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Cohort-wide sequencing studies have revealed that the largest category of
variants is those deemed ‘rare’, even for the subset located in coding regions
(99% of known coding variants are seen in less than 1% of the population.
Associative methods give some understanding how rare genetic variants
influence disease and organism-level phenotypes. But here we show that
additional discoveries can be made through a knowledge-based approach
using protein domains and ontologies (function and phenotype) that con-
siders all coding variants regardless of allele frequency. We describe an ab
initio, genetics-first method making molecular knowledge-based interpreta-
tions for exome-wide non-synonymous variants for phenotypes at the organ-
ism and cellular level. By using this reverse approach, we identify plausible
genetic causes for developmental disorders that have eludedother established
methods and present molecular hypotheses for the causal genetics of 40
phenotypes generated from a direct-to-consumer genotype cohort. This sys-
tem offers a chance to extract further discovery from genetic data after
standard tools have been applied.

Sequencing of human genomes holds great promise for using genetic
information to guide medical discovery and therapy. And yet in gen-
eral, advances in our ability to extract useful information from genetic
data are not being made as rapidly as advances in our ability to gen-
erate the data, leading to a growing imbalance of effort. Systematically
predicting potential organism-level phenotypes or disease risks based
on the information of a person’s genetic variation remains an unsolved
challenge. The influence of common variants on phenotypes can be
quantified by statisticalweights fromgenome-wide association studies
(GWAS) andpresented aspolygenic risk scores (PRS)1–3, while effects of
rare variants can be expressed in terms of intolerance to high-
penetrance functional variants in the human population4–6 from both

burden testing on common phenotypes and rare disease work in
families. Nevertheless, these two leave a large area in the effect size –

allele frequency space under-explored (Fig. 1a), more explicitly not
accounting for the influence of a significant amount of non-
synonymous uncommon variants of medium or low penetrance2. On
one hand, rare or low-frequency functional variants are under-
interpreted in GWAS due to the inherent difficulties in the statistical
evaluation of rare events in population genetics7, 8. On the other hand,
the statistical method for making gene-to-disease inference requires
the support ofmultiple instances of high confidence predicted loss-of-
function (pLoF) variants in a gene4, 9, and it has been shown that such
instances are rarely observed. It is estimated that cohorts roughly 1000
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times bigger than gnomAD (which contains 125,748 exomes) are nee-
ded to gather evidence of their existence in most genes10. On a few
datasets with extensive broad phenotyping, Phenome Wide Associa-
tion Studies (PheWAS)11 can leverage gene-based collapsing to address
some rare variants. To further overcome these difficulties, and to apply
tomost datasets, we see the utility of a non-association-basedmethod;
ideally one incorporating the effects of rare or low-frequency variants,
expanding our capability for discovery within the constraints of the
existing scale of human genetics data.

Existing non-associative approaches that investigate genotype-to-
phenotype relationships mainly use supervised network models,
usually learned from large genomic variant databases focusing on
specific phenotypes, e.g. antimicrobial resistance12, 13, yeast cellular
phenotypes14, 15 and plant phenotypes16. These methods have demon-
strated the possibility of using a knowledge-based strategy to make
phenotypic prediction. However to achieve this, large datasets of
millions of genetic variants (often through synthetic genetic arrays17)
are needed and such datasets are only available for selected pheno-
types, and such supervised models are not applicable to complex
human phenotypes. We propose an unsupervised knowledge-based
system (Nomaly), that makes ab initio predictions of potential phe-
notypes from thousands of ontology terms (Fig. 1b), leveraging the
knowledge of protein domains through hidden Markov models18–20.
Instead of being used to train amodel at an early step, the phenotypes
are used as a final step to evaluate which predictions performed sig-
nificantly better than expected by chance. The underlying protein
knowledgeonwhich the ab initiomodels arebased canbe examined to
provide molecular insights into the predicted phenotype, in other
words unlike supervisedmodels, the interpretability of our predictions
is high.

The Nomaly system (Fig. 2) is built on the premise that a genetic
extreme outlier can be defined that is predictive of an outlier in phe-
notype. Under this hypothesis, the system evaluates the genetic het-
erogeneity in the context of eachphenotype. Consequently, not only is
it able to consider the additive effect of multiple variants but also the
non-additive combinatorial effect where some variants become rela-
tively rare and deleterious in the presence of other more common

variants. The challenging computation of this is made tractable via a
linear algebra approach solving an eigenproblem (spectral clustering),
described as segmentation-based object categorisation when used in
image analysis21. A typical run includes a person or persons of interest
and a large cohort-scale background, whereby outlier scores for
thousands of terms in an ontology are calculated for each person of
interest (Fig. 1b). The outlier scores represent the likelihood of being
an extreme outlier in the ontology-specific genetic landscape with
respect to the chosen background (Fig. 1c).

To evaluate performance, herewewish to systematically assess: (i)
whether there is a global consistency in statistics between the actual
phenotypes and predictions based on outlier scores; (ii) whether the
predictive success rate can be quantified; and (iii) how novel the pre-
dictions are. In this work, we describe a knowledge-based framework
and demonstrate its significance and usefulness by answering these
questions using three independent datasets, namely: a cohort of 2248
participants specially recruited for this study (DTC, below), the well-
established dataset of 1133 children in the Deciphering Development
Disorders (DDD) study with the respective gene-to-phenotype data-
base DDG2P that provided genetic diagnoses for 40% of these children
(majority through de novo mutations)6, 22, 23, and the Human Induced
Pluripotent Stem Cells Initiative (HipSci) stem-cell bank24 where there
is the possibility to experimentally verify predictions on cellular
phenotype.

