+
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Microfluidic technologies for enhancing the potency, predictability and affordability of adoptive cell therapies

Abstract

The development and wider adoption of adoptive cell therapies is constrained by complex and costly manufacturing processes and by inconsistent efficacy across patients. Here we discuss how microfluidic and other fluidic devices can be implemented at each stage of cell manufacturing for adoptive cell therapies, from the harvesting and isolation of the cells to their editing, culturing and functional selection. We suggest that precise and controllable microfluidic systems can streamline the development of these therapies by offering scalability in cell production, bolstering the efficacy and predictability of the therapies and improving their cost-effectiveness and accessibility for broader populations of patients with cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Adoptive cell therapy for cancer treatment.
Fig. 2: Harvesting immune cells for ACT.
Fig. 3: Sorting therapeutic cells for ACT.
Fig. 4: Gene editing and expansion of therapeutic cells for ACT.
Fig. 5: Microfluidic assays for the functional selection of therapeutic cells.
Fig. 6: Microphysiological systems for the assessment and prediction of therapeutic potency.

Similar content being viewed by others

References

  1. Rosenberg, S., Spiess, P. & Lafreniere, R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science 233, 1318–1321 (1986).

    Article  CAS  PubMed  Google Scholar 

  2. Rosenberg, S. A. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. N. Engl. J. Med. 319, 1676–1680 (1988).

    Article  CAS  PubMed  Google Scholar 

  3. Gross, G., Waks, T. & Eshhar, Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc. Natl Acad. Sci. USA 86, 10024–10028 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sheykhhasan, M., Manoochehri, H. & Dama, P. Use of CAR T-cell for acute lymphoblastic leukemia (ALL) treatment: a review study. Cancer Gene Ther. 29, 1080–1096 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. World’s first TIL therapy approved. Nat. Biotechnol. 42, 347–350 (2024).

  6. Creelan, B. C. et al. Tumor-infiltrating lymphocyte treatment for anti-PD-1-resistant metastatic lung cancer: a phase 1 trial. Nat. Med. 27, 1410–1418 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mariuzza, R. A., Agnihotri, P. & Orban, J. The structural basis of T-cell receptor (TCR) activation: an enduring enigma. J. Biol. Chem. 295, 914–925 (2020).

    Article  PubMed  Google Scholar 

  8. Puig-Saus, C. et al. Neoantigen-targeted CD8+ T cell responses with PD-1 blockade therapy. Nature 615, 697–704 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wang, Z. & Chen, K. Understanding the heterogeneous immune repertoire of brain metastases for designing next-gen therapeutics. Brain-X 33, e33 (2023).

    Article  Google Scholar 

  10. Stanojevic, M. et al. Identification of novel HLA-restricted preferentially expressed antigen in melanoma peptides to facilitate off-the-shelf tumor-associated antigen-specific T-cell therapies. Cytotherapy 23, 694–703 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li, J. et al. The screening, identification, design and clinical application of tumor-specific neoantigens for TCR-T cells. Mol. Cancer 22, 141 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Sterner, R. C. & Sterner, R. M. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 11, 69 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pan, K. et al. CAR race to cancer immunotherapy: from CAR T, CAR NK to CAR macrophage therapy. J. Exp. Clin. Cancer Res. 41, 119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Akatsuka, Y. TCR-like CAR-T cells targeting MHC-bound minor histocompatibility antigens. Front. Immunol. 11, 257 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. DiNofia, A. M. & Grupp, S. A. Will allogeneic CAR T cells for CD19+ malignancies take autologous CAR T cells ‘off the shelf’? Nat. Rev. Clin. Oncol. 18, 195–196 (2021).

    Article  PubMed  Google Scholar 

  16. Depil, S., Duchateau, P., Grupp, S. A., Mufti, G. & Poirot, L. ‘Off-the-shelf’ allogeneic CAR T cells: development and challenges. Nat. Rev. Drug Discov. 19, 185–199 (2020).

    Article  CAS  PubMed  Google Scholar 

  17. Caldwell, K. J., Gottschalk, S. & Talleur, A. C. Allogeneic CAR cell therapy—more than a pipe dream. Front. Immunol. 11, 618427 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lv, Z., Luo, F. & Chu, Y. Strategies for overcoming bottlenecks in allogeneic CAR-T cell therapy. Front. Immunol. 14, 1199145 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Elsallab, M. & Maus, M. V. Expanding access to CAR T cell therapies through local manufacturing. Nat. Biotechnol. 41, 1698–1708 (2023).

    Article  CAS  PubMed  Google Scholar 

  20. Mock, U. et al. Automated manufacturing of chimeric antigen receptor T cells for adoptive immunotherapy using CliniMACS Prodigy. Cytotherapy 18, 1002–1011 (2016).

    Article  CAS  PubMed  Google Scholar 

  21. Aleksandrova, K. et al. Functionality and cell senescence of CD4/CD8-selected CD20 CAR T cells manufactured using the automated CliniMACS Prodigy® platform. Transfus. Med. Hemotherapy 46, 47–54 (2019).

    Article  Google Scholar 

  22. Shah, M., Krull, A., Odonnell, L., De Lima, M. J. & Bezerra, E. Promises and challenges of a decentralized CAR T-cell manufacturing model. Front. Transplant. 2, 1238535 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Blache, U., Popp, G., Dünkel, A., Koehl, U. & Fricke, S. Potential solutions for manufacture of CAR T cells in cancer immunotherapy. Nat. Commun. 13, 5225 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ran, T., Eichmuller, S. B., Schmidt, P. & Schlander, M. Cost of decentralized CAR T-cell production in an academic nonprofit setting. Int. J. Cancer 147, 3438–3445 (2020).

