+
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Surface-localized phase mediation accelerates quasi-solid-state reaction kinetics in sulfur batteries

Abstract

Lithium–sulfur batteries promise high energy density storage but show poor stabilities owing to uncontrolled polysulfide dissolution. Although limiting polysulfide solvation to establish quasi-solid-state sulfur reaction can decouple electrode reactions from the electrolyte volume, this approach suffers from slow reaction kinetics. Here we propose a surface-localized polysulfide-solvation strategy to mediate the reaction of ‘quasi-solid’ polysulfide by leveraging an organic phase mediator with a weakly solvating electrolyte. This electrolyte restricts polysulfide dissolution globally while the phase mediator complexes with the surface polysulfide, promoting polysulfide solvation at the surface and facilitating fast surface-localized solution-phase sulfur reactions. Lithium–sulfur batteries using surface-localized phase mediation show excellent rate performance with 494 mA h g1-sulfur at 16 C and stabilized cycling for 300 cycles with 90.2% capacity retention. The strategy enables steady operation of a 2.4 Ah 331 Wh kg1 pouch cell. Our work highlights the advantages of surface phase mediation in controlling electrode reaction pathways and kinetics via electrolyte rational design.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematics of the proposed surface-localized solvation-mediated QSSSR.
Fig. 2: Characterizations of the electrolyte solvation structure.
Fig. 3: Electrode reaction behaviour using LiTFSI–CPME and LiTFSI–DME electrolytes.
Fig. 4: The phase-mediating effects in the BDTS–LiTFSI–CPME electrolyte.
Fig. 5: Operando X-ray investigations on the sulfur speciation dynamics.
Fig. 6: Electrochemical performances of Li–S cells in the BDTS–LiTFSI–CPME electrolyte.

Similar content being viewed by others

Data availability

The data analysed and generated during the current study are included in the paper and its Supplementary Information. Source data are provided with this paper.

References

  1. Grey, C. P. & Hall, D. S. Prospects for lithium-ion batteries and beyond—a 2030 vision. Nat. Commun. 11, 6279 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Larcher, D. & Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nat. Chem. 7, 19–29 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Barrett, J. et al. Energy demand reduction options for meeting national zero-emission targets in the United Kingdom. Nat. Energy 7, 726–735 (2022).

    Article  Google Scholar 

  4. Wang, L. et al. Li-free cathode materials for high energy density lithium batteries. Joule 3, 2086–2102 (2019).

    Article  CAS  Google Scholar 

  5. Zhou, G., Chen, H. & Cui, Y. Formulating energy density for designing practical lithium–sulfur batteries. Nat. Energy 7, 312–319 (2022).

    Article  CAS  Google Scholar 

  6. Zhao, M., Li, B.-Q., Zhang, X.-Q., Huang, J.-Q. & Zhang, Q. A perspective toward practical lithium–sulfur batteries. ACS Cent. Sci. 6, 1095–1104 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Su, C.-C., He, M., Amine, R., Chen, Z. & Amine, K. The relationship between the relative solvating power of electrolytes and shuttling effect of lithium polysulfides in lithium–sulfur batteries. Angew. Chem. Int. Ed. 57, 12033–12036 (2018).

    Article  CAS  Google Scholar 

  8. Li, Z., Zhou, Y., Wang, Y. & Lu, Y.-C. Solvent-mediated Li2S electrodeposition: a critical manipulator in lithium–sulfur batteries. Adv. Energy Mater. 9, 1802207 (2019).

    Article  Google Scholar 

  9. Hobold, G. M. et al. Moving beyond 99.9% Coulombic efficiency for lithium anodes in liquid electrolytes. Nat. Energy 6, 951–960 (2021).

    Article  CAS  Google Scholar 

  10. Liu, F. et al. Dynamic spatial progression of isolated lithium during battery operations. Nature 600, 659–663 (2021).

    Article  CAS  PubMed  Google Scholar 

  11. He, Q., Gorlin, Y., Patel, M. U. M., Gasteiger, H. A. & Lu, Y.-C. Unraveling the correlation between solvent properties and sulfur redox behavior in lithium–sulfur batteries. J. Electrochem. Soc. 165, A4027–A4033 (2018).

    Article  CAS  Google Scholar 

  12. Li, Z. et al. Correlating polysulfide solvation structure with electrode kinetics towards long-cycling lithium–sulfur batteries. Angew. Chem. Int. Ed. 62, e202309968 (2023).