Results
Evaluation of the predictive power with a direct-to-consumer
genetics cohort (DTC)
For the purposeof evaluation, we recruited a cohort of volunteers who
had previously subscribed to direct-to-consumer (DTC) genotyping
services (e.g. 23 and Me, AncestryDNA and others), or who were
otherwise already in possession of personal genomic data files to
participate in this study (Supplementary Fig. 1). To test the overall
significance of outlier scores we presented each participant with a
questionnaire asking them to self-identify, from a set of questions, any
phenotypes from among 25 of their top-scoring ontology termsmixed
equally with a further 25 top-scoring terms from a decoy – a randomly
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Fig. 1 | Framework incentive and design. a Positioning relative to heritability
interpretation from two prevailing genetic association analyses2 of many. G2P:
Gene-to-phenotype databases, GWA: Genomewide association, PRS: Polygenic risk
scores. The colour bar shows the genetic unit of analysis employed by each
method. b Framework overview. The method takes an individual’s genetic data as
input and produces a list of ontology terms for which the person is a potential
outlier. It uses a large background of genomes to which the individual is compared,

ontology databases with gene-phenotype relationships, and evolutionary intoler-
ance of mutations in protein domain families encoded by hidden Markov models
(HMMs). c Schematic illustration of the genetic landscape for an ontology term
(HP:0000834 ‘abnormality of the adrenal glands’) highlighting genomes with high
outlier scores. Each node represents a genome, and edges are proportional to
genetic distance in eigenspace – in essence, a reduced dimensional feature space
between genomes.

Article https://doi.org/10.1038/s41467-023-36634-6

Nature Communications |          (2023) 14:919 2



selected individual from the background (Fig. 3a). The DTC cohort
generated 2248 questionnaires, yielding 94,966 yes/no answers across
3672 ontology terms and 2086 written comments; see methods for
details of QC. Questions were intended to identify only outliers, so if
the question design resulted in a high positive response rate (>5%),
they were excluded for identifying a common phenotype instead of an
outlier. By requiring participants to self-identify, the often-costly

challenge of phenotype data collection is simplified, however, we
sacrifice accuracy compared to expert assessment, introducing noise
that will mask the true predictive power by an unknown amount.

A statistical permutation test of outlier scores versus positive self-
identification by participants proves that the method is significantly
predictive of phenotype at the <1% level (p-value: 8.25e-8, Fig. 3b). The
average rate at which participants self-identify a random phenotype
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wasmeasured as 0.8% by taking answers to decoy questions. However,
participants identify at a higher rate for predicted phenotypes and this
increases monotonically with score threshold choice (Fig. 3c). For
high-scoring phenotypes the rate of self-identification is 1.8% (p-value:
7.93e-7), but with improved phenotype measurement this could be
increased. These results show that the high-scoring phenotype pre-
dictions harbour statistically significant signals and that about one half
(ratioof above-threshold positive answer rate todecoy rate) of the top-
scoring predictions, verified through self-identification, are due to
underlying genetic variation identified by the algorithm.

If a confirmed prediction has a genuine genetic basis and has not
occurred by chance, then other predictions for the same phenotype in
other participants are more likely to be true. This non-independence

can be exploited and measured by per phenotype permutation tests.
Further permuting across all phenotypes corrects for multiple
hypotheses. Of the 40 phenotypes with the top statistic by permuta-
tion (Table 1 and Supplementary Data 1), only 13.5 are expected to have
occurred by chance (Fig. 3d), which is a statistically much stronger
result (p-value: <10e-16) than when considering predictions indepen-
dently as above. Examples of a novel gene, recoveryof a knownvariant,
a novel variant in a gene related to a known gene, and mechanistic
explanations are shown below.

An assessment of potentially confounding factors (sex, ancestry
and array type) establishes that the top phenotype predictions cannot
be accounted for in this way. Although sex and three of the ancestry
principal components (African, Gujerati Indians and Finnish) are

Fig. 2 | An outline of the genetics-first analysis framework. – see methods for
detail. Genome data is inputted at the top and causal hypotheses are outputted at
the bottom. In the orange top box (algorithm), firstly the functional distance
between each missense variant is derived from domain-based HMM probabilities,
scaleddepending on zygosity (top row). Subsequently (second row) variants falling
in the region of a gene with homology to an HMM representing a functional unit
(domain), are collated into a genetic profile for a phenotype using domain-
phenotype mappings inferred using dcGO19. This multi-domain collapsing of an
ontology term can be likened to gene-based collapsing used in PheWAS11. Next

(bottom row of the orange box) the profile of combined functional distances (from
the top row) is used to calculate a genetic distance to every genome in the back-
ground. Spectral clustering of the distance matrix identifies which genomes are
outliers under the profile (HP:0000834 in this illustration); nodes represent gen-
omes and are coloured by outlier score (bottom right of the orange box). In the
next (blue) box, only the top-scoring outlier phenotypes are passed to the con-
firmation stage, where some of these genetics-first predictions are identified as
correct, giving a likely cause of the verified phenotype that was predicted.
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from the background, to create a uniquely personalised questionnaire. Answers are
used to confirm true predictions against decoys. b A test of 100,000 random
permutations of the dataset shows that observed scores are on average higher for
confirmed phenotypes, with a p-value of 8.25e-8 against randomly permuted
scores. c The rate of identifying confirmed phenotypes by score threshold (blue)
and number of above threshold predictions (green); at the default threshold of
0.022 the rate is more than double the rate for decoys, with a p-value of 7.93e-7
against 100,000permutations.dThe significance (green) of the topphenotypes by

within-phenotype permutation of answers 100,000 times, and (blue) for the top x
phenotypes, the number left after subtracting from the total those expected by
chance. z-scores were derived from testing the null hypothesis that similar results
can be obtained if scores are assigned randomly (see methods). p-value is calcu-
lated from z-score in a right-tailed hypothesis test. e For DDD patients, the 60
above-threshold predictions confirmed by clinical annotation with a p-value of
5.12e-4 versus data from100,000 randompermutations, using the samehypothesis
test procedure as in d. Inset: the 50 patients with top predictions compared to
published data22 for whether a genetic diagnosis has been identified through
DDG2P, and split by presence of de-novo mutation (DNM).
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predictive on the dataset, they are only significant (p-value < 0.05 at Z-
score > 1.65) on 4of the top40phenotypes.More importantly, none of
the variables correlate (r >0.1) with outlier score on any of the top
phenotypes. As a baseline comparison to outlier scores, association
statistics calculated on the dataset (Supplementary Fig. 1) did not
reveal any significant variants due to the small cohort size of each
phenotype. Aggregated association scores at high FDR subjected to a
permutation test (Fig. 3d) identify 6(±2) out of a top 21 phenotypes
having a significant variant association (Supplementary Data 5) not
expected by chance atZ-score 2.9. The removal of points from the data
for questions with outlier score >0.022 results in total loss of sig-
nificance, implying that genetics-first selection of questions improved
the power of the association results.

