+
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Giant nonlinear Raman responses from organic semiconductors

Abstract

Organic semiconductors exhibit unique semiconducting behaviour due to π-electron delocalization along their molecular chains, making them attractive for various optoelectronic applications. However, their low optical damage thresholds have limited their use in nonlinear optics, particularly in stimulated Raman scattering. Here we demonstrate a general method to significantly amplify molecular vibrations in organic semiconductors by utilizing spectrally tailored gain from stimulated emission, bypassing the necessity for traditional optical cavities. This method achieves Raman thresholds as low as ~10–50 μJ cm2 or ~2–10 kW cm2, outperforming current Raman lasers by four orders of magnitude. The resulting nonlinear Raman response leads to cascaded Raman emission characterized by pump-dependent emission efficiency, a nonlinearity factor of 3.8, a signal-to-noise ratio of 30.9 dB and a bandwidth of 110 nm. Our study opens exciting prospects for the development of compact, efficient Raman amplifiers and lasers, leveraging the unique properties of organic semiconductors for advanced photonic applications, including high-sensitivity spectroscopy and versatile frequency conversion technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Principle and design of multi-amplified Raman modes in organic semiconductors.
Fig. 2: Multiple STGI-SRS in the SpL(2)-1 film.
Fig. 3: Observation of multi-amplified Raman modes in the SpL(2)-1 film with 450 nm pumping.
Fig. 4: Tunable properties of cascaded STGI-SRS in the SpL(2)-1 film.
Fig. 5: Sensing performance through STGI-SRS signal detection in an SpL(2)-1 film exposed to DNT and TNT at 450 nm pumping.

Similar content being viewed by others

Data availability

Source data are provided with this paper. Additional information is available from the authors on request.

References

  1. Shen, Y. R. The Principles of Nonlinear Optics (Wiley, 1984).

  2. Larson, D. R. et al. Water-soluble quantum dots for multiphoton fluorescence imaging in vivo. Science 300, 1434–1436 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. Freudiger, C. W. et al. Label-free biomedical imaging with high sensitivity by stimulated Raman scattering microscopy. Science 322, 1857–1861 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wang, F. et al. Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping. Nature 463, 1061–1065 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. Wu, Y. et al. Upconversion superburst with sub-2 μs lifetime. Nat. Nanotechnol. 14, 1110–1115 (2019).

    Article  CAS  PubMed  Google Scholar 

  6. Jiang, Y. et al. Frequency-upconverted stimulated emission by up to six-photon excitation from highly extended spiro-fused ladder-type oligo(p-phenylene)s. Angew. Chem. Int. Ed. 60, 10007–10015 (2021).

    Article  CAS  Google Scholar 

  7. Foster, M. A. et al. Broad-band optical parametric gain on a silicon photonic chip. Nature 441, 960–963 (2006).

    Article  CAS  PubMed  Google Scholar 

  8. Sansone, G. et al. Isolated single-cycle attosecond pulses. Science 314, 443–446 (2006).

    Article  CAS  PubMed  Google Scholar 

  9. Maiman, T. H. Stimulated optical radiation in ruby. Nature 187, 493–494 (1960).

    Article  Google Scholar 

  10. Eckhardt, G. et al. Stimulated Raman scattering from organic liquids. Phys. Rev. Lett. 9, 455–457 (1962).

    Article  CAS  Google Scholar 

  11. Shen, Y. R. & Bloembergen, N. Theory of stimulated Brillouin and Raman scattering. Phys. Rev. 137, A1787–A1805 (1965).

    Article  Google Scholar 

  12. Prince, R. C., Frontiera, R. R. & Potma, E. O. Stimulated Raman scattering: from bulk to nano. Chem. Rev. 117, 5070–5094 (2017).