    Article  CAS  Google Scholar 

  13. Manthiram, A. A reflection on lithium-ion battery cathode chemistry. Nat. Commun. 11, 1550 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fan, F. Y. & Chiang, Y.-M. Electrodeposition kinetics in Li–S batteries: effects of low electrolyte/sulfur ratios and deposition surface composition. J. Electrochem. Soc. 164, A917–A922 (2017).

    Article  CAS  Google Scholar 

  15. Lim, W.-G., Kim, S., Jo, C. & Lee, J. A comprehensive review of materials with catalytic effects in Li–S batteries: enhanced redox kinetics. Angew. Chem. Int. Ed. 58, 18746–18757 (2019).

    Article  CAS  Google Scholar 

  16. Kwon, H., Baek, J. & Kim, H.-T. Building lithium metal batteries under lean electrolyte conditions: challenges and progress. Energy Storage Mater. 55, 708–726 (2023).

    Article  Google Scholar 

  17. Park, J.-W. et al. Solvent effect of room temperature ionic liquids on electrochemical reactions in lithium–sulfur batteries. J. Phys. Chem. C 117, 4431–4440 (2013).

    Article  CAS  Google Scholar 

  18. Suo, L., Hu, Y.-S., Li, H., Armand, M. & Chen, L. A new class of solvent-in-salt electrolyte for high-energy rechargeable metallic lithium batteries. Nat. Commun. 4, 1481 (2013).

    Article  PubMed  Google Scholar 

  19. Zheng, J. et al. High-fluorinated electrolytes for Li–S batteries. Adv. Energy Mater. 9, 1803774 (2019).

    Article  Google Scholar 

  20. Yamada, Y., Wang, J., Ko, S., Watanabe, E. & Yamada, A. Advances and issues in developing salt-concentrated battery electrolytes. Nat. Energy 4, 269–280 (2019).

    Article  CAS  Google Scholar 

  21. Cao, X. et al. Monolithic solid–electrolyte interphases formed in fluorinated orthoformate-based electrolytes minimize Li depletion and pulverization. Nat. Energy 4, 796–805 (2019).

    Article  CAS  Google Scholar 

  22. Pang, Q. et al. Tuning the electrolyte network structure to invoke quasi-solid state sulfur conversion and suppress lithium dendrite formation in Li–S batteries. Nat. Energy 3, 783–791 (2018).

    Article  CAS  Google Scholar 

  23. Liu, Y. et al. Stabilized Li–S batteries with anti-solvent-tamed quasi-solid-state reaction. Joule 7, 2074–2091 (2023).

    Article  CAS  Google Scholar 

  24. Lee, C.-W. et al. Directing the lithium–sulfur reaction pathway via sparingly solvating electrolytes for high energy density batteries. ACS Cent. Sci. 3, 605–613 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Shin, M. et al. Effect of the hydrofluoroether cosolvent structure in acetonitrile-based solvate electrolytes on the Li+ solvation structure and Li–S battery performance. ACS Appl. Mater. Interfaces 9, 39357–39370 (2017).

    Article  CAS  PubMed  Google Scholar 

  26. Askins, E. J. et al. Triarylmethyl cation redox mediators enhance Li–O2 battery discharge capacities. Nat. Chem. 15, 1247–1254 (2023).

    Article  CAS  PubMed  Google Scholar 

  27. Ahn, S. et al. Why charging Li–air batteries with current low-voltage mediators is slow and singlet oxygen does not explain degradation. Nat. Chem. 15, 1022–1029 (2023).

    Article  CAS  PubMed  Google Scholar 

  28. Lei, J. et al. An active and durable molecular catalyst for aqueous polysulfide-based redox flow batteries. Nat. Energy 8, 1355–1364 (2023).

    Article  CAS  Google Scholar 

  29. Meini, S., Elazari, R., Rosenman, A., Garsuch, A. & Aurbach, D. The use of redox mediators for enhancing utilization of Li2S cathodes for advanced Li–S battery systems. J. Phys. Chem. Lett. 5, 915–918 (2014).

    Article  CAS  PubMed  Google Scholar 

  30. Gerber, L. C. H. et al. Three-dimensional growth of Li2S in lithium–sulfur batteries promoted by a redox mediator. Nano Lett. 16, 549–554 (2016).

    Article  CAS  PubMed  Google Scholar 

  31. Tsao, Y. et al. Designing a quinone-based redox mediator to facilitate Li2S oxidation in Li–S batteries. Joule 3, 872–884 (2019).

