+
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An implantable hydrogel-based phononic crystal for continuous and wireless monitoring of internal tissue strains

Abstract

Conventional implantable electronic sensors for continuous monitoring of internal tissue strains are yet to match the biomechanics of tissues while maintaining biodegradability, biocompatibility and wireless monitoring capability. Here we present a two-dimensional phononic crystal composed of periodic air columns in soft hydrogel, which was named ultrasonic metagel, and we demonstrate its use as implantable sensor for continuous and wireless monitoring of internal tissue strains. The metagel’s deformation shifts its ultrasonic bandgap, which can be wirelessly detected by an external ultrasonic probe. We demonstrate ex vivo the ability of the metagel sensor for monitoring tissue strains on porcine tendon, wounded tissue and heart. In live pigs, we further demonstrate the ability of the metagel to monitor tendon stretching, respiration and heartbeat, working stably during 30 days of implantation, and we loaded the metagel with growth factors to achieve different healing rates in subcutaneous wounds. The metagel results almost completely degraded 12 weeks after implantation. Our finding highlights the clinical potential of the ultrasonic sensor for tendon rehabilitation monitoring and drug delivery efficacy evaluation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Design of the metagel strain sensor.
Fig. 2: Operating mechanism of the metagel strain sensor.
Fig. 3: Performance of the metagel strain sensor.
Fig. 4: Ex vivo monitoring of tissue strains using the metagel strain sensor.
Fig. 5: Biocompatibility and biodegradability of the metagel strain sensor.
Fig. 6: In vivo functionality of the metagel strain sensor.

Similar content being viewed by others

Data availability

All data supporting the findings of this study are available in the paper and its Supplementary Information. Source data are provided with this paper.

Code availability

The custom code (MATLAB script) for processing the RF data of echoes acquired by an ultrasound transducer has been deposited to a public database at https://github.com/lostboy520/FFT_Echo_of_Metagel.git (ref. 62).

References

  1. Thomopoulos, S., Parks, W. C., Rifkin, D. B. & Derwin, K. A. Mechanisms of tendon injury and repair. J. Orthop. Res. 33, 832–839 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  2. Docheva, D., Müller, S. A., Majewski, M. & Evans, C. H. Biologics for tendon repair. Adv. Drug Deliv. Rev. 84, 222–239 (2015).

    Article  CAS  PubMed  Google Scholar 

  3. Parry-Williams, G. & Sharma, S. The effects of endurance exercise on the heart: panacea or poison? Nat. Rev. Cardiol. 17, 402–412 (2020).

    Article  CAS  PubMed  Google Scholar 

  4. O’Keefe, J. H. et al. Potential adverse cardiovascular effects from excessive endurance exercise. Mayo Clin. Proc. 87, 587–595 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Li, C. et al. Sensing of joint and spinal bending or stretching via a retractable and wearable badge reel. Nat. Commun. 12, 2950 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McGilvray, K. C. et al. Implantable microelectromechanical sensors for diagnostic monitoring and post-surgical prediction of bone fracture healing. J. Orthop. Res. 33, 1439–1446 (2015).

    Article  PubMed  Google Scholar 

  7. Patel, S., Park, H., Bonato, P., Chan, L. & Rodgers, M. A review of wearable sensors and systems with application in rehabilitation. J. Neuroeng. Rehabil. 9, 21 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kubo, K., Kanehisa, H., Kawakami, Y. & Fukunaga, T. Influence of static stretching on viscoelastic properties of human tendon structures in vivo. J. Appl. Physiol. 90, 520–527 (2001).

    Article  CAS  PubMed  Google Scholar 

  9. Wang, S. et al. Intrinsically stretchable electronics with ultrahigh deformability to monitor dynamically moving organs. Sci. Adv. 8, eabl5511 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Cornacchia, M., Ozcan, K., Zheng, Y. & Velipasalar, S. A survey on activity detection and classification using wearable sensors. IEEE Sens. J. 17, 386–403 (2017).

    Article  Google Scholar 

  11. Hong, Y. J., Jeong, H., Cho, K. W., Lu, N. & Kim, D.-H. Wearable and implantable devices for cardiovascular healthcare: from monitoring to therapy based on flexible and stretchable electronics. Adv. Funct. Mater. 29, 1808247 (2019).

    Article  Google Scholar 

  12. Xu, X. et al. Advances in smartphone-based point-of-care diagnostics. Proc. IEEE 103, 236–247 (2015).

    Article  CAS  Google Scholar 

  13. Shrivastava, S., Trung, T. Q. & Lee, N.-E. Recent progress, challenges, and prospects of fully integrated mobile and wearable point-of-care testing systems for self-testing. Chem. Soc. Rev. 49, 1812–1866 (2020).

