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Minimally invasive implantation of scalable 
high-density cortical microelectrode  
arrays for multimodal neural decoding  
and stimulation
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High-bandwidth brain–computer interfaces rely on invasive surgical 
procedures or brain-penetrating electrodes. Here we describe a cortical 
1,024-channel thin-film microelectrode array and we demonstrate its 
minimally invasive surgical delivery that avoids craniotomy in porcine models 
and cadavers. We show recording and stimulation from the same electrodes 
to large portions of the cortical surface, and the reversibility of delivering the 
implants to multiple functional regions of the brain without damaging the 
cortical surface. We evaluate the performance of the interface for high-density 
neural recording and visualizing cortical surface activity at spatial and 
temporal resolutions and total spatial extents. We demonstrate accurate 
neural decoding of somatosensory, visual and volitional walking activity, and 
achieve focal neuromodulation through cortical stimulation at sub-millimetre 
scales. We report the feasibility of intraoperative use of the device in a 
five-patient pilot clinical study with anaesthetized and awake neurosurgical 
patients, characterizing the spatial scales at which sensorimotor activity and 
speech are represented at the cortical surface. The presented neural interface 
demonstrates the highly scalable nature of micro-electrocorticography and 
its utility for next-generation brain–computer interfaces.

Brain–computer interfaces have shown promise as systems for 
restoring, replacing and augmenting lost or impaired neurologi-
cal function in a variety of contexts, including paralysis from stroke 
and spinal cord injury, blindness and some forms of cognitive 
impairment1–21. Multiple innovations over the past several decades 
have contributed to the potential of these neural interfaces, includ-
ing advances in the areas of applied neuroscience and multichannel 
electrophysiology22–31, mathematical and computational approaches 

to neural decoding27,32–38, power-efficient custom electronics and the 
development of application-specific integrated circuits39–51, as well as 
materials science and device packaging52–59. Nevertheless, the practi-
cal impact of such systems remains limited, with only a small number 
of patients worldwide having received highly customized interfaces 
through clinical trials60–62.

To achieve meaningful clinical impact on the large populations 
of patients who stand to benefit from brain–computer interface 

Received: 8 February 2024

Accepted: 7 August 2025

Published online: xx xx xxxx

 Check for updates

A full list of affiliations appears at the end of the paper.  e-mail: ben@precisionneuro.io

http://www.nature.com/natbiomedeng
https://doi.org/10.1038/s41551-025-01501-w
http://orcid.org/0000-0002-4645-6156
http://orcid.org/0000-0001-7679-0430
http://orcid.org/0009-0001-3804-8304
http://orcid.org/0009-0008-9296-0581
http://orcid.org/0000-0002-6911-0094
http://orcid.org/0000-0003-4223-0819
http://orcid.org/0000-0002-0816-3395
http://orcid.org/0000-0002-0049-6419
http://crossmark.crossref.org/dialog/?doi=10.1038/s41551-025-01501-w&domain=pdf
mailto:ben@precisionneuro.io


Nature Biomedical Engineering

Article https://doi.org/10.1038/s41551-025-01501-w

100 µm and 200 µm in diameter; a uniform inter-electrode pitch of 
300 µm was used for the entire array (Supplementary Fig. 2). The 
second version comprises 1,024 channels, 977 of which are 50 µm 
recording electrodes, 42 of which are 380 µm electrodes optimized 
for stimulation, and 5 of which are 500 µm reference electrodes; 
a uniform inter-electrode pitch of 400 µm was used for the entire 
array (Supplementary Fig. 3). We designed the 529-channel array 
with multiple electrode sizes and 300 μm pitch to help determine the 
optimal inter-electrode spacing and recording electrode size for the 
larger 1,024-channel array, based on a combination of manufactur-
ing reliability, electrode impedance and analysis of inter-electrode 
correlation. As expected, smaller electrodes captured more unique 
high-frequency information across adjacent channels, but at  
the cost of higher impedance and greater manufacturing variabil-
ity; and tighter pitch results in increased inter-electrode correlation 
across all spectral bands, but in a frequency-dependent manner. The 
choices of 400 μm pitch and 50 μm recording electrode diameter 
for the 1,024-channel array were made after weighing the results of 
these analyses.

Microelectrode arrays can be inserted individually or in modular 
assemblies (Supplementary Fig. 1), with each array connected to a 
customized hardware interface. After subdural array implantation, 
the interconnecting cable of each microelectrode array module passes 
through a dural incision and a cranial micro-slit incision, is tunnelled 
under the scalp as needed and is connected to an individual head stage. 
The head stage contains electronics for analogue-to-digital conversion 
and signal conditioning, and streams data to a custom software system 
for real-time data visualization, processing and storage. The overall 
system configuration is illustrated in Fig. 1.

Electrode array characterization
All microelectrode arrays were thoroughly characterized before inser-
tion testing through direct inspection and both in vitro and in vivo 
electrode impedance mapping. The process yields were >93% and 91% 
for the 529-channel and 1,024-channel arrays, respectively. Electrode 
impedance exhibits a predictable dependence on electrode surface 
area, ranging from an average of 802 ± 30 kΩ for 20 µm electrodes to 
8.25 ± 0.65 kΩ for 380 µm electrodes, and is robust to implantation, 
confirmed by the ratio of impedance before and after implantation 
showing little change across the array (Supplementary Fig. 4). The 
intrinsic filtering, signal-to-noise and noise floor properties of the 
µECoG array and recording system were characterized as well, using 
established analytic techniques91. The power spectral densities calcu-
lated across multiple recording epochs under physiologic conditions 
are shown in Supplementary Fig. 5 for each of the principal electrode 
types in the array.

Feasibility of insertion technique
We have demonstrated the feasibility of inserting our high-density 
microelectrode arrays using a minimally invasive ‘cranial micro-slit’ 
technique (Fig. 2 and Supplementary Video 1). The procedure uses 
precision sagittal saw blades to make 500- to 900-μm-wide incisions 
in the skull at approach angles approximately tangential to the cortical 
surface, facilitating subdural insertion of our thin-film arrays without 
requiring a burr hole or craniotomy. Trajectory planning and inser-
tion were performed using fluoroscopy or computed tomographic 
image guidance, and electrode insertion was monitored using neu-
roendoscopy. To validate the procedure, we have performed 22 cra-
nial micro-slit insertions (between 1 and 4 insertions per animal) in 8 
Göttingen minipigs (an additional 61 arrays were implanted through 
small craniotomies in 21 Göttingen minipigs for electrophysiologic and 
biocompatibility studies). In addition, we have performed multiple 
cranial micro-slit insertions in 23 fresh cadaveric human heads, target-
ing the precentral gyrus in the expected region of the upper extremity 
primary motor cortex, and verifying placement with a combination of 

technologies63–68, surgical procedures involved in implanting neural 
interfaces should be minimally invasive, reversible and avoid damaging 
neural tissue. Advanced brain–computer interfaces require collection 
and processing of large amounts of neural data, potentially spanning 
multiple brain regions. As a result, high-density microelectrode arrays 
have been replacing more traditional macroelectrode arrays, offering 
smaller features and improved spatial resolution69–74. Systems for clini-
cal use should also demonstrate a high degree of scalability in terms 
of channel count and speed of implantation. Tissue damage and total 
procedural time ideally should not increase in proportion to channel 
number, as contemporary channel counts, already reaching the many 
thousands, will likely increase by orders of magnitude with further 
progress in this field.