    Article  CAS  PubMed  Google Scholar 

  13. Spillane, S. M., Kippenberg, T. J. & Vahala, K. J. Ultralow-threshold Raman laser using a spherical dielectric microcavity. Nature 415, 621–623 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Troccoli, M. et al. Raman injection laser. Nature 433, 845–848 (2005).

    Article  CAS  PubMed  Google Scholar 

  15. Hokr, B. H. et al. Bright emission from a random Raman laser. Nat. Commun. 5, 4356 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. Saar, B. G. et al. Video-rate molecular imaging in vivo with stimulated Raman scattering. Science 330, 1368–1370 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ozeki, Y. et al. High-speed molecular spectral imaging of tissue with stimulated Raman scattering. Nat. Photon. 6, 845–851 (2012).

    Article  CAS  Google Scholar 

  18. Claps, R., Dimitropoulos, D., Han, Y. & Jalali, B. Observation of Raman emission in silicon waveguides at 1.54 μm. Opt. Express 10, 1305–1313 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Rong, H. et al. An all-silicon Raman laser. Nature 433, 292–294 (2005).

    Article  CAS  PubMed  Google Scholar 

  20. Rong, H. et al. A continuous-wave Raman silicon laser. Nature 433, 725–728 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Loudon, R. The Raman effect in crystals. Adv. Phys. 13, 423–482 (1964).

    Article  CAS  Google Scholar 

  22. Takahashi, Y. et al. A micrometre-scale Raman silicon laser with a microwatt threshold. Nature 498, 470–474 (2013).

    Article  CAS  PubMed  Google Scholar 

  23. Shen, X., Choi, H., Chen, D., Zhao, W. & Armani, A. M. Raman laser from an optical resonator with a grafted single-molecule monolayer. Nat. Photon. 14, 95–101 (2020).

    Article  CAS  Google Scholar 

  24. Samuel, I. D. W. & Turnbull, G. A. Organic semiconductor lasers. Chem. Rev. 107, 1272–1295 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Kuehne, A. J. C. & Gather, M. C. Organic lasers: recent developments on materials, device geometries, and fabrication techniques. Chem. Rev. 116, 12823–12864 (2016).

    Article  CAS  PubMed  Google Scholar 

  26. Jiang, Y. et al. Organic solid-state lasers: a materials view and future development. Chem. Soc. Rev. 49, 5885–5944 (2020).

    Article  CAS  Google Scholar 

  27. Yoshida, K. et al. Electrically driven organic laser using integrated OLED pumping. Nature 621, 746–752 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim, H., Schulte, N., Zhou, G., Müllen, K. & Laquai, F. A high gain and high charge carrier mobility indenofluorene–phenanthrene copolymer for light amplification and organic lasing. Adv. Mater. 23, 894–897 (2010).

    Article  PubMed  Google Scholar 

  29. Hill, M. T. & Gather, M. C. Advances in small lasers. Nat. Photon. 8, 908–918 (2014).

    Article  CAS  Google Scholar 

  30. Broude, V. L., Maksimov, A. A. & Tartakovskii, I. I. Pre-resonant Raman scattering in antracene crystals. J. Lumin. 21, 183–186 (1980).

    Article  CAS  Google Scholar 

  31. Shkunov, M. N., Gellermann, W. & Vardeny, Z. V. Amplified resonant Raman scattering in conducting polymer thin films. Appl. Phys. Lett. 73, 2878–2880 (1998).

    Article  CAS  Google Scholar 

  32. Yanagi, H., Yoshiki, A., Hotta, S. & Kobayashi, S. Stimulated resonance Raman scattering from single crystals of a thiophene/phenylene co-oligomer. Appl. Phys. Lett. 83, 1941–1943 (2003).

    Article  CAS  Google Scholar 

  33. Yanagi, H., Murai, T. & Fujimoto, S. Stimulated resonance Raman scattering from polyphenylenevinylene thin film waveguides. Appl. Phys. Lett. 89, 141114 (2006).