    Article  CAS  PubMed  Google Scholar 

  25. Sackmann, E. K., Fulton, A. L. & Beebe, D. J. The present and future role of microfluidics in biomedical research. Nature 507, 181–189 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. Adriani, G. et al. Microfluidic models for adoptive cell-mediated cancer immunotherapies. Drug Discov. Today 21, 1472–1478 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Paterson, K., Zanivan, S., Glasspool, R., Coffelt, S. B. & Zagnoni, M. Microfluidic technologies for immunotherapy studies on solid tumours. Lab. Chip 21, 2306–2329 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim, H., Kim, S., Lim, H. & Chung, A. J. Expanding CAR-T cell immunotherapy horizons through microfluidics. Lab. Chip 24, 1088–1120 (2024).

    Article  CAS  PubMed  Google Scholar 

  29. van den Berg, J. H. et al. Tumor infiltrating lymphocytes (TIL) therapy in metastatic melanoma: boosting of neoantigen-specific T cell reactivity and long-term follow-up. J. Immunother. Cancer 8, e000848 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  30. Baldan, V., Griffiths, R., Hawkins, R. E. & Gilham, D. E. Efficient and reproducible generation of tumour-infiltrating lymphocytes for renal cell carcinoma. Br. J. Cancer 112, 1510–1518 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kongkaew, T. et al. TIL expansion with high dose IL-2 or low dose IL-2 with anti-CD3/anti-CD28 stimulation provides different quality of TIL-expanded T cell clones. J. Immunol. Methods 503, 113229 (2022).

    Article  CAS  PubMed  Google Scholar 

  32. Qiu, X. et al. Microfluidic channel optimization to improve hydrodynamic dissociation of cell aggregates and tissue. Sci. Rep. 8, 2774 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  33. Lombardo, J. A., Aliaghaei, M., Nguyen, Q. H., Kessenbrock, K. & Haun, J. B. Microfluidic platform accelerates tissue processing into single cells for molecular analysis and primary culture models. Nat. Commun. 12, 2858 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lutz, E. R. et al. Superior efficacy of CAR-T cells using Marrow-Infiltrating Lymphocytes (MILsTM) as compared to Peripheral Blood Lymphocytes (PBLs). Blood 134, 4437 (2019).

    Article  Google Scholar 

  35. Kröger, N. et al. (eds) The EBMT/EHA CAR-T Cell Handbook (Springer, 2022).

  36. Jeon, H. et al. Fully-automated and field-deployable blood leukocyte separation platform using multi-dimensional double spiral (MDDS) inertial microfluidics. Lab. Chip 20, 3612–3624 (2020).

    Article  CAS  PubMed  Google Scholar 

  37. Zeming, K. K., Salafi, T., Chen, C.-H. & Zhang, Y. Asymmetrical deterministic lateral displacement gaps for dual functions of enhanced separation and throughput of red blood cells. Sci. Rep. 6, 22934 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lezzar, D. L. et al. A high-throughput microfluidic device based on controlled incremental filtration to enable centrifugation-free, low extracorporeal volume leukapheresis. Sci. Rep. 12, 13798 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mishra, A. et al. Ultrahigh-throughput magnetic sorting of large blood volumes for epitope-agnostic isolation of circulating tumor cells. Proc. Natl Acad. Sci. USA 117, 16839–16847 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lin, E. et al. High-throughput microfluidic labyrinth for the label-free isolation of circulating tumor cells. Cell Syst. 5, 295–304.e4 (2017).

    Article  CAS  PubMed  Google Scholar 

  41. Sarioglu, A. F. et al. A microfluidic device for label-free, physical capture of circulating tumor cell clusters. Nat. Methods 12, 685–691 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Renier, C. et al. Label-free isolation of prostate circulating tumor cells using Vortex microfluidic technology. Npj Precis. Oncol. 1, 15 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zhu, S., Jiang, F., Han, Y., Xiang, N. & Ni, Z. Microfluidics for label-free sorting of rare circulating tumor cells. Analyst 145, 7103–7124 (2020).

    Article  CAS  PubMed  Google Scholar 

  44. Hao, S.-J., Wan, Y., Xia, Y.-Q., Zou, X. & Zheng, S.-Y. Size-based separation methods of circulating tumor cells. Adv. Drug Deliv. Rev. 125, 3–20 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. Urbanska, M. et al. A comparison of microfluidic methods for high-throughput cell deformability measurements. Nat. Methods 17, 587–593 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lenshof, A. & Laurell, T. Continuous separation of cells and particles in microfluidic systems. Chem. Soc. Rev. 39, 1203–1217 (2010).

    Article  PubMed  Google Scholar 

  47. Di Carlo, D., Irimia, D., Tompkins, R. G. & Toner, M. Continuous inertial focusing, ordering and separation of particles in microchannels. Proc. Natl Acad. Sci. USA 104, 18892–18897 (2007).

    Article  PubMed  PubMed Central  Google Scholar 

  48. Xiang, N. & Ni, Z. High-throughput blood cell focusing and plasma isolation using spiral inertial microfluidic devices. Biomed. Microdevices 17, 110 (2015).

    Article  PubMed  Google Scholar 

  49. Mutlu, B. R. et al. Non-equilibrium inertial separation array for high-throughput, large-volume blood fractionation. Sci. Rep. 7, 9915 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  50. Gomis, S. et al. Single-cell tumbling enables high-resolution size profiling of retinal stem cells. ACS Appl. Mater. Interfaces 10, 34811–34816 (2018).