Potential genetic diagnoses for Deciphering Developmental
Disorders cohort children (DDD)
In addition to the evaluation on our ownDTC cohort for significance, a
comparison was made to state-of-the-art work in the field on the well-
established DDD cohort for the purpose of assessing novelty. DDD
consists of 1133 trios with developmental disorders who have been
exome-sequenced and annotated with Human Phenotype Ontology
(HPO)25 terms by clinicians 6, 22, 23.

Predictions on DDD were restricted only to HPO terms relevant
to developmental disorders that were used for annotation by clin-
icians. Of these, 60 predictions above threshold matching clinical
annotations for 50 patients were found (Fig. 3e). This rate is slightly
lower, but consistent with the DTC results. Comparison to the
published list of clinical diagnoses6, 22 shows that 62% (31) of these
patients had received no genetic diagnosis, including 15who have no
de novo mutations (DNM); the published diagnoses in the DDD
paper weremade through DNMmissense variants, inherited variants
and rare chromosomal events in known genes using the develop-
mental disorder gene-to-phenotype (DDG2P) database. Thus, plau-
sible genetic explanations can be discovered for families not

covered by the established G2P interpretation method (Supple-
mentary Data 2).

A global analysis of the predictions made on DDD that match
clinical annotations confirms significance of the method (p-value:
3.62e-4), although it is less than for theDTC cohort due to limited data,
restricted to developmental disorder-specific HPO terms. Likewise,
about 1/3 of the above-threshold predictions (p-value: 5.12e-4) are
expected to be true insteadof about 1/2 inDTC (subtracting decoy rate
fromprediction rate). Examples of a novel variant in a known gene and
of a combinatorial effect are shown below.We conclude that, not only
are the predictions significant on an independent dataset, but also
largely non-redundant to those made by existing state-of-the-art
methods, thus advancing the field.

Application to interpreting genetic variants for cellular pheno-
types on a large panel induced-pluripotent stem cell lines
(HipSci)
Although HPO is the most common ontology used to annotate
human phenotypes, and that used by DDD22, the DTC cohort study
also included several other mammalian and disease ontologies
(Supplementary Fig. 1b) and the gene ontology (GO)26. Despite
being the ontology richest in data, GO performed worse on DTC
than the other ontologies (p-value: 2.15e-2 for GO and p-value:
6.05e-7 for non-GO using threshold). This is presumably due to the
difficulty in self-identifying molecular and cellular level terms,
especially without recourse to invasive measurements on the per-
son. The HipSci project provides exome sequence data for hun-
dreds of iPS cell lines from different individuals, and thus offers an
opportunity to examine this prediciton framework in the applica-
tion to molecular and cellular phenotypes instead of patient-level
phenotypes.

Outlier scores were generated for GO terms from the exome
sequences corresponding to 427 HipSci samples, generating predic-
tions potentially relevant to cellular phenotype. It is not possible to use

Table 1 | 10 representative examples of top DTC cohort phenotypes

Term ID Name (answers: yes/total) Question

DO:DOID:896 Metal metabolism disorder (1/46) Metal metabolism disorder is an inherited metabolic disorder that involves metabolic dis-
turbances in the processing or distribution of dietary minerals. Has anyone in your family been
diagnosed with metal metabolism disorder?

MP:0000286 Abnormal mitral valve (2/50) Abnormal Mitral valve regurgitation is a backflow of blood caused by the failure of the heart’s
mitral valve to close tightly. Have you been diagnosedwith abnormalMitral valve regurgitation
through Echocardiography (ECG) or Electrocardiography (EKG) test?

MP:0010402 Ventricular septal defect (1/47) The ventricular septum is the wall dividing the lower chambers of the heart. Have you under-
gone Echocardiography showing any defect in the ventricular septum?

GO:1901213 Regulation of transcription from RNA polymerase Il
promoter involved in heart development (2/85)

Have you ever had magnetic resonance imaging (MRI) showing thickened heart muscle which
may indicate cardiac hypertrophy (abnormal heartmuscle enlargement) which is characterised
by shortness of breath, general fatigue, fainting, and palpitations?

MP:0009445 Osteomalacia (2/96) Osteomalacia is the softening of the bones caused by impaired bonemetabolism primarily due
to inadequate levels of available phosphate, calcium, and vitaminD, or becauseof resorption of
calcium. Have you undergone an X-ray analysis showing the presence of osteomalacia?

HP:0000280 Coarse facial features (1/83) Does your face seem to be coarse like to have large, bulging head, large lips and tongue, and
small, widely spaced malformed teeth, etc?

HP:0002605 Hepatic necrosis (2/48) Does your blood test show that you have elevated levels of liver enzymes which is the main
symptom of hepatic necrosis or Have you been diagnosed with hepatic necrosis?

DO:DOID:11030 Corneal oedema (3/60) Corneal oedema is the swelling of the cornea following ocular surgery, trauma, infection,
inflammation aswell as a secondary result of various ocular diseases.Have youbeendiagnosed
with corneal oedema?

GO:0016447 Somatic recombination of immunoglobulin gene
segments (1/60)

Have you or anyone in your family ever had blood test showing decreased levels of immu-
noglobulins which may indicate immunodeficiency-centromeric instability-facial anomalies
syndrome (IF syndrome) (rare immune disorder), characterized by increased distance between
bodily parts (hypertelorism), skin fold of the upper eyelid, unusually large tongue?

MESH:D010182 Pancreatic Diseases (2/77) Have you been diagnosed with any pancreatic diseases like pancreatitis (pancreas inflamma-
tion), pancreatic cyst, cystic fibrosis etc?

Shown are the phenotype terms and corresponding questions presented to participants (out of 5,857 possible questions). The first column includes the term ID, name and in brackets the number of
positive ‘yes’ answers out of the total number of questions answered by participants. For the complete list and more detail see Supplementary Data 1.
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this dataset to assess global performance versus phenotype identifi-
cation as with the other two cohorts, but the top-scoring phenotype
terms were explored to identify a prediction that could be empirically
validated in vitro. The phenotype “negative regulation of centrosome
duplication” within the “biological process” domain of GO presented
high-scoring predictions (see below) for some cell lines, and was
selected principally for its suitability for measurement in iPS cells with
an existing assay.