    Article  Google Scholar 

  34. Lafalce, E. & Vardeny, Z. V. Exceptional gain for the stimulated resonant Raman scattering in the π-conjugated polymer poly(dioctylfluorene). Opt. Lett. 40, 4699–4702 (2015).

    Article  CAS  PubMed  Google Scholar 

  35. Haehnle, B., Lamla, M., Sparrer, K. M. J., Gather, M. C. & Kuehne, A. J. C. Narrow stimulated resonance Raman scattering and WGM lasing in small conjugated polymer particles for live cell tagging and tracking. Adv. Opt. Mater. 9, 2001553 (2021).

    Article  CAS  Google Scholar 

  36. Tang, X., Senevirathne, C. A. M., Matsushima, T., Sandanayaka, A. S. D. & Adachi, C. Progress and perspective toward continuous-wave organic solid-state lasers. Adv. Mater. 36, 202211873 (2023).

    Google Scholar 

  37. Pask, H. M. The design and operation of solid-state Raman lasers. Prog. Quantum Electron. 27, 3–56 (2003).

    Article  CAS  Google Scholar 

  38. Jiang, Y. et al. Towards monodisperse star-shaped ladder-type conjugated systems: design, synthesis, stabilized blue electroluminescence, and amplified spontaneous emission. Chem. Eur. J. 23, 5448–5458 (2017).

    Article  CAS  PubMed  Google Scholar 

  39. Kim, D.-H. et al. High-efficiency electroluminescence and amplified spontaneous emission from a thermally activated delayed fluorescent near-infrared emitter. Nat. Photon. 12, 98–104 (2018).

    Article  CAS  Google Scholar 

  40. Jiang, Y. et al. Low-threshold organic semiconductor lasers with the aid of phosphorescent Ir(III) complexes as triplet sensitizers. Adv. Funct. Mater. 29, 1806719 (2019).

    Article  Google Scholar 

  41. Laquai, F., Mishra, A. K., Müllen, K. & Friend, R. H. Amplified spontaneous emission of poly(ladder-type phenylene)s—the influence of photophysical properties on ASE thresholds. Adv. Funct. Mater. 18, 3265–3275 (2008).

    Article  CAS  Google Scholar 

  42. Yap, B. K., Xia, R., Campoy-Quiles, M., Stavrinou, P. N. & Bradley, D. D. C. Simultaneous optimization of charge-carrier mobility and optical gain in semiconducting polymer films. Nat. Mater. 7, 376–380 (2008).

    Article  CAS  PubMed  Google Scholar 

  43. Sandanayaka, A. S. D. et al. Toward continuous-wave operation of organic semiconductor lasers. Sci. Adv. 3, e1602570 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Somitsch, D. et al. The Raman spectra of methyl substituted ladder type poly(p-phenylene): theoretical and experimental investigations. Synth. Met. 138, 39–42 (2003).

    Article  CAS  Google Scholar 

  45. Rong, H. et al. A cascaded silicon Raman laser. Nat. Photon. 2, 170–174 (2008).

    Article  CAS  Google Scholar 

  46. Jiang, X.-F. et al. Free-space coupled, ultralow-threshold Raman lasing from a silica microcavity. Appl. Phys. Lett. 103, 101102 (2013).

    Article  Google Scholar 

  47. Choi, H. & Armani, A. M. High efficiency Raman lasers based on Zr-doped silica hybrid microcavities. ACS Photon. 3, 2383–2388 (2016).

    Article  CAS  Google Scholar 

  48. Chen, Y. et al. Tunable Raman laser in a hollow bottle-like microresonator. Opt. Express 25, 16879–16887 (2017).

    Article  CAS  PubMed  Google Scholar 

  49. Rose, A., Zhu, Z., Madigan, C. F., Swager, T. M. & Bulović, V. Sensitivity gains in chemosensing by lasing action in organic polymers. Nature 434, 876–879 (2005).