    Article  CAS  PubMed  Google Scholar 

  51. Sadeqi Nezhad, M., Abdollahpour-Alitappeh, M., Rezaei, B., Yazdanifar, M. & Seifalian, A. M. Induced pluripotent stem cells (iPSCs) provide a potentially unlimited T cell source for CAR-T cell development and off-the-shelf products. Pharm. Res. 38, 931–945 (2021).

    Article  CAS  PubMed  Google Scholar 

  52. Takahashi, K. & Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126, 663–676 (2006).

    Article  CAS  PubMed  Google Scholar 

  53. Nakagawa, M. et al. Generation of induced pluripotent stem cells without Myc from mouse and human fibroblasts. Nat. Biotechnol. 26, 101–106 (2008).

    Article  CAS  PubMed  Google Scholar 

  54. Guan, J. et al. Chemical reprogramming of human somatic cells to pluripotent stem cells. Nature 605, 325–331 (2022).

    Article  CAS  PubMed  Google Scholar 

  55. Park, I.-H., Lerou, P. H., Zhao, R., Huo, H. & Daley, G. Q. Generation of human-induced pluripotent stem cells. Nat. Protoc. 3, 1180–1186 (2008).

    Article  CAS  PubMed  Google Scholar 

  56. Mandal, P. K. & Rossi, D. J. Reprogramming human fibroblasts to pluripotency using modified mRNA. Nat. Protoc. 8, 568–582 (2013).

    Article  PubMed  Google Scholar 

  57. Ghaedi, M. & Niklason, L. E. in Organoids Vol. 1576 (ed. Turksen, K.) 55–92 (Springer, 2016).

  58. Giulitti, S. et al. Direct generation of human naive induced pluripotent stem cells from somatic cells in microfluidics. Nat. Cell Biol. 21, 275–286 (2019).

    Article  CAS  PubMed  Google Scholar 

  59. Ashby, K. M. & Hogquist, K. A. A guide to thymic selection of T cells. Nat. Rev. Immunol. 24, 103–117 (2024).

    Article  CAS  PubMed  Google Scholar 

  60. Wang, Z. et al. 3D-organoid culture supports differentiation of human CAR+ iPSCs into highly functional CAR T cells. Cell Stem Cell 29, 515–527.e8 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  61. Lipsitz, Y. Y., Timmins, N. E. & Zandstra, P. W. Quality cell therapy manufacturing by design. Nat. Biotechnol. 34, 393–400 (2016).

    Article  CAS  PubMed  Google Scholar 

  62. Fernández, A. et al. Optimizing the procedure to manufacture clinical-grade NK cells for adoptive immunotherapy. Cancers 13, 577 (2021).

    Article  PubMed  PubMed Central  Google Scholar 

  63. Wang, Z. et al. Nanoparticle amplification labeling for high-performance magnetic cell sorting. Nano Lett. 22, 4774–4783 (2022).

    Article  CAS  PubMed  Google Scholar 

  64. Sutermaster, B. A. & Darling, E. M. Considerations for high-yield, high-throughput cell enrichment: fluorescence versus magnetic sorting. Sci. Rep. 9, 227 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  65. Binek, A. et al. Flow cytometry has a significant impact on the cellular metabolome. J. Proteome Res. 18, 169–181 (2019).

    CAS  PubMed  Google Scholar 

  66. Riddell, A., Gardner, R., Perez-Gonzalez, A., Lopes, T. & Martinez, L. Rmax: a systematic approach to evaluate instrument sort performance using center stream catch. Methods 82, 64–73 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pfister, G., Toor, S. M., Sasidharan Nair, V. & Elkord, E. An evaluation of sorter induced cell stress (SICS) on peripheral blood mononuclear cells (PBMCs) after different sort conditions - are your sorted cells getting SICS? J. Immunol. Methods 487, 112902 (2020).

    Article  CAS  PubMed  Google Scholar 

  68. Faraghat, S. A. et al. High-throughput, low-loss, low-cost, and label-free cell separation using electrophysiology-activated cell enrichment. Proc. Natl Acad. Sci. USA 114, 4591–4596 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wu, M. et al. Acoustofluidic separation of cells and particles. Microsyst. Nanoeng. 5, 32 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  70. Nawaz, A. A. et al. Acoustofluidic fluorescence activated cell sorter. Anal. Chem. 87, 12051–12058 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Li, P. & Ai, Y. Label-free multivariate biophysical phenotyping-activated acoustic sorting at the single-cell level. Anal. Chem. 93, 4108–4117 (2021).

    Article  CAS  PubMed  Google Scholar 

  72. Staunstrup, N. H. et al. Comparison of electrostatic and mechanical cell sorting with limited starting material. Cytom. A 101, 298–310 (2022).

    Article  CAS  Google Scholar 

  73. Green, B. J. et al. PillarX: a microfluidic device to profile circulating tumor cell clusters based on geometry, deformability and epithelial state. Small 18, 2106097 (2022).

    Article  CAS  Google Scholar 

  74. Ocanas, R. et al. Minimizing the ex vivo confounds of cell-isolation techniques on transcriptomic-profiles of purified microglia. Preprint at https://doi.org/10.1101/2021.07.15.452509 (2021).

  75. Webb, C. et al. Using microfluidics for scalable manufacturing of nanomedicines from bench to GMP: a case study using protein-loaded liposomes. Int. J. Pharm. 582, 119266 (2020).