Microelectrode arrays that penetrate the brain have facilitated  
high-spatial-resolution recordings for brain–computer interfaces1,2,4,8–11,  
but at the cost of invasiveness and tissue damage that scale with the 
number of implanted electrodes75–77. Such systems are also difficult to 
remove or replace without causing damage to surrounding brain tis-
sue75. In addition, in the context of brain–computer interfaces, neural 
decoding performance from penetrating electrodes has been shown 
to be less stable over time than neural decoding based on surface 
electrodes19,20. It is not yet clear whether approaches involving softer 
penetrating electrodes offer a substantially different trade-off30,78. 
For this reason, non-penetrating cortical surface microelectrodes 
represent a potentially attractive alternative69,79–83. In practice, electro-
corticography (ECoG) has already facilitated capture of high-quality 
signals for effective use in brain–computer interfaces in several appli-
cations, including motor and speech neural prostheses7,19,32,34,72,84–90. 
Higher-spatial-resolution micro-electrocorticography (µECoG) there-
fore represents a promising combination of atraumatic insertion and 
improved signal quality. However, the limits of information that can be 
extracted at high resolution have not been fully characterized.

Here we demonstrate a modular and highly scalable system of 
conformable, thin-film microelectrodes designed for rapid, minimally 
invasive deployment on the cortical surface. We demonstrate the prac-
ticality and in vivo performance of the system in Göttingen minipigs 
in anaesthetized states and during awake locomotor behaviour. We 
demonstrate feasibility of using the microelectrodes in the context 
of clinical neurosurgery for high-resolution cortical mapping during 
epilepsy surgery or for the removal of tumours near eloquent regions of 
the human brain associated with language and sensorimotor function. 
We describe implantation of thousands of electrodes simultaneously 
in multiple regions of the neocortex in both hemispheres, including 
areas related to vision as well as limb and facial somatosensory and 
motor function. We further demonstrate feasibility of using these 
arrays for electrophysiologic functions required of contemporary 
brain–computer interfaces, including neural recording, cortical stimu-
lation (‘neuromodulation’) and neural decoding. We characterize the 
spatial scales over which electrophysiologic information is represented 
at the cortical surface, and show that accurate neural decoding can be 
achieved and that accuracy improves as a function of both area cover-
age and spatial density. The method is intended to facilitate human 
clinical use of brain–computer interface technology by delivering the 
microelectrode numbers and spatial densities required for advanced, 
high-performance brain–computer interface applications in a safe 
and time-efficient manner that is compatible with proven and reliable 
neurosurgical techniques.

System overview
The system as configured for in vivo neural recording and stimulation 
comprises a modular set of thin-film microelectrode arrays designed 
for subdural implantation using a ‘cranial micro-slit’ technique. Two 
versions of the microelectrode array were fabricated for this study 
(Supplementary Figs. 1–3). The first comprises 529 electrodes of 
multiple sizes, with groups of electrodes measuring 20 µm, 50 µm, 
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endoscopy, fluoroscopy and computed tomography. We have demon-
strated that the entire surgical procedure for cranial micro-slit inser-
tion, from initial skin incision to endoscope-guided array placement 
and final securing of the array positions, can be safely performed in 
under 20 min.

Safety and reversibility
To assess the translational safety and reversibility of microelectrode 
array placement, we conducted a formal implantation study in 16 Göt-
tingen minipigs implanted with either bilateral thin-film 1,024-channel 
microelectrode arrays of the form described here (‘Test’) or standard 
4-contact subdural strip electrodes (platinum contacts with silastic 
encapsulation, ‘Control’). The cohorts were further split into two time 
points to assess the subacute (7 days) and chronic (42 days) responses 
to device implantation. All animals were clinically assessed throughout 
the duration of the implant, and following euthanasia, the calvaria and 
brains of each animal were sent to an independent, board-certified vet-
erinary neuropathologist who grossed each specimen while maintain-
ing complete photographic records, and reviewed multiple histologic 
sections stained with traditional haematoxylin and eosin and immuno-
histochemical stains (Iba1, GFAP). No neurologic impairment was noted 
in any animal in the study. Following euthanasia, gross examination of 
the cortical surface demonstrated no apparent tissue disruption owing 
to conformal electrode array implantation; an example image of the 

cortical surface after array removal and postmortem craniectomy is 
shown in Fig. 2j. Histologic evaluation of cortical sections immediately 
beneath implantation sites following acute (7-day) and chronic (42-day) 
implants revealed no evidence of acute or chronic tissue injury owing to 
subdural electrode implantation (Fig. 2k,l). The overall tissue response 
to implantation was similar for the thin-film and control devices, with 
slightly less inflammation noted in response to chronic implantation 
of the more conformal thin-film device relative to that observed in 
implantation of the control device. Array removal at chronic time points 
was feasible using gentle traction from the epidural portion of the 
array, demonstrating reversibility of the implant at least out to 42 days.

Modularity and scalability
The fabricated arrays facilitate alignment and modular assembly, as 
shown in Supplementary Fig. 1, so that multiple electrode modules 
can be joined to yield larger constructs covering larger portions of the 
cortical surface, without substantially increasing the complexity, risk 
or time required for array insertion. It is also possible to insert multiple 
arrays through a single slit. We performed in vivo insertions of doubly 
connected 529-channel modules (1,058 channels over 0.96 cm2 of the 
cortical surface area).

We have also demonstrated the ability to interface with multi-
ple anatomic and functional areas of the neocortex simultaneously 
in vivo. We have performed simultaneous bilateral insertions over 
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Fig. 1 | Overview of the minimally invasive thin-film neural interface system. 
This schematic illustration shows how neural activity is acquired from and 
stimulated by the thin-film cortical interface. a–d, A Göttingen minipig 
undergoes cranial micro-slit implantation (a) of a set of subdural µECoG arrays 
comprising a total of >2,000 microelectrodes (b,c), in modules containing 
529 (Supplementary Fig. 2a) or 1,024 channels (d) (Supplementary Fig. 1) each. 
In the anatomic schematics (b,c), the subdural space is shown in blue, dura 
in purple and skull in beige. The outermost layer shown represents the scalp. 

e, A representative 380 μm electrode is shown schematically together with 
example stimulation waveforms. f, A group of 50 μm microelectrodes is shown 
in detail together with example traces from recorded neural activity. g,h, The 
microelectrode arrays provide (g) multichannel data that is used in a variety of 
electrophysiologic paradigms to perform neural recording of both spontaneous 
and stimulus-evoked neural activity as well as (h) decoding and focal stimulation 
of neural activity across a variety of functional brain regions. Panels e–g are 
conceptual illustrations and do not contain physiological data.
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somatosensory and motor cortex, and have recorded simultaneously 
from multiple sensory regions, including portions of somatosensory, 
visual and auditory cortex (Supplementary Fig. 6). Functional localiza-
tion for each region is confirmed using evoked potentials (Fig. 3). The 
maximum number of devices that we have placed in a single animal using 
the cranial micro-slit insertion technique so far is four, two 529-channel 
devices in each of two cranial slit osteotomies, one per hemisphere, 
for a total of 2,116 channels. The electrode array positions correspond 
schematically to the light blue regions in Supplementary Fig. 6.

Neural recording
We sought to leverage the high resolution and data bandwidth of our 
integrated system to map electrocortical activity on a fine-grained scale 
(Fig. 3). In preclinical studies involving Göttingen minipigs, implanted 

arrays were used for high-bandwidth and high-spatial-resolution neural 
recording of both spontaneous cortical electrographic activity and 
evoked potentials from multiple functional regions (Fig. 3). During 
free recording of spontaneous cortical activity, our software enables 
real-time visualization of raw voltages or spectral power of 1,024 chan-
nels simultaneously (Fig. 3 and Supplementary Videos 2–4). Recorded 
electrocortical activity from individual channels can be viewed in both 
time and frequency domains, revealing the presence of electrocortical 
activity at frequencies up to 500 Hz. The degree of correlation across 
electrodes decreases with distance and with increasing frequency 
(Fig. 4f and Supplementary Fig. 7). Importantly, even at 300 μm spacing, 
adjacent electrodes exhibit incompletely correlated activity, particu-
larly at higher frequencies, and independent of the timescales investi-
gated in this analysis (Fig. 4g). For example, beta-band (12–30 Hz) r2 is 

