  CAS  PubMed  Google Scholar 

  17. Liu, Q. et al. Zwitterionically modified alginates mitigate cellular overgrowth for cell encapsulation. Nat. Commun. 10, 5262 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Li, Q. et al. Zwitterionic biomaterials. Chem. Rev. 122, 17073–17154 (2022).

    Article  CAS  PubMed  Google Scholar 

  19. Vegas, A. J. et al. Combinatorial hydrogel library enables identification of materials that mitigate the foreign body response in primates. Nat. Biotechnol. 34, 345–352 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bose, S. et al. A retrievable implant for the long-term encapsulation and survival of therapeutic xenogeneic cells. Nat. Biomed. Eng. 4, 814–826 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Veiseh, O. & Vegas, A. J. Domesticating the foreign body response: recent advances and applications. Adv. Drug Deliv. Rev. 144, 148–161 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Inal, S., Rivnay, J., Suiu, A.-O., Malliaras, G. G. & McCulloch, I. Conjugated polymers in bioelectronics. Acc. Chem. Res. 51, 1368–1376 (2018).

    Article  CAS  PubMed  Google Scholar 

  23. Dimov, I. B., Moser, M., Malliaras, G. G. & McCulloch, I. Semiconducting polymers for neural applications. Chem. Rev. 122, 4356–4396 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xie, X. et al. Reduction of measurement noise in a continuous glucose monitor by coating the sensor with a zwitterionic polymer. Nat. Biomed. Eng. 2, 894–906 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kutner, N., Kunduru, K. R., Rizik, L. & Farah, S. Recent advances for improving functionality, biocompatibility, and longevity of implantable medical devices and deliverable drug delivery systems. Adv. Funct. Mater. 31, 2010929 (2021).

    Article  CAS  Google Scholar 

  26. Bridges, A. W. & García, A. J. Anti-inflammatory polymeric coatings for implantable biomaterials and devices. J. Diabetes Sci. Technol. 2, 984–994 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  27. Farah, S. et al. Long-term implant fibrosis prevention in rodents and non-human primates using crystallized drug formulations. Nat. Mater. 18, 892–904 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Barone, D. G. et al. Prevention of the foreign body response to implantable medical devices by inflammasome inhibition. Proc. Natl Acad. Sci. USA 119, e2115857119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rivnay, J. et al. Organic electrochemical transistors. Nat. Rev. Mater. 3, 17086 (2018).

    Article  CAS  Google Scholar 

  30. Li, N. et al. Bioadhesive polymer semiconductors and transistors for intimate biointerfaces. Science 381, 686–693 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Strakosas, X. et al. Metabolite-induced in vivo fabrication of substrate-free organic bioelectronics. Science 379, 795–802 (2023).

    Article  CAS  PubMed  Google Scholar 

  32. Zhou, Y. et al. Dual-color optical recording of bioelectric potentials by polymer electrochromism. J. Am. Chem. Soc. 144, 23505–23515 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zheng, Y., Zhang, S., Tok, J. B. H. & Bao, Z. Molecular design of stretchable polymer semiconductors: current progress and future directions. J. Am. Chem. Soc. 144, 4699–4715 (2022).

    Article  CAS  PubMed  Google Scholar 

  34. Dai, Y. et al. Stretchable redox-active semiconducting polymers for high-performance organic electrochemical transistors. Adv. Mater. 34, 2201178 (2022).

    Article  CAS  Google Scholar 

  35. Du, W. et al. Improving the compatibility of diketopyrrolopyrrole semiconducting polymers for biological interfacing by lysine attachment. Chem. Mater. 30, 6164–6172 (2018).

    Article  CAS  Google Scholar 

  36. Lei, T. et al. Biocompatible and totally disintegrable semiconducting polymer for ultrathin and ultralightweight transient electronics. Proc. Natl Acad. Sci. USA 114, 5107–5112 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Krauss, G. et al. Polydiketopyrrolopyrroles carrying ethylene glycol substituents as efficient mixed ion–electron conductors for biocompatible organic electrochemical transistors. Adv. Funct. Mater. 31, 2010048 (2021).

    Article  CAS  Google Scholar 

  38. Tavadyan, L. A. et al. Antioxidant properties of selenophene, thiophene and their aminocarbonitrile derivatives. Antioxidants 6, 22 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Lu, X. et al. Selenium- and tellurium-based antioxidants for modulating inflammation and Effects on osteoblastic activity. Antioxidants 6, 13 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  40. Hariharan, S. & Dharmaraj, S. Selenium and selenoproteins: it’s role in regulation of inflammation. Inflammopharmacology 28, 667–695 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mal’tseva, V. N., Goltyaev, M. V., Turovsky, E. A. & Varlamova, E. G. Immunomodulatory and anti-inflammatory properties of selenium-containing agents: their role in the regulation of defense mechanisms against COVID-19. Int. J. Mol. Sci. 23, 2360 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  42. Chen, D. et al. Selenium-doped mesoporous bioactive glass regulates macrophage metabolism and polarization by scavenging ROS and promotes bone regeneration in vivo. ACS Appl. Mater. Interfaces 15, 34378–34396 (2023).

    Article  CAS  PubMed  Google Scholar 

  43. Filipović, N. et al. Comparative study of the antimicrobial activity of selenium nanoparticles with different surface chemistry and structure. Front. Bioeng. Biotechnol. 8, 624621 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kang, I., Yun, H.-J., Chung, D. S., Kwon, S.-K. & Kim, Y.-H. Record high hole mobility in polymer semiconductors via side-chain engineering. J. Am. Chem. Soc. 135, 14896–14899 (2013).