    Article  CAS  PubMed  Google Scholar 

  76. Nitta, N. et al. Intelligent image-activated cell sorting. Cell 175, 266–276.e13 (2018).

    Article  CAS  PubMed  Google Scholar 

  77. Zhao, L. et al. Deep learning of morphologic correlations to accurately classify CD4+ and CD8+ T cells by diffraction imaging flow cytometry. Anal. Chem. 94, 1567–1574 (2022).

    Article  CAS  PubMed  Google Scholar 

  78. Alvarez-Breckenridge, C. et al. Microenvironmental landscape of human melanoma brain metastases in response to immune checkpoint inhibition. Cancer Immunol. Res. 10, 996–1012 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Geens, M. et al. The efficiency of magnetic-activated cell sorting and fluorescence-activated cell sorting in the decontamination of testicular cell suspensions in cancer patients. Hum. Reprod. 22, 733–742 (2007).

    Article  CAS  PubMed  Google Scholar 

  80. Moore, D. K. et al. Isolation of B-cells using Miltenyi MACS bead isolation kits. PLoS ONE 14, e0213832 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Wang, Z., Sargent, E. H. & Kelley, S. O. Ultrasensitive detection and depletion of rare leukemic B cells in T cell populations via immunomagnetic cell ranking. Anal. Chem. 93, 2327–2335 (2021).

    Article  CAS  PubMed  Google Scholar 

  82. Mair, B. et al. High-throughput genome-wide phenotypic screening via immunomagnetic cell sorting. Nat. Biomed. Eng. 3, 796–805 (2019).

    Article  CAS  PubMed  Google Scholar 

  83. Aldridge, P. M. et al. Prismatic deflection of live tumor cells and cell clusters. ACS Nano 12, 12692–12700 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang, Z. et al. Efficient recovery of potent tumour-infiltrating lymphocytes through quantitative immunomagnetic cell sorting. Nat. Biomed. Eng. 6, 108–117 (2022).

    Article  CAS  PubMed  Google Scholar 

  85. Wang, Z. et al. Isolation of tumour-reactive lymphocytes from peripheral blood via microfluidic immunomagnetic cell sorting. Nat. Biomed. Eng. 7, 1188–1203 (2023).

    Article  CAS  PubMed  Google Scholar 

  86. Zhang, Y. et al. Interfacial polymerization produced magnetic particles with nano-filopodia for highly accurate liquid biopsy in the PSA gray zone. Adv. Mater. 35, e2303821 (2023).

    Article  PubMed  Google Scholar 

  87. Adams, J. D., Kim, U. & Soh, H. T. Multitarget magnetic activated cell sorter. Proc. Natl Acad. Sci. USA 105, 18165–18170 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang, Z. et al. Phenotypic targeting using magnetic nanoparticles for rapid characterization of cellular proliferation regulators. Sci. Adv. 10, eadj1468 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dudley, M. E., Wunderlich, J. R., Shelton, T. E., Even, J. & Rosenberg, S. A. Generation of tumor-infiltrating lymphocyte cultures for use in adoptive transfer therapy for melanoma patients. J. Immunother. 26, 332–342 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  90. Riddell, S. R. et al. Restoration of viral immunity in immunodeficient humans by the adoptive transfer of T cell clones. Science 257, 238–241 (1992).

    Article  CAS  PubMed  Google Scholar 

  91. Atsavapranee, E. S., Billingsley, M. M. & Mitchell, M. J. Delivery technologies for T cell gene editing: applications in cancer immunotherapy. EBioMedicine 67, 103354 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Vera, J. F. et al. Accelerated production of antigen-specific T cells for preclinical and clinical applications using gas-permeable rapid expansion cultureware (G-Rex). J. Immunother. 33, 305–315 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. FDA Investigating Serious Risk of T-Cell Malignancy Following BCMA-Directed or CD19-Directed Autologous Chimeric Antigen Receptor (CAR) T Cell Immunotherapies (FDA, 2023); https://www.fda.gov/vaccines-blood-biologics/safety-availability-biologics/fda-investigating-serious-risk-t-cell-malignancy-following-bcma-directed-or-cd19-directed-autologous

  94. Geng, T. & Lu, C. Microfluidic electroporation for cellular analysis and delivery. Lab Chip 13, 3803–3821 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zhan, Y., Wang, J., Bao, N. & Lu, C. Electroporation of cells in microfluidic droplets. Anal. Chem. 81, 2027–2031 (2009).

    Article  CAS  PubMed  Google Scholar 

  96. Chakrabarty, P. et al. Microfluidic mechanoporation for cellular delivery and analysis. Mater. Today Bio 13, 100193 (2022).

    Article  CAS  PubMed  Google Scholar 

  97. Ding, X. et al. High-throughput nuclear delivery and rapid expression of DNA via mechanical and electrical cell-membrane disruption. Nat. Biomed. Eng. 1, 0039 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Toner, M. Gene delivery: suddenly squeezed and shocked. Nat. Biomed. Eng. 1, 0047 (2017).

    Article  CAS  Google Scholar 

  99. Hur, J. et al. Microfluidic cell stretching for highly effective gene delivery into hard-to-transfect primary cells. ACS Nano 14, 15094–15106 (2020).

    Article  CAS  PubMed  Google Scholar 

  100. Hur, J. et al. Genetically stable and scalable nanoengineering of human primary T cells via cell mechanoporation. Nano Lett. 23, 7341–7349 (2023).

    Article  CAS  PubMed  Google Scholar 

  101. Li, X. et al. High-throughput and efficient intracellular delivery method via a vibration-assisted nanoneedle/microfluidic composite system. ACS Nano 17, 2101–2113 (2023).