HE

D

k l

10 mm 15 mm

j

1 mm

i

f

e

d

c

b

a h

1 cm

g

Fig. 2 | Safety and reversibility of neural interface implantation in animal 
models. a–c, The ‘cranial micro-slit’ insertion technique is illustrated. Cranial and 
dural incisions are made tangent to the cortical surface (a). The electrode array is 
mounted on a stylet for implantation into the subdural space through the cranial 
slit (b). The stylet inserts into a polyimide pocket on the back of the array. The 
stylet is removed, leaving the array in place (c). d–f, Endoscopic views of these 
surgical steps are shown in a cadaveric human head, showing the dura observed 
through the micro-slit osteotomy (d), the array with a radiopaque gold marker 
being inserted into the subdural space (e) and the microelectrodes in situ with 
the cortical surface seen through the thin-film array (f) (black arrow head, cut 
surface of skull seen from within the cranial micro-slit; white arrow head, outer 
surface of dura; yellow arrow head, undersurface of dura; open circle, subdural 
space; orange arrow head, pia of the cortical surface; the largest electrode shown 
measures 200 µm in diameter). g,h, Computed tomography scans in the coronal 
plane show arrays placed via a cranial micro-slit technique on the human motor 

cortex (g) and pig somatosensory cortex (h), with array edges delineated by 
radiopaque gold markers (blue arrow heads, radiopaque array markers; yellow 
arrow, cranial micro-slit). i,j, A modular configuration of two 529-channel 
arrays is shown in situ on the cortical surface following a frontal craniotomy 
in a Göttingen minipig (i); the same region of the cortical surface immediately 
following array removal (j), demonstrating an intact pial layer and no damage 
to the brain. k,l, Safety was also assessed using standard, semi-quantitative 
histology techniques following 42-day chronic array implantation. Histologic 
analysis demonstrated preservation of the cortical surface architecture and no 
systematic differences between cortical regions implanted with the thin-film 
microelectrode array (k) and standard 4-contact subdural electrode array (l)  
(HE, haematoxylin and eosin; D, dura mater; dotted blue line, region of the 
cortical surface in contact with array before explantation; green arrows, cortical 
surface; yellow arrows, subcortical white matter). Representative micrographs 
are shown from 1 of 8 replicates for each device.
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in the range of 0.67 ± 0.10, low gamma (30–50 Hz) r2 is in the range of 
0.56 ± 0.10, mid-gamma (70–110 Hz) r2 is in the range of 0.35 ± 0.08, and 
high gamma (130–170 Hz) r2 is in the range of 0.12 ± 0.06, all at 300 μm 
spacing for 50 μm electrodes, suggesting that even at this spatial scale 
the total amount of electrophysiologic information available at the 
cortical surface has not been completely extracted.

To further explore the utility of high-spatial-density neural record-
ing, evoked potentials were obtained across multiple arrays and mul-
tiple functional regions. Robust somatosensory evoked potentials 
(SSEPs) were obtained in arrays positioned over the somatosensory 
cortex following electrical or tactile stimulation (Fig. 3) of all four limbs. 
When the arrays span both motor and sensory cortex, the SSEPs dem-
onstrate clear phase reversal at the motor–sensory junction (Fig. 3g, 
inset); in contrast to traditional macroelectrode strips, which enable 
only coarse localization of the boundary to within a fraction of a cen-
timetre, and typically in one dimension, we are able to identify this 
boundary with 300 μm resolution, and as an isoelectric contour line in 

two dimensions, providing precise mapping of functional boundaries 
on the cortical surface. Robust visual evoked potentials (VEPs) were 
similarly obtained in arrays positioned over the visual cortex following 
time-synchronized photostimulation of the retina (Fig. 3h). We also 
recorded electrocorticographic activity in awake, freely ambulating 
animals (Fig. 3b,f,i). Time-synchronized neural data from 2,048 chan-
nels (1,024 per hemisphere in the region of the primary sensorimotor 
cortex) were acquired together with three-dimensional motion-capture 
data using multiple fiducial markers on each limb (Fig. 3f) as well as 
accelerometers mounted on all four limbs and the head.

Multimodal neural decoding
We next sought to evaluate the ability of the system to use 
high-resolution electrocortical activity to perform neural decoding 
in a variety of paradigms related to somatic sensation (multi-point 
discrimination), vision and volitional walking during conscious awake 
behaviour (Fig. 4 and Supplementary Figs. 8–11).
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Fig. 3 | Neural recordings from multiple functional brain regions resolve 
electrographic features from the cortical surface at high spatial resolution 
in both anaesthetized and awake-ambulatory states. a, Example voltage 
recording traces along one column of 50 μm electrodes. b, Example voltage 
traces obtained during spontaneous walking from one of two 1,024-channel 
thin-film subdural microelectrode arrays placed over the sensorimotor cortex 
(one over each hemisphere) in a Göttingen minipig. c, Schematic of the Göttingen 
minipig brain showing colour-coded areas corresponding to placement of thin-
film subdural microelectrode arrays in different functional regions in the same 
animal. d, An overlay of sub-recordings in a (green box) to highlight the micro-
differences observed across electrodes. e, Example spectrograms corresponding 
to two selected channels from an array over the right somatosensory cortex. 
f, Schematic representation of the experimental set-up, in which an adult 

Göttingen minipig was permitted to walk ad lib on a treadmill shortly after 
emerging from anaesthesia following array placement. Accelerometers and 
motion-capture fiducials were placed on each limb in order to facilitate motion 
tracking time-synchronized with cortical activity. g, SSEPs corresponding to 
electrical stimulation of the tibial nerve. The inset highlights reversal of phase 
over a sub-millimetre scale, and the ellipsoid highlights the two-dimensional 
nature of the isoelectric contour. Traces span 1 s and the maximum peak-to-peak 
signal is approximately 5 μV. h, VEPs from photostimulation of the left eye. Same 
voltage and time scale bar as g. i, Representation of cortical surface activity from 
the left hemisphere sensorimotor cortex, as recorded from a 1,024-channel 
electrode array at one frame of a 20 kHz recording, displayed as a colour map 
of voltage, superimposed on and aligned to an image of the underlying cortical 
surface (each dot corresponds to one microelectrode in the array).
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In somatosensory decoding experiments designed to assess 
multi-point discrimination, one 1,024-channel array was placed over the 
somatosensory cortex and electrocortical activity was recorded during 
semi-automated stimulation of up to 30 predefined rostrum locations 
separated by <1 cm (Fig. 4a,b). The observed evoked potentials from 
different stimulation locations exhibited spatial and temporal variation 
on multiple scales (Supplementary Figs. 7 and 8). Multi-scale spatial 
variation was also observed in free recording, especially when com-
paring across frequency bands (Fig. 4f and Supplementary Fig. 7). We 
therefore developed a deep neural network architecture for decoding 
that incorporates both spectral and spatial features. Raw neural data 
from each channel are first preprocessed into low-frequency features 
and high-gamma band amplitude (Methods), and these features are 
then passed into a neural network consisting of single convolutional 
layers, several bidirectional gated recurrent units (GRUs) and a final 
fully connected layer (Fig. 4d). The network takes as input the fre-
quency features extracted from 600 consecutive time samples sur-
rounding a stimulation event, and outputs one of N decoding outputs. 
Across 4 independent animals, we trained a custom network to predict 

1 of 8 rostrum stimulation locations using 10–20 min of training data 
and then evaluated the accuracy of the resulting model in real time on 
a prospectively collected validation set. We obtained overall test-set 
accuracies of 85–98% (mean 92.75% ± 6%), with most of the residual 
errors being near diagonal (Supplementary Fig. 9). Similar model archi-
tectures were able to obtain high accuracy (82.5–100%) in discriminat-
ing individual limb SSEPs and on–off VEPs (Supplementary Fig. 10).