Centriole staining was carried out on HipSci cell lines corre-
sponding to all five individuals predicted to be outliers from their
exome sequence, and three controls not predicted to be outliers.
Counting of the centrioles indicated that three out of five predicted
cell lines displayed an elevated percentage of cells withmore than two
centrioles, suggesting defects in centriole regulation and cell cycle,
confirming the accuracy of the prediction (Fig. 4). This phenotype
would not be identifiable from symptoms in the DTC or DDD cohorts,
but this empirical evidence demonstrates the value of the approach for
discovery at the cellular or tissue level.

Typesof genetic outlier that explainpotential phenotypeoutlier
An outlier in the genetic landscape of an ontology term, as detected
by this approach, can be caused by a single or by multiple rare
variants. In the case of multiple variants, each variant can be clas-
sified according to whether it is absolutely required to achieve a
score above the threshold in the cohort, or whether it merely con-
tributes to an above-threshold score; alternative variants can
achieve above-threshold scores in different people (Fig. 5a, c). There
can also be a combinatorial effect contributing to the score (e.g.
Fig. 6g), whereby a variant becomes relatively rarer and more dele-
terious in the presence of a particular genotype consisting typically
of a few common variants, exemplified here by having a higher
outlier score if classified into a cluster (Fig. 1c) than if there is no
cluster. Themost common case (71%; Figs. 5b, 1-a/b) is where a single
variant that is highly deleterious is sufficient to achieve the thresh-
old although others may contribute additional score (44% cases; 1-
b). Multiple variants being required to cause an outlier account for
29% of cases (2-a, 2-b). Combinatorial effects are important in a small
minority of cases (Fig. 5d).

The majority (90%) of single-variant-based predictions were
caused by a rare variant with minor allele frequency (MAF) <0.5% for a
heterozygous genotype, or MAF < 1% for a homozygous genotype.
However, not all rare variants result in a positive prediction, for

example if it is not highly deleterious, or when many people from the
chosen background harbour different rare variants for the phenotype,
suggesting the ontology term is not highly evolutionary constrained.
Inmultiple-variant-based positive predictions, 24% of variants are rare,
and 55% are low-frequency (MAF < 1% heterozygous or MAF<5%
homozygous) (Fig. 5c). Whilst our approach does not filter variants
based on allele frequency (as illustrated in Fig. 1a), there is insufficient
power to recover the effects of common variants given the size of the
DDD orDTC cohorts. As each phenotype question is only presented to
a small subset of participants, only effects of large magnitude emerge
from rare genotypes.

Examples
In Fig. 6 we show some examples of different types of discovery
from the results. (1) Novel gene association. The representation in
Fig. 6a shows how primary evidence from mouse knock-out
experiments in genes ADAM9/17/19 led to a dcGO18, 19 link between
a mitral valve phenotype and the reprolysin-like domain shared by
these genes. Novel variants identified in respective domain of
human genes (ADAM7, ADAMTS13) confirmed the mitral valve
phenotype via questionnaire. (2) Known variant. In Fig. 6b a variant
used to predict confirmed hemochromatosis in DTC participants
was already known in ClinVar27. The diagram shows left to right: how
multiple genes (includingHFE) labelledwith the ontology termwere
used by dcGO18, 19 to link it to domain families, then variants in DTC
participants within these domains prioritised by HMM probabilities
led to prediction. Had the HFE variant not been known (HFE not
included as known), it is possible with this approach that it would
have been discovered de novo by the DTC study on the basis of
domain association. (3) Novel variant in related gene. The predic-
tion in Fig. 6c includes other variants in keratin genes KRT75, KRT78
not previously linked to this ontology term. This variant is found in
the head region (1–167) of the intermediate filament rod domain
adjacent to an ELM motif involved in a protein-protein interaction
with an SH3 domain. This figure shows a structural interpretation of
the mutation of G138 to a polar negatively charged Glu disrupting
binding to the electrostatic surface of SH3 domain from PDB
structure 2GBQ.

Single variant. The single rare and functional variant (Fig. 6d) in
the neurofibromin (NF1) gene is sufficient to produce the top-ranked
score for this phenotype in DTC. The image shows a structural inter-
pretation of the central domain of neurofibromin (with helices 6c and
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7c in cyan and yellow respectively) bound to Ras (surface model, top)
and the Leu residue at 1425 rendered as spheres. Substituting Arg for
Leu at this position will disrupt the helical geometry and successful
interaction with Ras. (4) Single variant. In Fig. 6e this single rare and
functional variant in the insulin-like 3 (INSL3) gene is sufficient to
produce the top-ranked score for this phenotype in DTC. The primary
structure shows the variant lying within a conserved polar charged
patch. The PDB structure 2H8B shows the two disulphide bonds that
stabilise the structure. A mutation of the Arg to Cys could disrupt the
polar charged region of the protein and even interfere with the correct
formation of disulphide bonds. (5) Novel variant in known gene. Two
independent cases in the literature of missense mutations in SOX2
(G130A andA191T)mean the example in Fig. 6f is already a knowngene
for the phenotype in the OMIM28 database. The phenotype was cor-
rectly predicted by our work on aDDDpatient due to a novel variant in
the HMG-box domain of this known protein. (6) Combinatorial effect.
Thephenotype inFig. 6g thatwas correctlypredictedon aDDDpatient
requires 2 variants in CYP4B1 (in linkage disequilibrium), plus addi-
tional variants. There is a combinatorial component to the scorewhich
raises this patient to the top rank inDDD for this phenotype. This Venn
diagram shows that common variants are observed to co-occur (sha-
ded areas) with the CYP4B1 variants much less than expected if the
variantswere independent (intersection areas). The top-rankedpatient
has all four variants. (7) Experimentally validated on HipSci. Figure 6h
shows a homology model for F-box/WD repeat-containing protein 12
(FBXW12) using PDB structure 1NEX as template shows the proline at
residue 6 that mutates to leucine in the variant, residing within the
N-Proline boxmotif in N-terminal F-box domain. A proline at the N-cap
position mediates hydrophobic interactions similarly to other N-cap
residuesAsn, Asp, Ser, andThr. Themutation to leucine in thisposition
impacts interactions within the motif, likely causing a change of spe-
cificity and/or affinity.