    Article  CAS  PubMed  Google Scholar 

  102. Zhuo, C. et al. Spatiotemporal control of CRISPR/Cas9 gene editing. Signal Transduct. Target. Ther. 6, 238 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Leung, A. K. K., Tam, Y. Y. C., Chen, S., Hafez, I. M. & Cullis, P. R. Microfluidic mixing: a general method for encapsulating macromolecules in lipid nanoparticle systems. J. Phys. Chem. B 119, 8698–8706 (2015).

    Article  CAS  PubMed  Google Scholar 

  104. Billingsley, M. M. et al. In vivo mRNA CAR T cell engineering via targeted ionizable lipid nanoparticles with extrahepatic tropism. Small 20, 2304378 (2024).

    Article  CAS  Google Scholar 

  105. Golubovskaya, V. et al. CAR-NK cells generated with mRNA-LNPs kill tumor target cells in vitro and in vivo. Int. J. Mol. Sci. 24, 13364 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Liu, Y. et al. In situ MUC1-specific CAR engineering of tumor-supportive macrophages stimulates tumoricidal immunity against pancreatic adenocarcinoma. Nano Today 49, 101805 (2023).

    Article  CAS  Google Scholar 

  107. Alkan, F. & Lacin, N. A cationic stearamide-based solid lipid nanoparticle for delivering Yamanaka factors: evaluation of the transfection efficiency. ChemistryOpen 9, 1181–1189 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Lee, K. S., Boccazzi, P., Sinskey, A. J. & Ram, R. J. Microfluidic chemostat and turbidostat with flow rate, oxygen and temperature control for dynamic continuous culture. Lab. Chip 11, 1730–1739 (2011).

    Article  PubMed  Google Scholar 

  109. Mozdzierz, N. J. et al. A perfusion-capable microfluidic bioreactor for assessing microbial heterologous protein production. Lab. Chip 15, 2918–2922 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Kwon, T. et al. Microfluidic cell retention device for perfusion of mammalian suspension culture. Sci. Rep. 7, 6703 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  111. Sin, W.-X. et al. A high-density microfluidic bioreactor for the automated manufacturing of CAR T cells. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-024-01219-1 (2024).

    Article  PubMed  Google Scholar 

  112. Bohrer, L. R. et al. CGMP compliant microfluidic transfection of induced pluripotent stem cells for CRISPR-mediated genome editing. Stem Cells 41, 1037–1046 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  113. Krishna, S. et al. Stem-like CD8 T cells mediate response of adoptive cell immunotherapy against human cancer. Science 370, 1328–1334 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yossef, R. et al. Phenotypic signatures of circulating neoantigen-reactive CD8+ T cells in patients with metastatic cancers. Cancer Cell 41, 2154–2162.e5 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Siddiqui, I. et al. Intratumoral Tcf1+ PD-1+ CD8+ T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. Immunity 50, 195–211.e10 (2019).

    Article  CAS  PubMed  Google Scholar 

  116. Liu, B., Zhang, Y., Wang, D., Hu, X. & Zhang, Z. Single-cell meta-analyses reveal responses of tumor-reactive CXCL13+ T cells to immune-checkpoint blockade. Nat. Cancer 3, 1123–1136 (2022).

    Article  CAS  PubMed  Google Scholar 

  117. Greenman, R. et al. Shaping functional avidity of CAR T cells: affinity, avidity and antigen density that regulate response. Mol. Cancer Ther. 20, 872–884 (2021).

    Article  CAS  PubMed  Google Scholar 

  118. Zhou, Y. et al. Evaluation of single-cell cytokine secretion and cell-cell interactions with a hierarchical loading microwell chip. Cell Rep. 31, 107574 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Lei, K. et al. Cancer-cell stiffening via cholesterol depletion enhances adoptive T-cell immunotherapy. Nat. Biomed. Eng. 5, 1411–1425 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Waugh, R. E., Lomakina, E., Amitrano, A. & Kim, M. Activation effects on the physical characteristics of T lymphocytes. Front. Bioeng. Biotechnol. 11, 1175570 (2023).

    Article  PubMed  PubMed Central  Google Scholar 

  121. Schmidt, R. et al. CRISPR activation and interference screens decode stimulation responses in primary human T cells. Science 375, eabj4008 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Labib, M. et al. Identification of druggable regulators of cell secretion via a kinome-wide screen and high-throughput immunomagnetic cell sorting. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-023-01135-w (2023).

    Article  PubMed  Google Scholar 

  123. Rossi, J. et al. Preinfusion polyfunctional anti-CD19 chimeric antigen receptor T cells are associated with clinical outcomes in NHL. Blood 132, 804–814 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Xue, Q. et al. Single-cell multiplexed cytokine profiling of CD19 CAR-T cells reveals a diverse landscape of polyfunctional antigen-specific response. J. Immunother. Cancer 5, 85 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  125. Bai, Z. et al. Single-cell antigen-specific landscape of CAR T infusion product identifies determinants of CD19-positive relapse in patients with ALL. Sci. Adv. 8, eabj2820 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. De Rutte, J. et al. Suspendable hydrogel nanovials for massively parallel single-cell functional analysis and sorting. ACS Nano 16, 7242–7257 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  127. Udani, S. et al. Associating growth factor secretions and transcriptomes of single cells in nanovials using SEC-seq. Nat. Nanotechnol. 19, 354–363 (2024).