We next investigated the relative importance of spatial resolution 
by successively downsampling the rostrum stimulation electrode 
array data from each animal (Fig. 4c). As expected, decoding accuracy 
increased monotonically with increasing channel count. However, for 
the 8-class decoding problem, >95% accuracy was achieved even with 
4-fold downsampling, making it difficult to demonstrate increased ben-
efit with higher-resolution data. Therefore, in 3 consecutive animals, we 
increased the difficulty of the decoding problem by training models on 
14, 24 and 30 different rostrum positions, respectively (Fig. 4e). With 
harder discrimination problems, the value of higher-resolution data 
becomes more apparent, with the highest accuracies being obtained 
when all 1,024 channels are used for decoding, and no evidence of 
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Fig. 4 | Neural decoding accuracy benefits from both greater extent of cortical 
surface area and higher density of microelectrode coverage.  
a, Tactile stimulation locations (hollow circles) on the rostrum of the Göttingen 
minipig used for neural decoding. The green dot indicates the current 
stimulation location. b, Placement of one 1,024-channel electrode array on the 
cortical surface overlying the rostrum somatosensory cortex on the contralateral 
hemisphere (A, anterior; M, medial). c, Illustration of electrode subsampling 
to simulate a lower density array. Bright dots indicate the selected electrode, 
while the dark spots indicate excluded electrodes. d, Architecture of the 
preprocessing and CRNN used for decoding stimulated location. Raw 20 kHz 
signal is downsampled to 1 kHz and then preprocessed for low-frequency and 
high-gamma neural features (2,048 total). The neural features are then fed into 
a CRNN consisting of one 1D convolutional layer, two layers of bidirectional, 

gated recurrent units (BiGRU), and a fully connected layer. e, Decoding accuracy 
(left) as a function of selected electrodes for one animal, and (right) maximum 
decoding accuracy for three animals (n = 50 decoder models per animal for 
each number of channels). Each animal was decoded for a different number of 
stimulation locations owing to differences in tactile stimulation quality from 
experiment to experiment. The electrode yields for these arrays are 96%, 97% 
and 98%, respectively. f, The Pearson correlation coefficient r2 computed for 
signals recorded during spontaneous cortical activity, as a function of electrode 
separation and computed for various EEG bands; coloured bands indicate plus 
or minus one standard deviation. g, Pearson correlation coefficient r2 computed 
over different timescales for single-electrode separation (400 μm) (n = 11,856 
electrode pairs). ch, channels.

http://www.nature.com/natbiomedeng


Nature Biomedical Engineering

Article https://doi.org/10.1038/s41551-025-01501-w

saturation for the 24- and 30-class classifications. The impact of elec-
trode number and spatial density on neural decoding performance is 
shown in Fig. 4e and highlighted in Supplementary Fig. 12.

We also sought to decode volitional motor activity in awake, con-
sciously behaving animals. To this end, we performed bilateral crani-
otomies and placed one 1,024-channel array over each motor cortex 
(for a total of 2,048 electrodes per animal) and awakened the animal 
in a harness suspended over a treadmill designed to permit walking 
ad lib (Methods). The spontaneous motor activity of the animal was 
recorded using motion-tracking cameras and a 3-axis accelerometer on 
each limb. We observed characteristic and reproducible electrocortical 
spectral changes in periods immediately preceding voluntary limb or 
head movement, distinguishable from rest (Supplementary Fig. 9). We 
were able to resolve gross features of motor behaviour consistently 
across different animals, demonstrating three-class decoding for head, 
limb movement and rest with a simple convolutional neural network 
(CNN) architecture (Methods) obtaining accuracies of 53–69% (k-fold 
cross validation; k = 5, 10; chance corresponds to 33%). Furthermore, 
depending on the behaviours exhibited by each animal, we also applied 
several individualized behaviour decoding paradigms, showing that 
versatile decoding of sensory and motor modalities from multiple body 

regions could be achieved with the same array and network structure, 
with accuracy of 60–80% (Supplementary Fig. 9) (k-fold cross valida-
tion; k = 5).

Human clinical pilot study
In a pilot clinical study involving five neurosurgical patients under-
going intraoperative electrophysiologic mapping, we evaluated the 
feasibility of using our integrated system to acquire, process and 
display high-spatiotemporal-resolution electrocortical data in real 
time. Spontaneous electrocortical recordings were obtained in two 
patients under general anaesthesia, on conventional 4-electrode 
strips and in higher resolution on the 1,024-electrode devices. Where a 
reversal of phase in the SSEP, corresponding to the functional central 
sulcus, was demonstrated using the conventional 4-electrode strip, 
this was recapitulated in higher resolution using the 1,024-electrode 
device, revealing a high-resolution phase reversal ‘contour line’ in 
two dimensions over the cortical surface. Three patients under-
went awake language mapping, and 1,024-channel electrocortical 
recordings were obtained from the left superior temporal gyrus, 
left angular gyrus and left frontal operculum, respectively, during 
speech time-synchronized to auditory or single-word visual cues. We 
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Fig. 5 | Human intraoperative ECoG. a, Axial gadolinium-contrast-enhanced 
T1-weighted magnetic resonance imaging (MRI) of the brain of one patient 
involved in the pilot study, demonstrating a tumour in the left temporal lobe. The 
red bar indicates placement of a 1,024-channel electrode array (99% electrode 
yield) during awake language mapping. b,c, Cortical surface of the left superior 
temporal gyrus before (b) and following (c) electrode array placement. d, Overlay 
representation of electrocortical activity from the 1,024-channel electrode array 
at the time point indicated by the dashed line in e and f, immediately before 

speech onset. The colour map represents normalized raw voltage as obtained 
from the digital steps of the analogue-to-digital converter (dark blue, low; yellow, 
high). e, Audio amplitude recorded during patient speech. f, Time–frequency 
spectrogram of audio recording during the same time interval shown in e. g, 
Time–frequency spectrogram of the voltage waveform from a representative 
electrode (star). h, Accuracy (Acc) of decoding speech onset on the basis of 
a 4 min training set of spoken words, in offline decoding, as assessed in 100 
randomly shuffled train–test samples.
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were able to decode speech events from the electrocortical activity 
of these awake neurosurgical patients (Fig. 5a–h). As expected in 
the context of intraoperative language mapping in awake patients, 
the spectral properties of the electrophysiologic and speech signals 
were strongly correlated. Compared with intervals without speech 
attempts, we observed reproducible modulation of low-frequency 
(0–40 Hz) bands in the intervals immediately surrounding actual 
speech production events (Fig. 5c–g and Supplementary Video 4). 
These strong correlations provided a basis for binary detection of 
speech onset, achieving an accuracy of 79.8% (95% confidence interval, 
77.6–82.0%) from even the short training windows provided during 
awake craniotomies. Using only 4 min of training data containing 54 
patient utterances, we demonstrate 79% accuracy in distinguishing 
speech events from silence on the basis of the electrocortical activity 
from the high-resolution array (Fig. 5h).

Neural stimulation
The electrode arrays are capable of bidirectional function, with every 
electrode able to perform either recording or stimulation. To charac-
terize the ability of our system to modulate cortical activity in vivo, 
16 electrodes per 529-channel array were designated for use in corti-
cal stimulation. Safe stimulation thresholds were determined in vitro 
(50–100 µA, 200 µs pulse width, as shown in Fig. 6a; Methods), and 
cortical stimulation using these parameters was performed in vivo. 
The 200 µm electrodes were used for stimulation in each trial, and the 
remaining sites on the same array, as well as all sites on adjacent arrays, 
were used for recording.