    Article  CAS  PubMed  Google Scholar 

  50. Yang, Y., Turnbull, G. A. & Samuel, I. D. W. Sensitive explosive vapor detection with polyfluorene lasers. Adv. Funct. Mater. 20, 2093–2097 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support from the National Key Research and Development Program of China (2024YFB3612500, 2024YFB3612600 and 2023YFB3608904), the National Natural Science Foundation of China (21835003, 91833304, 21422402 and 21674050), the National Key Basic Research Program of China (2017YFB0404501 and 2014CB648300), the Basic Research Program of Jiangsu Province (BK20243057), the Natural Science Foundation of Jiangsu Province (BE2019120), the Program for Jiangsu Specially-Appointed Professor (RK030STP15001 and RK119STP24001), the Foundation of Key Laboratory of Flexible Electronics of Zhejiang Province (2023FE002), the Leading Talent of Technological Innovation of National Ten-Thousands Talents Program of China, the Excellent Scientific and Technological Innovative Teams of Jiangsu Higher Education Institutions (TJ217038), the Synergetic Innovation Center for Organic Electronics and Information Displays and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD, YX030003). Y.J. thanks the Natural Science Foundation for Excellent Young Scholars (62404108), the Natural Science Foundation for Excellent Young Scholars of Jiangsu Province (BK20240636) and the Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications (NY223018) for support.

Author information

Authors and Affiliations

Authors

Contributions

Y.J., K.W.C., X.L., W.H. and W.-Y.L. conceived the idea and designed the experiments. Y.J., H.L., J.-Q.P., J.-L.Z., Q.W. and Z.-B.J. conducted testing and data analysis on ASE and STGI-SRS experiments. Y.J., H.L.T. and K.F.L. performed the absorption, PL and PL excitation measurements at room and cryogenic temperatures. S.M.N. and C.L.M. helped with measuring the Raman spectra of these material samples. Y.J.H. performed the film morphology measurement. Y.J., Y.W. and X.-C.L. synthesized and characterized the two spirofused ladder-type materials. Y.J., L.Y., I. D. W. S., K.W.C., X.L., W.H. and W.-Y.L. wrote and commented on the paper. All authors discussed the results. W.-Y.L. led the project.

Corresponding authors

Correspondence to Kok Wai Cheah, Xiaogang Liu, Wei Huang or Wen-Yong Lai.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Anthony Daleo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–36, Discussion, Table 1 and References.

Source data

Source Data Fig. 1

ASE and PL spectrum of PFO, SpL(2)-1 and SpL-1: output intensity against pump fluence for the given samples.

Source Data Fig. 2

The Raman spectrum of SpL(2)-1: Raman spectrum; stimulated Raman spectra; STGI-SRS against the frequency of the pump light.

Source Data Fig. 3

Emission spectra with increasing pump fluence; emission spectrum recorded at a pump fluence of 122 μJ cm2; output intensity plotted as a function of pump fluence (PL/ASE, S00(5)); output intensity plotted as a function of pump fluence (double S00(5); triple S00(5)); SNR versus pump fluence; emission spectra for ASE and first-order STGI-SRS; emission spectra for second- and third- order STGI-SRS.

Source Data Fig. 4

STGI-SRS threshold as a function of emission wavelength; thresholds for first- to third-order STGI-SRS and ASE versus absorption coefficient; SNR on emission wavelength.

Source Data Fig. 5

Output intensity before and after a 5 min exposure to DNT; output intensity before and after a 5 min exposure to TNT; emission spectrum changes in the first-order STGI-SRS before and after a 5 min exposure to DNT; emission spectrum changes in the second-order STGI-SRS before and after a 5 min exposure to DNT; pump-fluence-dependent sensing efficiency for detecting DNT vapour.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Lin, H., Pan, JQ. et al. Giant nonlinear Raman responses from organic semiconductors. Nat. Mater. (2025). https://doi.org/10.1038/s41563-025-02196-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-025-02196-9

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载