    Article  CAS  PubMed  Google Scholar 

  128. Koo, D. et al. Defining T cell receptor repertoires using nanovial-based binding and functional screening. Proc. Natl Acad. Sci. USA 121, e2320442121 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hoffmann, M. & Slansky, J. T-cell receptor affinity in the age of cancer immunotherapy. Mol. Carcinog. https://doi.org/10.1002/mc.23212 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  130. Ashby, J. F. et al. Microfluidic T cell selection by cellular avidity. Adv. Healthc. Mater. 11, 2200169 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Cox, M. C. et al. Application of LDH assay for therapeutic efficacy evaluation of ex vivo tumor models. Sci. Rep. 11, 18571 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Bronevetsky, Y. Directly test individual T cell function with fewer cells on the berkeley lights lightningTM platform. Cytotherapy 22, S119–S120 (2020).

    Article  Google Scholar 

  133. Valdez, J. et al. 184 Discovery, cloning and functional validation of a neoantigen specific patient derived TCR on the berkeley lights platform, with implications in personalized cancer immunotherapy. Regular and Young Investigator Award Abstracts A196–A196 (BMJ Publishing Group, 2022); https://doi.org/10.1136/jitc-2022-SITC2022.0184

  134. Good, C. R. et al. An NK-like CAR T cell transition in CAR T cell dysfunction. Cell 184, 6081–6100.e26 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Luah, Y. H., Wu, T. & Cheow, L. F. Identification, sorting and profiling of functional killer cells via the capture of fluorescent target-cell lysate. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-023-01089-z (2023).

    Article  PubMed  Google Scholar 

  136. Kirouac, D. C. et al. Deconvolution of clinical variance in CAR-T cell pharmacology and response. Nat. Biotechnol. 41, 1606–1617 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Mittelheisser, V. et al. Evidence and therapeutic implications of biomechanically regulated immunosurveillance in cancer and other diseases. Nat. Nanotechnol. https://doi.org/10.1038/s41565-023-01535-8 (2024).

    Article  PubMed  Google Scholar 

  138. Wu, P.-H. et al. A comparison of methods to assess cell mechanical properties. Nat. Methods 15, 491–498 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Gossett, D. R. et al. Hydrodynamic stretching of single cells for large population mechanical phenotyping. Proc. Natl Acad. Sci. USA 109, 7630–7635 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Otto, O. et al. Real-time deformability cytometry: on-the-fly cell mechanical phenotyping. Nat. Methods 12, 199–202 (2015).

    Article  CAS  PubMed  Google Scholar 

  141. Byun, S. et al. Characterizing deformability and surface friction of cancer cells. Proc. Natl Acad. Sci. USA 110, 7580–7585 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Tse, H. T. K. et al. Quantitative diagnosis of malignant pleural effusions by single-cell mechanophenotyping. Sci. Transl. Med. 5, 212ra163 (2013).

    Article  PubMed  Google Scholar 

  143. Nawaz, A. A. et al. Intelligent image-based deformation-assisted cell sorting with molecular specificity. Nat. Methods 17, 595–599 (2020).

    Article  CAS  PubMed  Google Scholar 

  144. Soteriou, D. et al. Rapid single-cell physical phenotyping of mechanically dissociated tissue biopsies. Nat. Biomed. Eng. 7, 1392–1403 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Jung, P., Zhou, X., Iden, S., Bischoff, M. & Qu, B. T cell stiffness is enhanced upon formation of immunological synapse. eLife 10, e66643 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Mhaidly, R. & Verhoeyen, E. Humanized mice are precious tools for preclinical evaluation of CAR T and CAR NK cell therapies. Cancers 12, 1915 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Yue, H. & Bai, L. Progress, implications and challenges in using humanized immune system mice in CAR-T therapy—application evaluation and improvement. Anim. Models Exp. Med. 7, 3–11 (2024).

    Article  CAS  Google Scholar 

  148. Wang, Z. Assessing tumorigenicity in stem cell-derived therapeutic products: a critical step in safeguarding regenerative medicine. Bioengineering 10, 857 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Wu, L. et al. Organoids/organs-on-a-chip: new frontiers of intestinal pathophysiological models. Lab. Chip 23, 1192–1212 (2023).

    Article  CAS  PubMed  Google Scholar 

  150. Si, L. et al. A human-airway-on-a-chip for the rapid identification of candidate antiviral therapeutics and prophylactics. Nat. Biomed. Eng. 5, 815–829 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Bein, A. et al. Nutritional deficiency in an intestine-on-a-chip recapitulates injury hallmarks associated with environmental enteric dysfunction. Nat. Biomed. Eng. 6, 1236–1247 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  152. Maulana, T. I. et al. Immunocompetent cancer-on-chip models to assess immuno-oncology therapy. Adv. Drug Deliv. Rev. 173, 281–305 (2021).

    Article  CAS  PubMed  Google Scholar 

  153. Peng, Y. & Lee, E. Microphysiological systems for cancer immunotherapy research and development. Adv. Biol 8, e2300077 (2023).

    Article  Google Scholar 

  154. Ando, Y. et al. Evaluating CAR-T cell therapy in a hypoxic 3D tumor model. Adv. Healthc. Mater 8, e1900001 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  155. Pavesi, A. et al. A 3D microfluidic model for preclinical evaluation of TCR-engineered T cells against solid tumors. JCI Insight 2, e89762 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  156. Chouaib, S., Noman, M. Z., Kosmatopoulos, K. & Curran, M. A. Hypoxic stress: obstacles and opportunities for innovative immunotherapy of cancer. Oncogene 36, 439–445 (2017).