We performed focal stimulation of the visual cortex using the 
paradigm described while recording stimulus-evoked cortical activity 
(Fig. 6b–j). Cortical stimulation modulated high-gamma band power 
in a focal region (approximately 2 mm in diameter) surrounding the 
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Fig. 6 | Cortical microstimulation modulates cortical activity in ways that can 
be characterized in high spatial and temporal detail. a, Stimulation waveform 
used for in vitro confirmation of safe polarization potential, with 100 μA overlaid 
on the waveform for reference. In vivo applied current waveforms used the 
same applied current but without the interphase delay used for identifying 
polarization potential. b, Example traces for an electrode (blue arrow in g) 1 mm 
from the stimulation electrode (red ring in g) for 8 stimulation trial recordings. 
The Hjorth ‘activity’ of each trial is computed as the variance of the signal from 
200 ms to 2,000 ms post-stimulation (green box), and the average activity 
is taken over 40 trials. c, Corresponding traces for the animal under heavier 
anaesthesia. d, Corresponding traces for the electrode without stimulation 
under light anaesthesia. e, Stimulated activity is plotted against control activity. 
Each point represents an individual microelectrode; the highlighted points 

are located within 5 electrode spacings (2 mm) from the stimulating electrode. 
The histograms show the distributions of activity with (side panel) and without 
(top panel) stimulation. The blue arrow shows the same electrode as indicated 
in g. f, Stimulated activity under light versus heavy anaesthesia, plotted using 
a scheme analogous to that used for e. The histograms show the distributions 
of stimulation-induced activity under different levels of anaesthesia. g, 
Activity across the two adjacently placed arrays with stimulation applied at the 
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stimulating electrode. j, Map of differential stimulated activity between light and 
heavy anaesthesia.
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stimulated electrode over timescales of <2 s (Fig. 6e–i). Importantly, 
this effect was reduced by increasing the depth of anaesthesia (Fig. 6f,j), 
and the effect of stimulation was observed to spread across array 
boundaries (Fig. 6g–j), indicating that the observed effects are physi-
ological and not artefacts of stimulation. Within the range of param-
eters tested, no induced saccades were observed in these experiments.

Discussion
Here we have described a modular and highly scalable brain–com-
puter interface system capable of rapid, minimally invasive surgical 
deployment over multiple areas of the cortical surface in a reversible 
and atraumatic manner92. Through a series of live animal and human 
cadaveric surgeries, we demonstrate the safety and feasibility of 
delivering >2,000 microelectrodes into the subdural space of mul-
tiple functional areas of the brain at a rapid rate (>1,000 electrodes 
per minute) through 400- to 900-μm-wide skull incisions. Using 
thin-film microelectrode arrays that achieve 200- to 1,000-fold higher 
electrode density than standard cortical grids, we demonstrate that 
electrophysiologic information is available at the cortical surface at 
scales as small as <300 µm. We also show that high density is required 
to achieve accurate neural decoding from electrocortical activity, in 
the context of multi-class somatosensory decoding, as the number 
of distinct states grows. Finally, we demonstrate the ability of these 
bidirectional electrodes to modulate cortical activity through focal 
stimulation of individual electrodes. The system is designed to deliver 
the large microelectrode numbers and high spatial densities required 
to facilitate confident adoption and routine clinical use of advanced, 
high-performance brain–computer interface technologies. Our early 
experience in human patients substantiates the clinical usability and 
modularity of the system93.

Clinically useful neural interfaces should balance the need for 
improved function, achieved through increasing channel counts and 
spatial resolution, against the invasiveness of the surgical procedure 
and damage to brain tissue associated with penetrating intracortical 
electrode arrays. In designing our system, we have chosen to prioritize 
safety and scalability over other design criteria with an eye towards 
rapid and efficient use in human clinical applications. One potential 
benefit of a non-penetrating, cortical interface is the ability to reli-
ably explant the device after chronic implantation in humans without 
causing tissue damage. Our chronic implantation study demonstrated 
straightforward and atraumatic explantation of the device after 42-day 
implants, supporting potential for long-term interfaces that may even-
tually be removed or upgraded. However, human clinical studies with 
long-term implantation will be required to fully substantiate this claim.

While it is unlikely that any single system or electrode type will 
be ideally suited to the full breadth of future clinical applications of 
neural interfaces, safety, scalability and reversibility are key features 
to maximize the addressable clinical populations that could benefit 
from this technology in the near future. Specifically, we believe that it 
is important that tissue damage and total implantation time for neural 
interfaces not increase linearly in proportion to electrode count, as 
scaling such systems by several orders of magnitude would then lead to 
prohibitive levels of tissue damage94–97 or impractically long implanta-
tion times. The thin-film microelectrode array technology described 
here compares favourably on these measures, enabling thousands of 
electrodes to be rapidly deployed to multiple functional areas without 
damaging cortical tissue. Indeed, it becomes conceivable to envision 
deploying a thin-film-based neural interface over the majority of the 
accessible human neocortex.

Several groups have used advanced surface array techniques 
to correlate neural activity with motor function for the control of 
neural prostheses in paralysed patients7,87,88,98–101, to achieve speech 
decoding in anarthric patients6,19,20,80,89,102, or for other applications 
of high-resolution ECoG72,80,103–113. Using the considerably increased 
resolution of the microelectrode array described here, we demonstrate 

neural decoding across multiple functional modalities, including gross 
and fine somatosensation, vision and volitional motor function during 
awake, spontaneous, untrained behaviour, as well as for predicting and 
detecting onset of human speech, with a machine learning framework 
that suggests that work in the field so far has not yet fully capitalized 
on the electrical information present at the cortical surface. Maximal 
decoding performance is achieved by incorporating information at 
multiple spatial scales, requiring systems and techniques that can 
combine wide coverage and high spatial resolution. In addition, we 
have demonstrated the feasibility of using these electrode arrays for 
dynamic, sub-millimetre-scale mapping of the cortical surface in clini-
cal practice, in support of high-precision neurosurgery in eloquent 
brain regions.

Cortical stimulation is also a key capability of closed-loop brain–
computer interfaces, as well as future neural prostheses for restoring 
functions such as somatic sensation, proprioceptive feedback and 
vision114. Here we characterize an operating regime for cortical stimu-
lation from thin-film cortical surface microelectrodes, stimulate the 
cortical surface and monitor stimulus-evoked cortical activity in a 
manner that facilitates visualization and analysis of cortical surface 
activity at spatial and temporal resolutions and total spatial extents 
not previously possible.

This work has a number of limitations. In particular, we have not 
demonstrated the performance of the thin-film electrode interface in 
the context of a fully integrated package designed for chronic implan-
tation and wireless data transfer. A full system of this nature is under 
development and will be described in future studies. We have also 
focused on demonstrating the decodability of neural data obtained 
from the thin-film arrays, but given constraints imposed by our animal 
models (untrained, freely behaving Göttingen minipigs) and limited 
duration of our intraoperative recordings have not optimized decoding 
performance for any specific clinical indication. While the present work 
demonstrates the feasibility of delivering focal cortical stimulation 
and modulating physiologic activity through a high-density cortical 
surface array, while also observing the effects of the stimulation at high 
spatiotemporal resolution, further work will be required to determine 
the physiological significance of the modulation demonstrated here in 
different experimental and clinical contexts. Finally, the clinical data 
reported in this study were gathered as part of a feasibility study to 
demonstrate the viability of our system for short-term, intraoperative 
recordings; future studies will be needed to demonstrate the safety 
and clinical utility of our thin-film microelectrode array for specific 
indications, including intraoperative mapping and restoring motor 
or speech function in paralysed patients.

The thin-film electrode array that we describe here may form 
the basis for a modular, scalable, minimally invasive brain–computer 
interface system. The approach is designed to deliver the benefits of 
high-density, high-channel-count, high-data-rate neural interfaces to 
the millions of patients with neurologic disorders who stand to benefit 
from this technology.