    Article  CAS  Google Scholar 

  32. Liu, Y. et al. Electrolyte solutions design for lithium–sulfur batteries. Joule 5, 2323–2364 (2021).

    Article  CAS  Google Scholar 

  33. Amine, R. et al. Regulating the hidden solvation-ion-exchange in concentrated electrolytes for stable and safe lithium metal batteries. Adv. Energy Mater. 10, 2000901 (2020).

    Article  CAS  Google Scholar 

  34. Ding, W., Lei, X. & Ouyang, C. Coordination of lithium ion with ethylene carbonate electrolyte solvent: a computational study. Int. J. Quantum Chem. 116, 97–102 (2016).

    Article  CAS  Google Scholar 

  35. Shen, Z. et al. Cation-doped ZnS catalysts for polysulfide conversion in lithium–sulfur batteries. Nat. Catal. 5, 555–563 (2022).

    Article  CAS  Google Scholar 

  36. Li, Z. et al. Lithiated metallic molybdenum disulfide nanosheets for high-performance lithium–sulfur batteries. Nat. Energy 8, 84–93 (2023).

    Article  CAS  Google Scholar 

  37. Aktekin, B. et al. SEI growth on lithium metal anodes in solid-state batteries quantified with coulometric titration time analysis. Nat. Commun. 14, 6946 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Xiong, S. Z., Xie, K., Diao, Y. & Hong, X. B. Characterization of the solid electrolyte interphase on lithium anode for preventing the shuttle mechanism in lithium–sulfur batteries. J. Power Sources 246, 840–845 (2014).

    Article  CAS  Google Scholar 

  39. Wang, C., Meng, Y. S. & Xu, K. Perspective—fluorinating interphases. J. Electrochem. Soc. 166, A5184 (2019).

    Article  CAS  Google Scholar 

  40. Zheng, X. et al. Tailoring electrolyte solvation chemistry toward an inorganic-rich solid-electrolyte interphase at a Li metal anode. ACS Energy Lett. 6, 2054–2063 (2021).

    Article  CAS  Google Scholar 

  41. Liu, S. et al. Salt-in-salt reinforced carbonate electrolyte for Li metal batteries. Angew. Chem. Int. Ed. 61, e202210522 (2022).

    Article  CAS  Google Scholar 

  42. Rayappan, P. R., Babu, M. P., Murugan, R., Muthuraj, D. & Ramanujam, K. Confined sulfur electrode to achieve quasi-solid state sulfur conversion reaction in LiS battery. J. Energy Storage 67, 107601 (2023).

    Article  Google Scholar 

  43. Yang, H., Chen, J., Yang, J. & Wang, J. Prospect of sulfurized pyrolyzed poly(acrylonitrile) (S@pPAN) cathode materials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 59, 7306–7318 (2020).

    Article  CAS  Google Scholar 

  44. Li, X. et al. A high-energy sulfur cathode in carbonate electrolyte by eliminating polysulfides via solid-phase lithium–sulfur transformation. Nat. Commun. 9, 4509 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Li, X. et al. Solid/quasi-solid phase conversion of sulfur in lithium–sulfur battery. Small 18, 2106970 (2022).

    Article  CAS  Google Scholar 

  46. Häcker, J. et al. Operando UV/vis spectroscopy providing insights into the sulfur and polysulfide dissolution in magnesium–sulfur batteries. ACS Energy Lett. 7, 1–9 (2022).

    Article  Google Scholar 

  47. Bhargav, A. et al. The unique chemistry of thiuram polysulfides enables energy dense lithium batteries. J. Mater. Chem. A 5, 25005–25013 (2017).

    Article  CAS  Google Scholar 

  48. von Wrochem, F. et al. Efficient electronic coupling and improved stability with dithiocarbamate-based molecular junctions. Nat. Nanotechnol. 5, 618–624 (2010).

    Article  Google Scholar 

  49. Qi, X. et al. Electrochemical reactivation of dead Li2S for Li−S batteries in non-solvating electrolytes. Angew. Chem. Int. Ed. 62, e202218803 (2023).

    Article  CAS  Google Scholar 

  50. Yu, S.-H. et al. Direct visualization of sulfur cathodes: new insights into Li–S batteries via operando X-ray based methods. Energy Environ. Sci. 11, 202–210 (2018).

    Article  CAS  Google Scholar 

  51. Meyer, B. Elemental sulfur. Chem. Rev. 76, 367–388 (1976).

    Article  CAS  Google Scholar 

  52. Pai, R., Singh, A., Tang, M. H. & Kalra, V. Stabilization of gamma sulfur at room temperature to enable the use of carbonate electrolyte in Li–S batteries. Commun. Chem. 5, 17 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Huang, F. et al. Akin solid–solid biphasic conversion of a Li–S battery achieved by coordinated carbonate electrolytes. J. Mater. Chem. A 7, 12498–12506 (2019).