    Article  CAS  PubMed  Google Scholar 

  157. Lee, S. W. L. et al. Characterizing the role of monocytes in T cell cancer immunotherapy using a 3D microfluidic model. Front. Immunol. 9, 416 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  158. Ayuso, J. M. et al. Microfluidic tumor-on-a-chip model to evaluate the role of tumor environmental stress on NK cell exhaustion. Sci. Adv. 7, eabc2331 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Wallstabe, L. et al. ROR1-CAR T cells are effective against lung and breast cancer in advanced microphysiologic 3D tumor models. JCI Insight 4, e126345 (2019).

    Article  PubMed  PubMed Central  Google Scholar 

  160. Nguyen, O. T. P. et al. An immunocompetent microphysiological system to simultaneously investigate effects of anti-tumor natural killer cells on tumor and cardiac microtissues. Front. Immunol. 12, 781337 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Buoncervello, M. et al. Inflammatory cytokines associated with cancer growth induce mitochondria and cytoskeleton alterations in cardiomyocytes. J. Cell. Physiol. 234, 20453–20468 (2019).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Totzeck, M., Michel, L., Lin, Y., Herrmann, J. & Rassaf, T. Cardiotoxicity from chimeric antigen receptor-T cell therapy for advanced malignancies. Eur. Heart J. 43, 1928–1940 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Nenna, A. et al. Cardiotoxicity of Chimeric Antigen Receptor T-cell (CAR-T) therapy: pathophysiology, clinical implications and echocardiographic assessment. Int. J. Mol. Sci. 23, 8242 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Kerns, S. J. et al. Human immunocompetent Organ-on-Chip platforms allow safety profiling of tumor-targeted T-cell bispecific antibodies. eLife 10, e67106 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Maulana, T. I. et al. Solid tumor-on-chip model for efficacy and safety assessment of CAR-T cell therapy. Preprint at https://doi.org/10.1101/2023.07.13.548856 (2023).

  166. Nahon, D. M. et al. Standardizing designed and emergent quantitative features in microphysiological systems. Nat. Biomed. Eng. 8, 941–962 (2024).

    Article  PubMed  Google Scholar 

  167. Zhuang, R. Z., Lock, R., Liu, B. & Vunjak-Novakovic, G. Opportunities and challenges in cardiac tissue engineering from an analysis of two decades of advances. Nat. Biomed. Eng. 6, 327–338 (2022).

    Article  PubMed  Google Scholar 

  168. Ronaldson-Bouchard, K. et al. A multi-organ chip with matured tissue niches linked by vascular flow. Nat. Biomed. Eng. 6, 351–371 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Novak, R. et al. Robotic fluidic coupling and interrogation of multiple vascularized organ chips. Nat. Biomed. Eng. 4, 407–420 (2020).

    Article  PubMed  PubMed Central  Google Scholar 

  170. McAleer, C. W. et al. Multi-organ system for the evaluation of efficacy and off-target toxicity of anticancer therapeutics. Sci. Transl. Med. 11, eaav1386 (2019).

    Article  CAS  PubMed  Google Scholar 

  171. Buchanan, B. C. & Yoon, J.-Y. Microscopic imaging methods for organ-on-a-chip platforms. Micromachines 13, 328 (2022).

    Article  PubMed  PubMed Central  Google Scholar 

  172. Shpigelman, J. et al. Generation and application of a reporter cell line for the quantitative screen of extracellular vesicle release. Front. Pharmacol. 12, 668609 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Orita, K., Sawada, K., Koyama, R. & Ikegaya, Y. Deep learning-based quality control of cultured human-induced pluripotent stem cell-derived cardiomyocytes. J. Pharmacol. Sci. 140, 313–316 (2019).

    Article  CAS  PubMed  Google Scholar 

  174. Zheng, Z. et al. Unsupervised deep learning of bright-field images for apoptotic cell classification. Signal Image Video Process. 17, 3657–3664 (2023).

    Article  Google Scholar 

  175. Harrison, P. J. et al. Evaluating the utility of brightfield image data for mechanism of action prediction. PLoS Comput. Biol. 19, e1011323 (2023).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Das, J. et al. Reagentless biomolecular analysis using a molecular pendulum. Nat. Chem. 13, 428–434 (2021).

    Article  CAS  PubMed  Google Scholar 

  177. Langer, A. et al. Protein analysis by time-resolved measurements with an electro-switchable DNA chip. Nat. Commun. 4, 2099 (2013).

    Article  PubMed  Google Scholar 

  178. Wang, M. et al. A wearable electrochemical biosensor for the monitoring of metabolites and nutrients. Nat. Biomed. Eng. 6, 1225–1235 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Chang, D. et al. A high-dimensional microfluidic approach for selection of aptamers with programmable binding affinities. Nat. Chem. 15, 773–780 (2023).

    Article  CAS  PubMed  Google Scholar 

  180. Ye, C. et al. A wearable aptamer nanobiosensor for non-invasive female hormone monitoring. Nat. Nanotechnol. 19, 330–337 (2024).

    Article  CAS  PubMed  Google Scholar 

  181. Cell Sorting Applications on the MACSQuant® Tyto® Cell Sorter (Miltenyi Biotec, 2025); https://www.miltenyibiotec.com/US-en/products/macs-flow-cytometry/cell-sorter/macsquant-tyto-cell-sorting-applications.html?query=:relevance:allCategoriesOR:10000422%23OnJlbGV2YW5jZTphbGxDYXRlZ29yaWVzT1I6MTAwMDA0MjI%3D

  182. Byun, C. K., Abi-Samra, K., Cho, Y. & Takayama, S. Pumps for microfluidic cell culture. Electrophoresis 35, 245–257 (2014).