    Article  CAS  PubMed  Google Scholar 

  14. Errico, C. et al. Ultrafast ultrasound localization microscopy for deep super-resolution vascular imaging. Nature 527, 499–502 (2015).

    Article  CAS  PubMed  Google Scholar 

  15. Li, P. et al. From diagnosis to treatment: recent advances in patient-friendly biosensors and implantable devices. ACS Nano 15, 1960–2004 (2021).

    Article  CAS  PubMed  Google Scholar 

  16. Kwon, K. et al. A battery-less wireless implant for the continuous monitoring of vascular pressure, flow rate and temperature. Nat. Biomed. Eng. 7, 1215–1228 (2023).

    Article  PubMed  Google Scholar 

  17. Choi, S.-G. & Kang, S.-K. Monitoring rehabilitation with transient sensors. Nat. Electron. 1, 272–273 (2018).

    Article  Google Scholar 

  18. Coonahan, E. S. et al. Structure-switching aptamer sensors for the specific detection of piperaquine and mefloquine. Sci. Transl. Med. 13, eabe1535 (2021).

    Article  CAS  PubMed  Google Scholar 

  19. Shin, J. et al. Bioresorbable pressure sensors protected with thermally grown silicon dioxide for the monitoring of chronic diseases and healing processes. Nat. Biomed. Eng. 3, 37–46 (2019).

    Article  CAS  PubMed  Google Scholar 

  20. Boutry, C. M. et al. A stretchable and biodegradable strain and pressure sensor for orthopaedic application. Nat. Electron. 1, 314–321 (2018).

    Article  Google Scholar 

  21. Ryu, H. et al. Self-rechargeable cardiac pacemaker system with triboelectric nanogenerators. Nat. Commun. 12, 4374 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mathew, A. A., Chandrasekhar, A. & Vivekanandan, S. A review on real-time implantable and wearable health monitoring sensors based on triboelectric nanogenerator approach. Nano Energy 80, 105566 (2021).

    Article  CAS  Google Scholar 

  23. Xu, L. et al. 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium. Nat. Commun. 5, 3329 (2014).

    Article  PubMed  Google Scholar 

  24. Liu, S. et al. Conformability of flexible sheets on spherical surfaces. Sci. Adv. 9, eadf2709 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  25. Choi, C., Lee, Y., Cho, K. W., Koo, J. H. & Kim, D.-H. Wearable and implantable soft bioelectronics using two-dimensional materials. Acc. Chem. Res. 52, 73–81 (2019).

    Article  CAS  PubMed  Google Scholar 

  26. Karachalios, T. et al. The long-term clinical relevance of calcar atrophy caused by stress shielding in total hip arthroplasty: a 10-year, prospective, randomized study. J. Arthroplasty 19, 469–475 (2004).

    Article  PubMed  Google Scholar 

  27. Won, S. M., Cai, L., Gutruf, P. & Rogers, J. A. Wireless and battery-free technologies for neuroengineering. Nat. Biomed. Eng. 7, 405–423 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rong, Z., Zhang, M., Ning, Y. & Pang, W. An ultrasound-induced wireless power supply based on AlN piezoelectric micromachined ultrasonic transducers. Sci. Rep. 12, 16174 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhang, Q. et al. Ultrasoft and biocompatible magnetic-hydrogel-based strain sensors for wireless passive biomechanical monitoring. ACS Nano 16, 21555–21564 (2022).

    Article  CAS  PubMed  Google Scholar 

  30. Wolynski, J. G. et al. Direct electromagnetic coupling to determine diagnostic bone fracture stiffness. Ann. Transl. Med. 10, 510 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Gattiker, F., Umbrecht, F., Neuenschwander, J., Sennhauser, U. & Hierold, C. Novel ultrasound read-out for a wireless implantable passive strain sensor (WIPSS). Sens. Actuators A 145146, 291–298 (2008).

    Article  Google Scholar 

  32. Hu, C. et al. Stable, strain-sensitive conductive hydrogel with antifreezing capability, remoldability, and reusability. ACS Appl. Mater. Interfaces 10, 44000–44010 (2018).

    Article  CAS  PubMed  Google Scholar 

  33. Choi, S. et al. Highly conductive, stretchable and biocompatible Ag–Au core–sheath nanowire composite for wearable and implantable bioelectronics. Nat. Nanotechnol. 13, 1048–1056 (2018).