Methods
Array fabrication and characterization
Initial 529-channel microelectrode arrays were fabricated on 150– 
200 mm wafers using a spin-on polyimide. The fabrication process 
briefly comprised spin-coating, soft-bake and vacuum cure of an 
approximately 10 μm layer of polyimide; photolithographic pattern-
ing, deposition and liftoff of 20 nm/210 nm/20 nm Ti/Pt/Ti trace metal; 
O2 plasma treatment of the polyimide surface; spin-coating, soft-bake 
and vacuum cure of an approximately 10 μm layer of polyimide; hard 
mask deposition and patterning for polyimide outline and electrode 
site opening; polyimide etch and electrode surface exposure in O2/CF4 
plasma; hard mask strip; photolithographic patterning, deposition 
and liftoff of 20 nm/20 nm/500 nm of Ti/Pt/Au bond pad metalliza-
tion; and O2 plasma post-clean of the polyimide surface. Following 
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microfabrication, devices were released in deionized water, optically 
inspected for trace, electrode and pad defects, dehydration baked and 
thermocompression bonded to an organic interposer using a flip-chip 
tool. The fabrication process is similar for the 1,024-channel array, 
except that the first metal stack is adjusted to include gold in the trace 
metal stack for reduction of trace impedance (with platinum remaining 
as the tissue contacting material), and designs are adjusted as pictured 
in Fig. 1 and Supplementary Fig. 3. Key design changes include 50 μm 
and 380 μm recording and stimulation electrodes, respectively, as well 
as 500 μm on-array reference electrodes. Additional microfabrication 
details have been described in our previous work71.

Each array pocket was laser cut from adhesive-backed polyimide 
film, then aligned with the 800 µm alignment holes and markers at the 
distal tip of the microelectrode arrays and compressed to form the final 
structure used for insertion.

The microelectrode arrays are designed to be assembled into 
larger connected modules in a scalable fashion to achieve greater corti-
cal coverage. Spacing and orientation were controlled during modu-
lar assembly with the assistance of alignment holes. The arrays were 
bonded by applying ISO 10993 biologically tested ultraviolet-curing 
cyanoacrylate to the overlapping regions of adjacent array modules.

Before assembly, bonded microelectrode array-interposer assem-
blies were optically inspected in bond, cable and electrode areas, 
and a sampling of electrodes were characterized electrochemically. 
Electrochemical characterization was performed on a potentiostat 
(Wavedriver 100, Pine Research) in a 3-electrode configuration (with 
Ag/AgCl reference electrode and Pt coil counter-electrode) and com-
prised cyclic voltammetry and electrochemical impedance spectros-
copy on at least one electrode per size in phosphate-buffered saline 
(PBS) at pH 7.4. The cyclic voltammetry measurements were performed 
(from 0 V to 1.2 V to −0.65 V to 0 V relative to the reference electrode) to 
confirm electrode surface identity using platinum oxidation and Pt–O 
reduction peaks, hydrogen adsorption and H2 oxidative desorption. In 
addition, cyclic voltammetry measurements provide information on 
charge storage capacity and real surface area and identify the water 
window. Electrochemical impedance spectroscopy measurements 
were performed from 10 Hz to 10 kHz (on each electrode size) to con-
firm that 1 kHz impedance and cut-off frequency are within expected 
ranges, and to provide references for later in vitro impedance mapping 
performed using the Intan chips in a two-electrode configuration. 
In vitro impedance mapping was performed in PBS on fully assembled 
devices (across all electrodes) at 100 Hz, 200 Hz, 500 Hz, 1,000 Hz, 
2,000 Hz and 5,000 Hz using the Intan chips in our custom 529- and 
1,024-channel head stages. Post-implantation, electrodes with imped-
ance below 4 MOhm at 1 kHz were considered accepted, and rejected 
electrodes were excluded from neural decoding tasks.

Surgical implantation
Surgical technique. In vivo testing of the surgical insertion technique 
and electrode array performance were performed in adult female 
Göttingen minipigs. The breed was selected for well-characterized 
functional neuroanatomy as well as skull thickness comparable to that 
of adult humans. The study protocol was approved by the IACUC of 
DaVinci Biomedical Research Products. Local anaesthesia was achieved 
in the region of the skin incisions using intradermal lidocaine. General 
anaesthesia was maintained with isoflurane at levels sufficient to pro-
duce analgesia without suppressing electrocorticographic activity, 
a balance that was facilitated by the minimally invasive nature of the 
procedure.

We developed a ‘cranial micro-slit’ technique for array implanta-
tion. To insert each electrode array, a cranial incision was made using 
a modified 400-μm-thick sagittal saw blade (or an 800-μm-thick pair 
of such blades), at an entry angle tangential to the cortical surface. A 
350 μm fibrescope was then inserted through the cranial incision and 
used to visualize the dura, which was coagulated and cut under direct 

endoscopic vision. Endoscopy was similarly used to guide insertion 
of each electrode array into the subdural space. In some instances,  
a 1.6 mm semi-rigid endoscope was used through a separate pilot hole 
to facilitate improved image quality for photography or videography 
of the procedure.

Electrode arrays were positioned subdurally on the cortical surface 
under simultaneous endoscopic and fluoroscopic guidance. Manipula-
tion of each thin-film array was performed using a radiopaque stylet. 
The stylet tip was designed to fit within a polyimide ‘pocket’ on the 
reverse side of each array. Placement, depth and angulation of cranial 
incisions and electrode arrays were also guided by fluoroscopy or com-
puted tomography. Each stylet was removed following fluoroscopic 
confirmation of array position, leaving only the thin-film subdural 
microelectrode arrays in position on the cortical surface.

To decouple assessment of the surgical technique from char-
acterization of surface microelectrode array recordings, additional 
procedures were performed in which electrode arrays were placed 
on the cortical surface through small, traditional craniectomies. In 
these procedures, the craniectomy was performed with a high-speed 
burr, the dura was separately incised and elevated to expose the corti-
cal surface in the region of interest, haemostasis was meticulously 
achieved, and the microelectrode was placed on the cortical surface 
under direct vision.

Human intraoperative array implantation. On the basis of the revers-
ibility of the electrode array deployment and existing safety and bio-
compatibility data, the Layer 7 Cortical Interface was designated a 
‘Non-Significant Risk’ device in the context of limited intraoperative 
use, and Institutional Review Board (IRB) approval was obtained for 
short-duration cortical surface recordings alongside standard elec-
trophysiologic mapping performed according to the neurosurgical 
standard of care, with informed consent obtained preoperatively (West 
Virginia University Medical Center IRB protocol number 2207618749). 
The human electrophysiologic data reported here were obtained under 
total intravenous anaesthesia with propofol and fentanyl or propofol and 
remifentanil, with the addition of dexmedetomidine in patients undergo-
ing awake language mapping, with a 1,024-channel microelectrode array 
placed alongside a standard subdural electrode strip for up to 15 min. 
In these patients, the subdural electrodes were placed after traditional 
craniotomies were performed to expose the regions of surgical interest.

Safety and reversibility in animal model
Implantation test. To fully characterize the biocompatibility and 
reversibility of implantation of the Layer 7 device, we designed a formal 
implantation study (conducted in accordance with the US Food and 
Drug Administration (FDA)’s Good Laboratory Practices as outlined 
in 21 CFR Part 58) under a protocol approved by the IACUC of DaVinci 
Biomedical Research Products. Sixteen adult, female Göttingen mini-
pigs were implanted bilaterally with either 2 Layer 7 electrode arrays 
(‘Test’) or 2 AdTech subdural electrodes (‘Control’) made through small 
burr-hole incisions. The cohorts were further split into two time points 
to assess the subacute (7 days) and chronic (42 days) responses to 
device implantation. All animals were clinically assessed with daily neu-
rologic exams throughout the duration of the implant. Following eutha-
nasia, the brains were pressure-perfused with 10% neutral-buffered 
formalin, following which the calvaria and brains of each animal were 
sent to an independent, board-certified veterinary neuropathologist. 
Each specimen was grossed while maintaining complete photographic 
records. Histologic sections from both implanted and non-implanted 
regions of the cortex from each animal were processed and stained with 
traditional haematoxylin and eosin and immunohistochemical stains 
(Iba1, GFAP). All pathologic findings were scored by the independent 
veterinary neuropathologist on a semi-quantitative scoring scale:  
0 indicates that the finding was not present, 1 indicates that the finding 
was minimal, 2 indicates that the finding was mild, 3 indicates that the 

http://www.nature.com/natbiomedeng


Nature Biomedical Engineering

Article https://doi.org/10.1038/s41551-025-01501-w

finding was moderate, 4 indicates that the finding was marked, and  
5 indicates that the finding was severe.