Discussion
This paper describes a framework for performing and evaluating
hypothesis-free phenotype prediction directly from a human genome.
The key value is in providing potential genetic explanations for phe-
notypes that have been confirmed in the individual, which due to the
high novelty and link to mechanism of the output, has potential for
application to genetics-led drug target identification. Studying the
combined effects on complex phenotype across variants in multiple
genes is often impossiblewith simple statisticalmodels, becauseof the
lack of statistical power on existing cohort sizes. Alsodue to the lackof
statistical power, rare or low-frequency variants are under-interpreted
inGWAS7,8. An ab initiomodel canpartially overcome this limitation by
testing a statistically small number of causally deduced direct predic-
tions (a genetics-first approach). This knowledge-based framework
with in silico and experimental validation approach described here has
been shown to achieve this for exomemissense variants. Our method,
therefore, offers the ability to evaluate the effect of rarer genetic var-
iants in a combinatorial way through linear algebra where statistical
associative methods would not be applicable.

Hypothesis-free phenotype prediction with this genetics-first
approach could be applied in principle to other ab initio models, but
we chose to deploy a model based on protein domains, which are the
functional units of proteins. Hidden Markov models built on protein
domains18 enable the quantification of structural and functional effects
of variants, and our domain-centric gene ontology (dcGO19) resource
provides the link to phenotype. The domain-based model emphasises
potential for novelty over coverage of known genes by carrying over
the functional property of the domain across many genes.

Established genetic cohorts do not lend themselves well to
testing a genetics-first approach since data is mostly only available
for a restricted list of hypothesis-derived phenotypes – and usually
not encoded in ontology terms, although increasingly attempts are
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being made to widen phenotype capture, e.g. using ICD-1029. The
DDD cohort is one of the early large-scale studies to adopt HPO
terms and was included in this analysis as a known reference point in
the field. However, to truly test the genetics-first approach, we need
an interactive cohort of participants. Participants were recruited for
their willingness to provide their genotype data first, then respond
to personalised phenotype data collection post-prediction. Evalua-
tion on both cohorts similarly confirms the predictions as highly
significant yet also characterises the predictions as having a high
false-positive rate; expectations are that for roughly 1/3–1/2 of
confirmed high-scoring predictions, the causal genetic explanations
will be true. Combining results per phenotype is more powerful,
showing that explanations for about 26 of the top 40 confirmed
phenotypes are likely to be true (Fig. 2d). The predictions were also
well-differentiated from results obtainable with other methods,

confirmed by comparison to that achieved by DDD annotations
of DNMs.

This method offers a powerful discovery tool for hypothesis
generation from genetic data. The tool does not replace or compete
with existing tools for humangenetics which are largely aimed at being
clinically actionable or offering effective intervention strategies. It
rather complements and adds to them, aiming to enable medically
high-value scientific discoveries first suggested from the analysis of
genomic data. Independent validation of the hypothesis generated by
the prediction with relevant assays is recommended. The expectation
is that genes/variants will be mostly novel, and characterised by high
magnitude of effect often from rare variants, sometimes severally, and
occasionally acting combinatorially. In its essence, the tool is a genetic
outlier detector, so it is important to consider the background with
respect to which the individual is an outlier. In this work, we used the
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1000 Genomes Project phase 3 (1KGP3) 30, 31 genomes as a diverse
background with representation of all major ancestry in the DTC
cohort, but by selecting a different background, the definition of an
outlier can be adjusted to suit the desired research question.

The catalogue of high-scoring results from the analysis of the
three cohorts: DTC, DDD and HipSci provide over a hundred putative
causal genetic explanations for numerous developmental, cellular and
human/mouse/disease phenotypes. In addition to the supplementary
data tables, they are also provided online with an interface to aid
browsing and searching the variants, their classification of type, genes,
scores and phenotypes (https://supfam.org/nomaly), also including
the database of 5,857 ontology questions as a resource for others.

The framework could also be used by other functional effect
predictors, model organism ontologies and including known genes (to
recover more of the less novel variants). We showed that even simple
association statistics can be used within the framework, but that
question selection is important, suggesting that a genetics-first step
couldbeused to increase thepower of PheWAS studies. Havingproven
principle onmissense variants, weexpect the future growth in this area
by us and otherswill be by extension to othermutations e.g. indels and
non-coding variants.

To sumup, the traditional approach to human genetics, where we
ask “Does the data contain the answer to my question?”, has been
turned on its head, and we instead ask: “For which questions does an
answer lie within the data?”.

Methods
Ethics declarations
TheDTC cohort studywas granted ethics approval by the University of
Bristol, via the Faculty of Engineering Research Ethics Committee with
approval ID number 539500 (project ID 361 and amendment 2322).
Informed consent from all participants was obtained. HipSci Lines
samples were collected from consented research volunteer recruited
from the NIHR Cambridge BioResource through (https://www.
cambridgebioresource.org.uk). Initially, 250 normal samples were
collected under ethics for iPSC derivation (REC Ref: 09/H0304/77, V2
04/01/2013), which require managed data access for all genetically
identifying data, including genotypes, sequence and microarray data
(‘managed access samples’). In parallel the hipsci consortium obtained
new ethics approval for a revised consent (REC Ref: 09/H0304/77, V3
15/03/2013), under which all data, except from the Y chromosome
frommales, can bemade openly available (Y chromosome data can be
used to de-identify men by surname matching), and samples since
October 2013 have been collected with this revised consent (‘open
access samples’). The majority of samples were European. Work per-
formed in the laboratories has been compliant with the Institutional
Review Board directives for the experimental work and use of data.

Nomaly framework
The framework consists of two primary parts: the predictive algorithm
and the confirmation of predictions (Fig. 2). The algorithm takes an
individual genetic data file (e.g. SNP array or exome) as input (top of
Fig. 2, input to orange box) and outputs phenotypes for which the
individual is predicted to be an outlier (from orange box into blue
box). The definition of ‘outlier’ is made relative to a background
comprising thousands of genomes (bottom left of orange box). For the
DTC and HipSci cohorts, the 1KGP3 genomes were used as a back-
ground, but for individuals in the DDD cohort, the cohort itself serves
as the background. There are thousands of potential phenotypes,
taken from 17 biomedical ontology databases, each assigned a score
(below) for how much of an outlier it is for the individual in question
against the background. In principle any genome or any biomedical
ontology database can be used for a given study. Hidden Markov
models (HMMs) are used to estimate deleteriousness;models from the
domain databases SUPERFAMILY18 and Pfam32 were used, but in

principle any HMMs can be used or any other measure of deleter-
iousness from a variant effect predictor.