    Article  CAS  PubMed  Google Scholar 

  34. Li, C. et al. Design of biodegradable, implantable devices towards clinical translation. Nat. Rev. Mater. 5, 61–81 (2020).

    Article  Google Scholar 

  35. Boutry, C. M. et al. Biodegradable and flexible arterial-pulse sensor for the wireless monitoring of blood flow. Nat. Biomed. Eng. 3, 47–57 (2019).

    Article  CAS  PubMed  Google Scholar 

  36. Kalidasan, V. et al. Wirelessly operated bioelectronic sutures for the monitoring of deep surgical wounds. Nat. Biomed. Eng. 5, 1217–1227 (2021).

    Article  PubMed  Google Scholar 

  37. Lee, J. et al. Stretchable and suturable fibre sensors for wireless monitoring of connective tissue strain. Nat. Electron. 4, 291–301 (2021).

    Article  CAS  Google Scholar 

  38. Teng, L. et al. Soft radio-frequency identification sensors: wireless long-range strain sensors using radio-frequency identification. Soft Robot. 6, 82–94 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  39. Chen, C. et al. Micro triboelectric ultrasonic device for acoustic energy transfer and signal communication. Nat. Commun. 11, 4143 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Jin, P. et al. A flexible, stretchable system for simultaneous acoustic energy transfer and communication. Sci. Adv. 7, eabg2507 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Seo, D. et al. Wireless recording in the peripheral nervous system with ultrasonic neural dust. Neuron 91, 529–539 (2016).

    Article  CAS  PubMed  Google Scholar 

  42. Piech, D. K. et al. A wireless millimetre-scale implantable neural stimulator with ultrasonically powered bidirectional communication. Nat. Biomed. Eng. 4, 207–222 (2020).

    Article  PubMed  Google Scholar 

  43. Mujeeb-U-Rahman, M., Adalian, D., Chang, C. F. & Scherer, A. Optical power transfer and communication methods for wireless implantable sensing platforms. J. Biomed. Opt. 20, 95012 (2015).

    Article  Google Scholar 

  44. Zaeimbashi, M. et al. NanoNeuroRFID: a wireless implantable device based on magnetoelectric antennas. IEEE J. Electromagn. RF Microw. Med. Biol. 3, 206–215 (2019).

    Article  Google Scholar 

  45. Das, D. et al. A radio frequency magnetoelectric antenna prototyping platform for neural activity monitoring devices with sensing and energy harvesting capabilities. Electronics 9, 2123 (2020).

    Article  Google Scholar 

  46. Yang, N. et al. Ultrasensitive flexible magnetoelectric sensor. APL Mater. 9, 21123 (2021).

    Article  CAS  Google Scholar 

  47. Herbert, R., Lim, H., Rigo, B. & Yeo, W. Fully implantable wireless batteryless vascular electronics with printed soft sensors for multiplex sensing of hemodynamics. Sci. Adv. 8, eabm1175 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Iqbal, A., Sura, P. R., Al-Hasan, M., Mabrouk, I. B. & Denidni, T. A. Wireless power transfer system for deep-implanted biomedical devices. Sci. Rep. 12, 13689 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Myny, K. The development of flexible integrated circuits based on thin-film transistors. Nat. Electron. 1, 30–39 (2018).

    Article  CAS  Google Scholar 

  50. Kim, Y. et al. Chip-less wireless electronic skins by remote epitaxial freestanding compound semiconductors. Science 377, 859–864 (2022).

    Article  CAS  PubMed  Google Scholar 

  51. Jiang, H. et al. A wireless implantable strain sensing scheme using ultrasound imaging of highly stretchable zinc oxide/poly dimethylacrylamide nanocomposite hydrogel. ACS Appl. Bio Mater. 3, 4012–4024 (2020).

    Article  CAS  PubMed  Google Scholar 

  52. Wang, Y.-F., Wang, Y.-Z., Wu, B., Chen, W. & Wang, Y.-S. Tunable and active phononic crystals and metamaterials. Appl. Mech. Rev. 72, 040801 (2020).

    Article  Google Scholar 

  53. Tang, H. et al. Soft and disordered hyperuniform elastic metamaterials for highly efficient vibration concentration. Natl Sci. Rev. 9, nwab133 (2022).

    Article  PubMed  Google Scholar 

  54. Tian, Y. et al. Inverse-designed aid lenses for precise correction of color vision deficiency. Nano Lett. 22, 2094–2102 (2022).

    Article  CAS  PubMed  Google Scholar 

  55. Tang, H. et al. Bioinspired soft elastic metamaterials for reconstruction of natural hearing. Adv. Sci. 10, 2207273 (2023).