    Article  CAS  PubMed  Google Scholar 

  183. Zhang, C., Xing, D. & Li, Y. Micropumps, microvalves and micromixers within PCR microfluidic chips: advances and trends. Biotechnol. Adv. 25, 483–514 (2007).

    Article  CAS  PubMed  Google Scholar 

  184. Baysoy, A., Bai, Z., Satija, R. & Fan, R. The technological landscape and applications of single-cell multi-omics. Nat. Rev. Mol. Cell Biol. 24, 695–713 (2023).

    Article  CAS  PubMed  Google Scholar 

  185. Kong, J. et al. Network-based machine learning approach to predict immunotherapy response in cancer patients. Nat. Commun. 13, 3703 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Ghassemi, S. et al. Rapid manufacturing of non-activated potent CAR T cells. Nat. Biomed. Eng. 6, 118–128 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Ahmadi, M. et al. Accelerating CAR T cell manufacturing with an automated next-day process. Preprint at https://doi.org/10.1101/2024.06.04.596536 (2024).

  188. Fraietta, J. A. et al. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat. Med. 24, 563–571 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Arcangeli, S. et al. CAR T cell manufacturing from naive/stem memory T lymphocytes enhances antitumor responses while curtailing cytokine release syndrome. J. Clin. Invest. 132, e150807 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Pan, J. et al. High efficacy and safety of low-dose CD19-directed CAR-T cell therapy in 51 refractory or relapsed B acute lymphoblastic leukemia patients. Leukemia 31, 2587–2593 (2017).

    Article  CAS  PubMed  Google Scholar 

  191. Garcia, J. et al. Naturally occurring T cell mutations enhance engineered T cell therapies. Nature 626, 626–634 (2024).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Maldini, C. R., Ellis, G. I. & Riley, J. L. CAR T cells for infection, autoimmunity and allotransplantation. Nat. Rev. Immunol. 18, 605–616 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Ledford, H. Support for risky cancer therapy. Nature https://www.nature.com/articles/nature.2017.22304.pdf (2017).

  194. Schuster, S. J. et al. Long-term clinical outcomes of tisagenlecleucel in patients with relapsed or refractory aggressive B-cell lymphomas (JULIET): a multicentre, open-label, single-arm, phase 2 study. Lancet Oncol. 22, 1403–1415 (2021).

    Article  CAS  PubMed  Google Scholar 

  195. Papadouli, I. et al. EMA review of axicabtagene ciloleucel (Yescarta) for the treatment of diffuse large B-cell lymphoma. Oncologist 25, 894–902 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Kite Receives US FDA Approval of Manufacturing Process Change Resulting in Reduced Median Turnaround Time for Yescarta® CAR T-Cell Therapy (Gilead, 2024); https://www.gilead.com/news-and-press/press-room/press-releases/2024/1/kite-receives-us-fda-approval-of-manufacturing-process-change-resulting-in-reduced-median-turnaround-time-for-yescarta-car-tcell-therapy

  197. US Food and Drug Administration Approves Bristol Myers Squibb’s Breyanzi (Lisocabtagene Maraleucel), a New CAR T Cell Therapy for Adults with Relapsed or Refractory Large B-Cell Lymphoma (BMS, 2021); https://news.bms.com/news/details/2021/U.S.-Food-and-Drug-Administration-Approves-Bristol-Myers-Squibbs-Breyanzi-lisocabtagene-maraleucel-a-New-CAR-T-Cell-Therapy-for-Adults-with-Relapsed-or-Refractory-Large-B-cell-Lymphoma/default.aspx

  198. Wang, M. et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N. Engl. J. Med. 382, 1331–1342 (2020).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. US FDA Approves Kite’s TecartusTM, the First and Only CAR T Treatment for Relapsed or Refractory Mantle Cell Lymphoma (Gilead, 2020); https://www.gilead.com/news-and-press/press-room/press-releases/2020/7/us-fda-approves-kites-tecartus-the-first-and-only-car-t-treatment-for-relapsed-or-refractory-mantle-cell-lymphoma

  200. Munshi, N. C. et al. Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N. Engl. J. Med. 384, 705–716 (2021).

    Article  CAS  PubMed  Google Scholar 

  201. San-Miguel, J. et al. Cilta-cel or standard care in lenalidomide-refractory multiple myeloma. N. Engl. J. Med. 389, 335–347 (2023).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This contribution was supported in part by the National Cancer Institute of the National Institutes of Health (grants nos. 1R01CA260170 and 1R01CA277507). It was also supported in part by the McCormick Catalyst Fund at Northwestern University. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health or the other funding agencies. Z.W. was supported by a Banting Postdoctoral Scholarship from the Canadian Institutes of Health Research (application no. 489318).

Author information

Authors and Affiliations

Authors

Contributions

Z.W. and S.O.K. conceived, wrote and edited the manuscript.

Corresponding author

Correspondence to Shana O. Kelley.

Ethics declarations

Competing interests

Z.W. and S.O.K. are co-founders of CTRL Therapeutics, which is commercializing microfluidic technologies for cellular therapy. S.O.K. has received research funds from Amgen and Moderna outside of the submitted work.

Peer review

Peer review information

Nature Biomedical Engineering thanks Aram Chung, Dino Di Carlo and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary tables.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Kelley, S.O. Microfluidic technologies for enhancing the potency, predictability and affordability of adoptive cell therapies. Nat. Biomed. Eng (2025). https://doi.org/10.1038/s41551-024-01315-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41551-024-01315-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载