The confirmation step (blue box in Fig. 2) is the assessment of
whether an individual is indeed an outlier for a phenotype suggested
by the genetics-first analysis. In principle the assessment canbe carried
out in any way that lends evidence to confirm the outlier (the DDD
study used at least two certified clinical geneticists to perform
assessment22), but in this work automatedmatching of ontology terms
was used. Predictions from the first step that are subsequently con-
firmed in this step become candidate hypotheses (output of blue box)
linking a phenotype to variants via protein domains in genes.

Outlier scores (orange box in Fig. 2). The predictive algorithm
includes (1) quantification of consequence of missense variants using
evolutionary intolerance to the amino acid substitution in a protein
domain, done by taking the difference in amino acid emission prob-
ability (analogous concept to FATHMM33) and (2) generating variant
lists for ontology terms through domain-centric linking to phenotypes
(taken from dcGO)18, 19. The mapping from variant to amino acids in
proteins for (1) is done using the Variant Effect Predictor (VEP) tool34

(N.B. VEP usedonly for genomicmapping and noother functionality or
scores are used) and mapping to domains using HMM sequence
matching. The mapping of domains to ontology terms in (2) is com-
bined with the variants falling within them from (1) to give a list of
variants, commonly across multiple proteins, for each ontology term.
Each ontology term is processed independently.

For a given term, a total genetic distance may be calculated
between two individuals by summing the individual distances (defined
as the log odds ratio of HMM probabilities for the two amino acids
from the Dirichlet mixture) for all variants in the list for which they
differ, depending on zygosity; distances are increased fourfold when
both are homozygous and opposite. The all-against-all distances
between the members of the background and the individual, and
between each other, can be used to construct a distance matrix. This
matrix is then translated to a similarity matrix through a Gaussian
kernel and used as the input to spectral clustering to determine whe-
ther there is hidden structure in the genetic landscape of that term,
namely by identifying the biggest gap in eigenvalues21. If no hidden
structure is found, then the individual’s outlier score will be equivalent
to the average Euclidean distance to members of the background; in
this case individuals with very rare and highly deleterious genotypes
will have a high outlier score (Fig. 5c). If a hidden structure is found by
spectral clustering, K-means is then performed on the reduced-
dimensional space derived from the top eigenvectors selected by the
elbow method. In this scenario the outlier score becomes the sum of
the local distance (from the cluster) and the global distance (between
clusters) (Fig. 1c). To normalise for cluster size the global distance is
multiplied by μ where:

μ=
e
sizecohort�sizecluster

sizecohort
γ � 1

eγ � 1
ð1Þ

where γ specifies the penalty strength for large clusters; it was set to 9
in this study, conferring >99% penalty for large clusters with over 50%
of the entire cohort.

Finally, since phenotypes have very different score distribu-
tions, a transformation (first described in Zaucha et al35) is
employed to generate a universal score function comparable
between phenotype terms.
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where strans (p) is the transformed score of participant p in a given
term, s(p) is the original score and srank (p) is the rank of the original
score within the Term. φ determines the strength of contribution of
the rank to the total term score; it was set to 150 in this study, con-
ferring the top ~2% a significant contribution.

Combinatorial component
The non-linear method of clustering used can result in one or more
variants being markedly rarer within one cluster relative to the entire
background after genomes with other shared genotypes are grouped
together. Thus a genome with a high global score due to the variants
common to the cluster, and a high local score due to a variant rare only
to that cluster, will have a higher total score than it would from its
average Euclidian distance from the background. This additional score
from variant rarity only increases in the presence of other specific
variants, and is defined as the combinatorial contribution (as
in Fig. 5d).

Computational cost
Calculating spectral clustering requires a large computation, even
when using low-level linear algebra BLAS36 libraries run on many
threads in parallel. This is because it involves solving eigenproblems of
a large matrix, which do not scale linearly with matrix size. For gui-
dance, 5,800 terms on a batch of 50 SNP array genotype files with
2,504 background genomes (2554x 2554matrix) takes 21 hourswith 12
threads (9.5 hours with 48 threads). Solving ~2,000 terms (indepen-
dent eigenproblems) on a 3600x3600 matrix of exomes (including
background) takes 3 hours using 600 threads.

DTC cohort
Recruitment. Participants with access to personal direct-to-
consumer genotype data were recruited anonymously online.
Some participants were recruited in collaboration with OpenSNP37

and (separately) Sano Genetics. In this cohort 2,248 participations
were recorded, with the participant website accessed from all over
the world (Supplementary Fig. 1a). DTC genome data uploaded by
participants was processed into a homogeneous format and quality-
controlled with GenomePrep38, which also detects the sequencing
method/genotyping array version. Imputation was not used for the
analysis presented in this paper, although the main result of Fig. 3
was replicated on data imputed from the DTC genotype data (Sup-
plementary Fig. 3) to confirm that there was little difference – only 4
terms outside the top 50 entered the top 40, with another 4 in the
top 50 making a minor change moving up to the top 40. The
IMPUTE239 package was used with help from VCFtools40 and
BCFtools by SAMtools41. A similarity matrix of all genomes in the
cohort was calculated, consanguineous relationships were recorded
and genetic duplicates removed; people submitting independent
files from multiple providers were only allowed to participate once
(Supplementary Fig. 1c–e). To prevent ‘gaming’ the study, for each
participant a genome from the background was randomly selected,
so the 25 ontology terms with the highest outlier scores for the
participant could be randomly mixed with the 25 top-scoring
ontology terms predicted for the background decoy genome to
generate a personalised questionnaire with 50 questions. Each par-
ticipant was invited to give a binary ‘yes’ or ‘no’ answer to whether
they self-identify each phenotype, with the option to leave a com-
ment (Supplementary Fig. 1b). In a small number of cases partici-
pants were recalled and invited to provide information supporting
their answers for phenotypes of interest.

Process. The 1KGP3 genomes were used as the background. Before
recruitment, the binary yes/no questions were designed with the aim
of identifying outlier phenotypes for 5,857 ontology terms, including
terms from the Gene Ontology (GO)26, Human Phenotype Ontology

(HPO)25, Disease Ontology (DO)42, Medical Subject Headings (MeSH)43,
andMammalian Phenotype (MP)44 ontology databases (e.g. in Table 1).
See Supplementary Data 3 at https://supfam.org/nomaly for an inter-
active version and database of ontology term to phenotype question
mappings. Participant genome files were processed continuously in
batches (eliminating within-batch relatedness) giving an approxi-
mately 4–12 hour turnaround between submission of file to the gen-
eration of personalized questionnaire; results can be influenced by
other genomes in the batch which effectively becomes part of the
background for each other. This is because all parts of the similarity
matrix interact with each other during the solution of the
eigenproblem.