    Article  CAS  PubMed  Google Scholar 

  45. Marsh, A. V. & Heeney, M. Conjugated polymers based on selenophene building blocks. Polym. J. 55, 375–385 (2023).

    Article  CAS  Google Scholar 

  46. Inal, S., Malliaras, G. G. & Rivnay, J. Benchmarking organic mixed conductors for transistors. Nat. Commun. 8, 1767 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  47. Nielsen, C. B. et al. Molecular design of semiconducting polymers for high-performance organic electrochemical transistors. J. Am. Chem. Soc. 138, 10252–10259 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li, N. et al. A universal and facile approach for building multifunctional conjugated polymers for human-integrated electronics. Matter 4, 3015–3029 (2021).

    Article  CAS  Google Scholar 

  49. Akilbekova, D. & Bratlie, K. M. Quantitative characterization of collagen in the fibrotic capsule surrounding implanted polymeric microparticles through second harmonic ceneration imaging. PLoS ONE 10, e0130386 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mariani, E., Lisignoli, G., Borzì, R. M. & Pulsatelli, L. Biomaterials: foreign bodies or tuners for the immune response? Int. J. Mol. Sci. 20, 636 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hu, T.-Y. et al. Dysiarenone from marine sponge Dysidea arenaria attenuates ROS and inflammation via inhibition of 5-LOX/NF-κB/MAPKs and upregulation of Nrf-2/OH-1 in RAW 264.7 macrophages. J. Inflamm. Res. 14, 587–597 (2021).

  52. Rusetskaya, N. Y., Fedotov, I. V., Koftina, V. A. & Borodulin, V. B. Selenium compounds in redox regulation of inflammation and apoptosis. Biochem. (Mosc.) Suppl. B 13, 277–292 (2019).

    Article  Google Scholar 

  53. Mittal, M., Siddiqui, M. R., Tran, K., Reddy, S. P. & Malik, A. B. Reactive oxygen species in inflammation and tissue injury. Antioxid. Redox Signal. 20, 1126–1167 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Forrester, S. J., Kikuchi, D. S., Hernandes, M. S., Xu, Q. & Griendling, K. K. Reactive oxygen species in metabolic and inflammatory signaling. Circ. Res. 122, 877–902 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bisignani, A., De Bonis, S., Mancuso, L., Ceravolo, G. & Bisignani, G. Implantable loop recorder in clinical practice. J. Arrhythm. 35, 25–32 (2019).

    Article  PubMed  Google Scholar 

  56. Jiang, Z. et al. The dedicated high-resolution grazing-incidence X-ray scattering beamline 8-ID-E at the Advanced Photon Source. J. Synchrotron Radiat. 19, 627–636 (2012).

    Article  CAS  PubMed  Google Scholar 

  57. Jiang, Z. GIXSGUI: a MATLAB toolbox for grazing-incidence X-ray scattering data visualization and reduction, and indexing of buried three-dimensional periodic nanostructured films. J. Appl. Crystallogr. 48, 917–926 (2015).

    Article  CAS  Google Scholar 

  58. Bernards, D. A. & Malliaras, G. G. Steady-state and transient behavior of organic electrochemical transistors. Adv. Funct. Mater. 17, 3538–3544 (2007).

    Article  CAS  Google Scholar 

  59. Wu, J. et al. Adhesive anti-fibrotic interfaces on diverse organs. Nature 630, 360–367 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Félix, S. P., Pereira Lopes, F. R., Marques, S. A. & Martinez, A. M. B. Comparison between suture and fibrin glue on repair by direct coaptation or tubulization of injured mouse sciatic nerve. Microsurgery 33, 468–477 (2013).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work is supported by the US National Institutes of Health Director’s New Innovator Award (1DP2EB034563), the National Science Foundation (DMR-2105367), the US Office of Naval Research (N00014-21-1-2266) and the start-up fund from The University of Chicago. This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science user facility operated for the DOE Office of Science by Argonne National Laboratory under contract no. DE-AC02-06CH11357. Y.-H.K. acknowledges NRF RS-2023-00301974. S. Wang is a CZ Biohub Investigator.

Author information

Authors and Affiliations

Authors

Contributions

S. Wang conceived and supervised the research. N.L. and S. Wang designed the experiments. N.L. synthesized and characterized the monomers and polymers. S.K., A.S., N.L., S. Wai, M.J.V.W. and J.A.H. designed and performed the surgical experiments and immune compatibility analysis. S.K. conducted in vitro cell tests. N.L., Z.L., Y.D., Y.L., S.L. and Y.-H.K. fabricated the transistor devices and performed the measurements. N.L., Y.D. and J.S. performed the GIXD characterization. Z.L., S. Wai, Z.C., S.L., N.L. and B.T. conducted the implantable demonstrations. N.L. and S. Wang co-wrote the paper. All authors reviewed and commented on the paper.

Corresponding author

Correspondence to Sihong Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Damiano G. Barone and the other, anonymous, reviewer(s) for their contribution to the peer review of this work

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–36, Tables 1–4 and refs. 1–9.

Reporting Summary

Source data

Source Data Fig. 1

Statistical source data.

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, N., Kang, S., Liu, Z. et al. Immune-compatible designs of semiconducting polymers for bioelectronics with suppressed foreign-body response. Nat. Mater. (2025). https://doi.org/10.1038/s41563-025-02213-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-025-02213-x

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载