    Article  Google Scholar 

  56. Liang, H. et al. Self-powered stretchable mechanoluminescent optical fiber strain sensor. Adv. Intell. Syst. 3, 2100035 (2021).

    Article  Google Scholar 

  57. Waugh, C. M., Blazevich, A. J., Fath, F. & Korff, T. Age-related changes in mechanical properties of the Achilles tendon. J. Anat. 220, 144–155 (2012).

    Article  CAS  PubMed  Google Scholar 

  58. Wang, C. et al. Bioadhesive ultrasound for long-term continuous imaging of diverse organs. Science 377, 517–523 (2022).

    Article  CAS  PubMed  Google Scholar 

  59. Lin, M. et al. A fully integrated wearable ultrasound system to monitor deep tissues in moving subjects. Nat. Biotechnol. 42, 448–457 (2024).

    Article  CAS  PubMed  Google Scholar 

  60. Lin, S. et al. Anti-fatigue-fracture hydrogels. Sci. Adv. 5, eaau8528 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hua, M. et al. Strong tough hydrogels via the synergy of freeze-casting and salting out. Nature 590, 594–599 (2021).

    Article  CAS  PubMed  Google Scholar 

  62. Tian Y. FFT_Echo_of_Metagel. GitHub https://github.com/lostboy520/FFT_Echo_of_Metagel.git (2024).

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (T2350001, 52173280 and 52188102), the China Postdoctoral Science Foundation (2022M711256), the HUST Interdisciplinary Research Project (2023JCYJ044) and the Taihu Lake Innovation Fund for Future Technology, HUST (2023A3).

Author information

Authors and Affiliations

Authors

Contributions

J.Z., H.T. and Y.T. conceived the concept of the metagel sensor. Y.T. and Y. Yang designed, assembled and tested the metagel strain sensor. Y.T. and H.T. designed and conducted the numerical simulation of the metagel. Y. Yang, N.L. and M.Z. designed and fabricated the metagel implant and bioadhesive hydrogel interface. T.K. and Y.C. designed and characterized the drive and acquisition system of the ultrasonic probe. Y.T., T.K. and Y. Yu analysed the ultrasonic data. Y.T., J.W. and Y. Yang designed and performed the ex vivo experiments. Y. Yang, J.W. and N.L. designed and characterized the metagel’s biodegradability. J.W., Xinqi Liu, Y.T., Y. Yang, Y.C., J.T. and W.C. designed and performed the in vivo experiments and biocompatibility test. Y.T., H.T., J.Z., Y. Yu, Z.Y., N.L. and L.X. contributed to the design of experiments. Y.T., Y. Yang, H.T., L.X., Xurui Liu, Z.Y. and J.Z. prepared the paper with input from all authors.

Corresponding authors

Correspondence to Hanchuan Tang, Liqun Xu, Zhouping Yin or Jianfeng Zang.

Ethics declarations

Competing interests

J.Z., Y.T., H.T., Y. Yang, Y.C. and T.K. are named as inventors on a patent (CN115752311A) that covers the design and fabrication of the soft structured hydrogel. J.Z., Y.T., H.T., Y. Yang and Y.C. are named as inventors of an ultrasonic monitoring system on a patent (CN115844455A) related to this work. J.Z., Y.T., H.T., Y. Yang, Y.C. and T.K. are named as inventors on patents (CN115844448A) related to this work. The authors declare that they have no other competing interests.

Peer review

Peer review information

Nature Biomedical Engineering thanks Nicholas Fang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary notes, figures, tables and references.

Reporting Summary

Peer Review File

Supplementary Video 1

Summary video of the ultrasonic implantable metagel strain sensor.

Supplementary Video 2

Flexibility of the metagel strain sensor.

Supplementary Video 3

Echo peak frequency shift of the metagel sensor upon different strains.

Supplementary Video 4

Ex vivo experiment of the metagel strain sensor.

Supplementary Video 5

In vivo experiment of the metagel strain sensor.

Source data

Source Data Fig. 2

Source data.

Source Data Fig. 3

Source data.

Source Data Fig. 4

Source data.

Source Data Fig. 5

Source data.

Source Data Fig. 6

Source data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, Y., Yang, Y., Tang, H. et al. An implantable hydrogel-based phononic crystal for continuous and wireless monitoring of internal tissue strains. Nat. Biomed. Eng 9, 1335–1348 (2025). https://doi.org/10.1038/s41551-025-01374-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41551-025-01374-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载