Evaluation. We started with questions designed manually for 5857
different ontology terms. Not all questions were answered but in the
end, 94,966 binary self-identified answers were received for 3672
questions, of which 1408 questions received at least one positive
answer. Althoughquestionsweredesigned for participants only to self-
identify when they are phenotypic outliers, often this was not
achieved. To illustrate, a hypothetical bad question is “Do you have
myopia?” whereas a good question would be “Do you have myopia
worse than -6 dioptres”. Therefore, per-phenotype analysis was carried
out for 342ontology termswhose rate of participants answering ‘yes’ is
non-zero and below 5%, and at least a total of 20 answers were recor-
ded per term.

Permutation tests. Statistical evaluation in Fig. 2 was carried out using
permutation tests with 100,000 iterations randomly re-allocating the
outlier scores, testing the null hypothesis that similar results can be
obtained if scores are assigned randomly. For panel b, the average
outlier score given to questions that received positive answers (about
0.011) is compared to the averages from random permutations of the
dataset. In panel d of Fig. 2, permuting the scores for each phenotype
separately, yields a p-value on the sum of observed scores matching
positive answers for each phenotype. All phenotypes can now be
ranked by p-value (along the x-axis) for how well the observed scores
predict the answers for that phenotype. The observed scores are then
randomly permuted and all phenotype p-values recalculated; repeat-
ing 100,000 times gives ameanand standarddeviation for the number
of phenotypes expected by chance at any given p-value. At each point
on the x-axis, subtracting the number of phenotypes expected by
chance from the observed topphenotypes (x) gives the blue line –with
confidence intervals. I.e. the number of phenotypes (y) likely to be true
out of the top x phenotypes ranked by how well outlier scores match
the answers.

DDD cohort
Data source. Exome data from the DDD 1133 trio sequencing VCF files
(accession code: EGAD00001001355), 1133 trio family relations, phe-
notype datasets, validated DNMs (EGAD00001001413), were obtained
from the European Genome-phenome Archive at the European Bioin-
formatics Institute (EGA, https://ega-archive.org/).

Process. We ran the 1133 DDD probands, together with 1KGP3 gen-
omes as background, using HPO as the ontology database. Only var-
iants thatpass allfilters (as specified in themeta-data information from
EGA downloads) are included. HPO terms that were used to clinically
describe phenotypes in the 1133 trio weremapped to HPO terms in the
v1.2 database used in our predictions.Due to the natureof themethod,
running all of the probands at the same time, in one distance matrix,
means that the background is a mixture of 1KGP3 genomes and the
other probands. If there was a common genetic cause shared by many
probands, it would not get a high outlier score, but we assume enough
genetic causes of the disorders are sufficiently independent to be eli-
gible for detection.
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Evaluation. For the DDD cohort, evaluation was automated through
direct comparison, for each patient, of whether a high-scoring HPO
term closely matches a respective clinical annotation. Defining a
close match between ontology terms is challenging because the
distance over the ontology graph varies wildly in biological mean-
ing; adjacent terms can be very similar or very different. To define
closeness, a measure of information content through the graph is
needed, for which we used the cumulative number of patients
annotated by terms traversing the graph as a metric. The close
matches between HPO terms are listed in Supplementary Data 4. For
example we found the following 4 terms sufficiently similar to define
as close to each other: HP:0004097 ‘Deviation of finger’ (2 pro-
bands), super-term HP:0009484 ‘Deviation of the hand or of fingers
of the hand’ (1 proband), and sub-terms HP:0009179 and
HP:0004209 – ‘deviation’ and ‘clinodactyly’ of the 5th finger (56 and
2 probands respectively).

It should be noted that the evaluation assumes all potential HPO
terms in the DDD database are considered by clinicians, and that an
HPO term is not true for the patient if it is not annotated. This repre-
sents an underestimation of true phenotypes, but is a necessary
assumption for a fair and automatic evaluation.

Comparison topublisheddiagnosis byDDG2P. Forpatientswith true
positive predictions, we checked against the list of diagnostic variants
in DDG2P from the initial publication6 and the list of validated DNMs
(obtained from EGA) to see if there is a genetic diagnosis and if there is
a potential uninterpreted DNM. The 1133 trio DNM list showed that at
least one DNM was found for 738 (65%) of children (excluding
synonymous, intron, and intergenic DNMs).

HipSci cohort
Data source. HipSci exome sequencing data for healthy and diseased
people (EGAD00001003514, EGAD00001003521,
EGAD00001003522, EGAD00001003524, EGAD00001003525,
EGAD00001003516, EGAD00001003526, EGAD00001003527,
EGAD00001003517, EGAD00001003161, EGAD00001003518,
EGAD00001003519, EGAD00001003520) were obtained from EGA.
HipSci open-access exome-sequencing data were downloaded directly
from the hosting website (https://www.hipsci.org/data).

Process. For each donor, one cell line was selected for the genetics-
first prediction according to the following criteria: use primary tissue
data if available, otherwise use the iPSC cell line with the minimum
changes from the origin cell asmeasured by number of differences per
Mbp, and excluding those where the pluritest or custom CNV check is
missing. The result was that 437 cell lines from different donors were
selected and the corresponding exomefiles processedusing the 1KGP3
genomes as background, predicting from a set of 5,805 possible
GO terms.

Evaluation. There was no confirmation step as with DTC and DDD, so
no phenotype data was used. A list of phenotypes with several pre-
dicted outliers was examined to find one potentially verifiable by
experiment. The list was initially narrowed to four candidates that
could be tested on iPS-derived macrophage cells and two candidates
that could be tested directly in iPS cells. Expression analysis of genes
harboring the variants of interest uncovered a lack of expression for
GO:0002741 and GO:1900025 in macrophage, so these were elimi-
nated. The variants implicated in terms GO:0035718 and GO:0002840
are involved in cell signalling (e.g. from the thyroid) and were elimi-
nated as too experimentally complicated. One term, GO:1901223, was
excluded due to the lack of availability of a differentiated cell line for a
key donor with the variant. Finally, GO:0010826 was selected for
experimental validation because five iPS cell lines predicted as outliers
were available.