Electrophysiology
System configuration and recording hardware. The 529-channel cus-
tomized neural recording and stimulation system is based on chips and 
controllers made by Intan Technologies. The custom amplifier printed 
circuit boards used to interface with the implanted electrode arrays 
each contained 8 of the RHD2164 64-channel amplifier chips and 1 of the 
RHS2116 16-channel stimulator/amplifier chips, allowing for simultane-
ous recording from up to 528 channels and stimulation from up to 16 
channels. In addition, each board allows for a hardware reference from 1 of 
16 sites distributed across the array. The digitized data is transferred from 
the amplifier boards to an associated Intan Technologies 1,024-channel 
RHD controller or 126-channel RHS controller using low-voltage differ-
ential signalling, where it is then stored on a USB-connected computer.

The amplifier boards are designed to allow each board to be eas-
ily coupled to any array-interposer assembly through the inclusion 
of an array of pogo pins that make contact with an associated pad on 
the array-interposer assembly, connecting each electrode site with an 
amplifier input. These two boards are aligned and held together by two 
plates with integrated alignment features placed on the outward-facing 
sides of the boards and screwed together. Additional protection of 
these electronics is provided by a custom, 3D-printed casing with 
strain-relief features for the electrode array and optional mounting 
braces to fix the entire assembly to the skull.

The 1,024-channel configuration was similar to the above, but with 
16 64-channel amplifier chips required for all of the recording elec-
trodes, and with references and stimulation electrodes wired externally 
as needed. These recording boards were attached using mezzanine 
connectors rather than pogo pins, for a more miniaturized interface.

Recording software and data preprocessing. The recording comput-
ers interface with either controller via a custom configuration of the 
Intan Technologies RHX Data Acquisition Software, which allows for 
real-time event-triggered averaging in addition to base functionality. 
The sampling rate for recording is set at 20 kHz per channel, generating 
data at a rate around 2 GB per minute for each set of 1,024 channels. 
A 60 Hz notch filter is applied online during recording. For post hoc 
analysis of local field potentials, unless otherwise specified, data is 
first downsampled to 5 kHz using a Fourier method and then processed 
with a 5th-order Butterworth low-pass filter at 250 Hz.

Software methods. Data processing is performed in C/C++, Python 
and MATLAB, using community standard frameworks, including but 
not limited to Qt, CUDA, NumPy, SciPy, PyTorch and Matplotlib.

Machine learning model training is performed using PyTorch, 
accelerated by an NVIDIA RTX 4090. Machine learning model infer-
ence is performed using TorchScript, utilizing 12th generation Intel 
Core i7 processors.

Data is parsed in real time by configuring Intan RHX to serialize 
data using the Intan DAT format. DAT format serialization reduces the 
latency between data acquisition on-chip, and serialization to disk, 
when compared with the default RHD format, which buffers and writes 
to disk in 128-sample chunks. This enables smooth and consistent 
playback, regardless of sampling frequency.

Real-time visualizations (Figs. 1g and 3i) are implemented using 
the Qt framework. Visualization of amplifier data is either performed 
using raw data, with no post-processing applied, or with one or more 
filters applied. Most commonly used for real-time analysis was a simple 
kernel smoothing technique applied to minimize the visual effects 
of lower-quality channels, or reduce the amount of low amplitude, 
per-channel noise, which can lead to flickering of channels. While a 
number of kernel smoothing techniques can be applied, the most 
commonly used is the 3 × 3 Gaussian kernel.

Trials are generated by reading and combining amplifier samples 
and digital input signals, sampled simultaneously. Amplifier data is 
buffered in memory and aligned with the corresponding digital input 
signals. When a TTL high signal is detected on a predefined channel of 
the digital input, a number of amplifier samples are selected preceding 
and following the digital signal, and emitted as a trial. Additional pro-
cessing of trial data may be performed, depending on the experimental 
set-up or analytical techniques being used downstream, although the 
methods vary depending on the experimental set-up and the down-
stream analytical techniques being applied.

Trials are combined with external metadata to classify each trial 
as associated with a particular stimulus site. For example, in the case 
of SSEPs in the Göttingen minipig, these stimuli may correspond to 
sites on the rostrum, or to the null case when no stimulus was applied. 
Model training follows the standard procedure for model training 
and evaluation in PyTorch or MATLAB. Sampled data is shuffled and 
partitioned into ‘testing’ or ‘training’ collections for each epoch of 
training. Following training, model inference is performed in line with 
subsequent trial generation by evaluating the model on each trial, as 
the trial is emitted.

Free recording of spontaneous cortical activity. Example spectro-
grams are generated from data obtained at 20 kHz per channel, where 
spectral density is computed for a temporal resolution of 45 ms and a 
frequency resolution of 19.5 Hz using a Hann window.

To demonstrate spatial correlation between pairs of electrodes, a 
total of 100 s of raw 20 kHz stimulus-free neural data, recorded using 
1,024-channel arrays in 6 different animals, was separated into 50 
continuous, non-overlapping, 2 s segments. Within each segment, the 
squared Pearson correlation coefficient r2 is computed for every pair 
of electrodes and associated to the corresponding physical distance 
separating those electrodes. The r2 values across all electrode pairs 
were subsequently binned into 50 different distance ranges, and the 
average and standard deviation of the r2 values was computed for each 
distance range. The same analysis was also conducted for 0.25 s, 0.5 s 
and 1 s time segments (Fig. 4f,g).

Evoked potentials. SSEPs were evoked by applying periodic pressure 
on the rostrum or peripheral nerve electrical stimulation. SSEPs caused 
by rostrum stimulation (rostrum SSEP) are measured by either (1) 
manually applying pressure at six different locations on the rostrum 
using a conical tip or (2) applying tactile pressure at up to 30 different 
locations on the rostrum using a programmed pneumatic piston array. 
The onset of a stimulus is defined as the instance when 0.1 lbf of force 
is applied to the rostrum. For peripheral nerve SSEP, electrical stimula-
tion was applied to median and tibial nerves of each side of the animal 
by placing twisted subdermal needle electrodes (13 mm–27 Gauge, 
Cadwell) near the location of the nerves. Repetitive stimuli (300 µs 
pulse at 2.79 Hz, more than 300 times) were presented using a Cadwell 
Cascade IOMax System with a limb module at intensities 1.5–2 times 
the threshold required to visualize twitching in the muscle distal to 
the stimulated nerve. Each nerve was stimulated separately while corti-
cal responses were recorded by the electrode array. Neural response 
waveforms were temporally aligned to the stimulus onset. SSEPs were 
then computed as the averaged time-aligned signals over 250 stimuli 
for peripheral nerve SSEP and 140 stimuli for rostrum SSEP.

To elicit VEPs, the eyelid corresponding to the stimulated retina was 
retracted temporarily while periodic 50 ms flashes were generated at 
1 Hz from an array of white light-emitting diodes (LEDs). Neural response 
waveforms were temporally aligned to the stimulus onset. VEPs were 
calculated as the time-aligned averaged signals over 150 trials.

Cortical stimulation. Electrical stimulation at the cortical surface was 
applied at one of the 200 µm electrodes, controlled by the Intan Tech-
nologies RHS controller and RHX software. Charge-balanced, biphasic, 
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cathodic-first, 200 µs pulses of 100 µA peak current were delivered at 
0.25 Hz. The evoked potentials were recorded over a series of trials. 
During analysis, for each trial and electrode, the Hjorth ‘activity’ of 
each trial was computed as the variance of the signal from 200 ms to 
2,000 ms post-stimulation, and the average activity was taken over 
40 trials.