    Article  CAS  Google Scholar 

  54. Seita, T. et al. Graphite–lithium sulfide battery with a single-phase sparingly solvating electrolyte. ACS Energy Lett. 5, 1–7 (2020).

    Article  CAS  Google Scholar 

  55. Weller, C., Pampel, J., Dörfler, S., Althues, H. & Kaskel, S. Polysulfide shuttle suppression by electrolytes with low-density for high-energy lithium–sulfur batteries. Energy Technol. 7, 1900625 (2019).

    Article  CAS  Google Scholar 

  56. Cao, D. et al. Platinum nanocrystals embedded in three-dimensional graphene for high-performance Li–O2 batteries. ACS Appl. Mater. Interfaces 14, 40921–40929 (2022).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant number 92372115 to Q.P.) and the National Key R&D Program of China (grant number 2021YFB2500200 to Q.P.). We also acknowledge the National Natural Science Foundation of China (22075002 to Q.P.; 52203347 to Yatao Liu; 51825201 and 52227802 to R.Z.; 22409006 to M.H.), the Beijing Natural Science Foundation (number Z220020 to Q.P.), the Opening Foundation of State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology (oic-202401006 to Yatao Liu), the China Postdoctoral Science Foundation (2021M690001 to Yatao Liu) and the China National Petroleum Corporation-Peking University Strategic Cooperation Project of Fundamental Research (to Q.P.). We appreciate S. Lv for the valuable discussions on the interactions between BDTSRed and polysulfides. We acknowledge the Beijing Synchrotron Radiation Facility (BSRF, 4B7A beamline) and L. Zheng and C. Ma for the XANES measurements and analysis.

Author information

Authors and Affiliations

Authors

Contributions

Yatao Liu, R.Z. and Q.P. conceived the idea and designed the experiments. Yatao Liu performed the experiments. Yun An conducted the AIMD simulations. Yun An and Y.Y. conducted the DFT calculations. C.F., Y.Y. and J.Z. conducted the classical MD simulations. Yifeng An, M.H., X.H., Yumei Liu and S.G. helped with the spectroscopy studies. Yatao Liu, M.H. and Y.J. assembled the pouch cells. Y.H. and J.C. synthesized the graphene material for pouch cell assembly. All authors discussed the results and contributed to the data analysis. Yatao Liu, Q.P., R.Z. and Y. Lu wrote the paper with contributions from all authors. R.Z. and Q.P. supervised this work.

Corresponding authors

Correspondence to Ruqiang Zou or Quanquan Pang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Chemistry thanks Nav Nidhi Rajput, Sebastian Risse and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Evaluation of BDTS-LiTFSI-CPME electrolyte under rigid conditions.

(a-c) Li–S coin cells with fixed discharge capacity at 55 °C: (a) with 5.0 μL mg-1 electrolyte and 2.0 mg cm-2 -sulfur (discharge/charge rate of 0.3 C/0.2 C); (b) with 5.0 μL mg-1 electrolyte and 3.0 mg cm-2 -sulfur (discharge/charge rate of 0.3 C/0.1 C). (c) with 4.0 μL mg-1 electrolyte and 5.1 mg cm-2 -sulfur (discharge/charge rate of 0.1 C/0.1 C). (d) The performance of a 2.4 Ah-level pouch Li–S cells operated at 40 °C (3.0 μL mg-1, detailed parameters shown in Supplementary Table 3); the inset shows the digital photo of the pouch cell.

Source data

Supplementary information

Supplementary Information

Supplementary Figs. 1–24, discussion, Tables 1–9, Notes 1 and 2, and methods.

Supplementary Video 1

The dynamic AIMD trajectory after equilibrium for 1 M LiTFSI–CPME electrolyte.

Supplementary Video 2

The dynamic AIMD trajectory after equilibrium for 1 M LiTFSI–DME electrolyte.

Supplementary Data 1

The settings in the AIMD input file for CPME- and DME-based electrolytes.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Source Data Fig. 6

Statistical source data.

Source Data Extended Data Fig. 1

Statistical source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., An, Y., Fang, C. et al. Surface-localized phase mediation accelerates quasi-solid-state reaction kinetics in sulfur batteries. Nat. Chem. 17, 614–623 (2025). https://doi.org/10.1038/s41557-025-01735-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41557-025-01735-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载