Electrophysiologic recording and motion capture during awake 
locomotor activity. A 1,024-channel array was placed over the senso-
rimotor cortex on each hemisphere following carefully sized bilateral 
craniectomies. Two Intan 1,024-channel RHD controllers were used to 
record from both arrays simultaneously.

A harness (Ruffwear) was placed on the animal while it was on the 
operating table before being transported to the treadmill (Firepaw).

To capture motions of the animals, a pair of OAK-1 cameras (Lux-
onis) was used, with one camera placed on each side of the animal. One 
camera was to cover anterior view of the animal to capture head and 
forelimb movements and the other was used to capture a posterior 
view, including hindlimb movements. Videos were recorded at 60 
frames per second using a modified set of codes from DepthAI SDK 
provided by the camera manufacturer. Each pair of cameras was syn-
chronized frame-by-frame. To synchronize videos and neural record-
ings, 4 LEDs were placed on the treadmill and were controlled by an 
Arduino microcontroller that controlled the LEDs with a pulse whose 
‘on’ state duration was 100 ms at 0.25 Hz. At least one LED is captured in 
each of the videos on each side, and the pulse was recorded as a digital 
input at 20 kHz by the Intan controller.

After recording sessions, each video was annotated using Premier 
Pro 2023 (Adobe) to classify the animal behaviours into one of the fol-
lowing three states: resting, limb movements and head movements. 
Limb movements included locomotion forward or backward, discrete 
one-limb movements, non-locomotive multiple-limb movements or 
a sequence of those limb movements without any rest. A movement 
onset frame was defined to be a frame where one or more limbs started 
to move. During resting, none of the body parts visible in any of the 
videos moves. A beginning and an end of each class are annotated.

Human intraoperative recording. Human intraoperative record-
ing, real-time analysis and visualization were performed using 
1,024-electrode arrays configured with customized head stages and 
software configured as described in earlier sections, but packaged in 
a manner designed to facilitate ethylene oxide sterilization and secure 
fixation in the surgical field.

Spontaneous cortical activity and upper-limb SSEPs were obtained 
as described in earlier sections.

During awake language mapping, auditory cues provided by the 
examiner or visual cues (single words) presented on a screen instructed 
the patient to speak individual words. The cues and the full auditory 
output of the patient were recorded and time-synchronized with the 
electrophysiologic data for offline analysis.

Neural decoding
Sensory decoding. Multi-class single-shot decoding efficacy is dem-
onstrated by classifying array-wide neural recordings of pneumatics- 
based rostrum SSEPs using a convolutional-recurrent neural network 
(CRNN). For each stimulation location, the stimulus was localized 
in space (within 3 mm radius from target), controlled in duration 
(50 ms) and stable in applied force (40 psi peak). Recordings were 
first downsampled from 20 kHz to 1 kHz. Two sets of neural features, 
low frequency (<10 Hz) signals and high gamma amplitude (70–150 Hz), 
were then extracted and concatenated. High gamma amplitude was 
extracted by applying a 70–150 Hz band-pass filter to the signal and 
computed for the absolute value of the Hilbert transform. This resulted 
in 2 neural features per electrode per time step, totalling 2,048 neu-
ral features per time step. The features were further downsampled 

in time to 100 Hz. Recording segments of 300 ms duration (125 ms 
pre-onset and 175 ms post-onset) were each associated with 1 of 13 to 29 
stimulation locations or spontaneous activity, yielding 14 to 30 classes. 
Each location was stimulated in 150–200 trials with an 80%–20% split 
into training and testing sets. The model was trained over 1,500 itera-
tions using cross-entropy loss and gradient-descent ADAM optimizer.  
L1 regularization was used for all weights.

The CRNN (Fig. 4d) consists of one 1D convolutional block, two 
bidirectional gated recurrent units (BiGRU), followed by a fully con-
nected layer. The convolutional block has 128 filters, and a 10% dropout 
at training time. The GRU layers each have only one internal layer, and 
an additional 10% dropout at training time.

Decoding with reduced electrode density was simulated by using 
only data collected from a subset of evenly spaced electrodes. When 
the number of selected electrodes is greater than 512 channels, the 
evenly spaced electrodes were excluded instead. A total of 50 models 
were trained for each electrode configuration. The average decoding 
accuracy and standard deviation for each electrode configuration is 
presented.

Motor decoding in consciously behaving large animals. For motor 
decoding, three classes of behaviour were considered: head move-
ments, limb movements and rest. Movement events preceded by at 
least 750 ms of rest and the rest events that lasted at least 2 s were 
chosen. For one of the sessions, we included sensory stimulation 
of the rostrum and aligned the data to the onset of the stimulation. 
µECoG recording data was downsampled from 20 kHz to 1 kHz and 
was aligned to the movement onset of limb and head movements or to 
the middle of resting periods to contain the data segment (−500 ms, 
500 ms) around the alignment point. We then normalized the data 
for each μECoG channel across all trial classes to have zero mean 
and equal variance. To train on a balanced number of samples per 
behaviour class, we used undersampling by matching the number 
of samples in the minority behaviour class. The first samples were 
selected to keep the effect of the anaesthesia and the activity level of 
the animal consistent. For validation of decoding performance, k-fold 
cross validation was used (k = 5 or 10) to compute accuracy statistics 
and confusion matrices.

Owing to the smaller number of motor events compared with 
sensory stimulation events, we used a simpler convolutional neural 
network (CNN) architecture to decode the behavioural state of an 
animal in each trial to avoid overfitting. The input layer of the network 
receives per-μECoG-channel normalized neural signals from each 
trial as a data array having dimensions equal to the number of ECoG 
channels (2,048) by the chosen number of time subintervals (40, cor-
responding to 40 25 ms averaging intervals per 1 s of data collected). 
The architecture comprises four consecutive 2D convolutional layers, 
each with increasing numbers of filters (8, 16, 32, 64) and a kernel size 
of 3 × 3 with ‘same’ padding. After each convolutional layer, batch 
normalization and a ReLU activation function are applied, followed 
by a max-pooling layer with a pool size of 2 × 2 and a stride of 2. For the 
fourth convolutional layer, the max-pooling layer was omitted. The 
architecture concludes with a fully connected layer, a softmax layer and 
a classification layer for each behaviour state type. A cross-entropy loss 
function and a stochastic gradient-descent algorithm with momentum 
optimization were used to train the network.

Speech decoding from patients undergoing awake craniotomies 
for language mapping. We used a logistic regression model on 4 min 
of neural data during which a patient spoke from a limited vocabulary 
of single-syllable words. The model was trained and tested on 61 trials 
with speech and 61 trials without speech. The 1,024-channel neural 
data was selected in the time window of 1.5 s around the speech onset 
(0.5 s pre-speech and 1.0 s post-speech onset) and 1.5 s without speech 
during which the patient was resting. We then evaluated the model 
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performance by running the prediction 100 times by randomly resa-
mpling the training and test data by a 9:1 ratio without replacement.

Reporting summary
Further information on research design is available in the Nature 
Portfolio Reporting Summary linked to this article.

Data availability
This study analysed datasets containing high-resolution neural record-
ings from both large animals and human patients, along with clini-
cal and demographics variables and deidentified imaging data from 
patients at West Virginia University. Example nonhuman neural record-
ing datasets are publicly available in the following repository: https://
github.com/precision-neuroscience/nbme2025. Reasonable requests 
for noncommercial research use of human electrophysiologic and 
other deidentified human clinical data will be considered and should 
be made to the corresponding author. Some restrictions apply to 
the availability of the data, due in part to patient confidentiality, and 
additional ethics review may be required.

Code availability
Code that was used to analyse the data of this study, including pre-
processing and visualizing the neural data, and training the machine 
learning models described herein, is publicly available via GitHub in 
the following repository: https://github.com/precision-neuroscience/
nbme2025. Algorithms were built using open-source deep learning 
frameworks, including PyTorch (https://pytorch.org) and TensorFlow 
(https://www.tensorflow.org).
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