Experimental test for GO:0010826. The Hoik-1 (HPSI0314i-hoik_1),
Sehp-2 (HPSI0115i-sehp_2) and Kegd-2 (HPSI0614i-kegd_2) cell lines
were selected as control. The Suul-1 (HPSI0514i-suul_1), Yoch-6
(HPSI0215i-yoch_6), Boqx-2 (HPSI0115i-boqx_2), Zapk-3 (HPSI0114i-
zapk_3) and Iuoc-2 (HPSI0516i-iuoc_2) cell lines were tested. γ-tubulin
was used as a centriole marker45. 2.5 × 104 cells were plated onto cov-
erslips maintained in 24-well multiwell plates and grown for
2 days. Cells were fixed in cold methanol for 5 min, rinsed, and incu-
bated with 3% (wt/vol) BSA for 1 h. Cells were incubated with γ-tubulin
antibody (Sigma-Aldrich, T5326), washed and incubated with the
appropriate fluorescent secondary antibody conjugated to Alexa 555
(Invitrogen). DAPI (Thermo Fischer Scientific) was used as counter-
stain. Cells were mounted in coverslips using ProLong Gold antifade
reagent (Thermo Fisher Scientific). Images were acquired with a Nikon
A1R confocal microscope. Brightness and contrast were optimised
with ImageJ (National Institutes of Health) and Photoshop (Adobe
Systems). Quantifications of centrioles were performed manually
using ImageJ. Dilutions: the γ-tubulin antibody was used at 1:5000, the
secondary antibody at 1:500 and DAPI was used at 1:2000.

Association and confounders
Confounding variables. Twelve potentially confounding variables
were analysed on the DTC cohort data: sex, the first 10 principal
components of ancestry, and the genotype array type. Each of the
variables was assessed as a predictor on the DTC cohort under the
same permutation test as our outlier scores. The correlation coeffi-
cients and t-test statistics were also calculated between each variable
and the outlier scores for every phenotype. Whilst there is no theo-
retical reason to believe that predictions from a non-associative
method should be confounded by covariates of association, we
nevertheless checked this against the above statistics. PERL and
packages PDL and Statistics were used as well as R package glm.

Variant associations. There is no expectation that methods based on
associationwill performwell under the same conditions, e.g. high false
discovery rate, as the predictor exemplified in this work. However, as a
reference point we calculated GWAS statistics on the DTC cohort data
using PLINK46 and subjected them to a 1000 iteration permutation test
as in Fig. 3d. Python packages SciPy and NumPy were used here and in
other parts of the work. Each phenotype was treated as a cohort with
the answers to questions determining case vs control classification.
The confounding variables above were used as covariates for the
analysis. Within the framework of our reverse approach, predictor
scores were used to allocate some of the questions, so to simulate
whether the selection of questions contributes to the positive GWAS
results, we also repeated the analysis with data points scoring > 0.022
removed. The GWAS results are summarised in Supplementary Fig. 2.
GWAS were performed using a standard approach, as outlined below.

(i) DTC genomes quality check. We started with autosomal, bi-
allelic SNPs in theDTCparticipants that hadmissingness <1% and those
passing anAB ratio binomial test with Z-score<3 for the 1000genomes
project phase 3 data (1KGP3) overall and EUR superpopulation (from
GenomePrep). (ii) High-quality common SNPs selection. We restricted
variants to having frequency >5% in the 1KGP3, and excluded variants
in complex regions from https://genome.sph.umich.edu/wiki/Region-
s_of_high_linkage_disequilibrium_(LD) and variants where the ref/alt
combinations was CG or AT. We removed all SNPs which were out of
Hardy Weinberg Equilibrium (HWE) with a p-value cut-off of pHWE
< 1e-8. We LD-pruned using PLINK2 with r2 =0.1 and 500kb windows.
The resulting 22,103 aggregate high-quality sites were used for kinship
and genetic components analysis (PCA). (iii) Kinship and ancestry
calculation. Data wasmergedwith 1KGP3 and kinship coefficients were
calculated among all pairs of samples using PLINK2 and its imple-
mentation of the KING robust algorithm. A kinship cutoff of 0.0884
was used to select unrelated individuals (-king-cutoff). Ancestry was
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inferred via PCA on unrelated 1KGP3 individuals with GCTAv1.93
(plink2) using HQ common SNPs. QC of variants included plink v1.9:
HWE deviations exclude p-value <(1e-20), multi-allelic variants were
excluded and we filtered variants by missingness <0.02. (iv) GWAS. A
total of 4946035 associations were calculated and the multi-
phenotype association significance level after multiple hypothesis
correction is 1.01 x 10-8. GWASwas run for each phenotype termusing
‘Yes’ answers as cases ‘No’ answers as controls. Covariate analysis was
implemented with logistic regression of PLINK1.9; sex was imputed
(female 1132, male 848, ambiguous 73), and the first 10 PCs from the
genetic ancestry analysis were used as well as the version of the gen-
otyping array were used. The permutation plots were generated by
running the association on 1000 randomisations of the data and
plotted as per Fig. 3d.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
All data supporting the findings described in the manuscript are
available in the article, supplementary information files or from the
corresponding author on request. Additionally, supplementary data
are made available in an interactive, searchable format via the project
webpage at https://supfam.org/nomaly. The DTC cohort data may not
be made publicly available because participants are not consented for
this, but on application to the corresponding author, requests falling
within the constraints of ethical approval granted for the project will
be responded to within 14 days. DTC data can bemade available under
MTA to academic organisations subject to MRC institutional approval
and compliance with all relevant data protection laws and require-
ments. Access is time-limited because we are required to delete all
participant data when our work on the DTC cohort ends, which could
bebefore the endof 2023. Thedatabase of questions corresponding to
5,857 ontology terms (Supplementary Data 3) is also available via the
resources webpage (above) and may be a valuable resource for other
studies. The similarity mapping, by information content, of all HPO
terms that are close to the HPO terms used in clinical annotations by
DDD (Supplementary Data 4) are alsomade available on the resources
webpage. All data on the resources webpage are also available for
download in JSON format. Access to 1KGP3, DDD and HipSci cohorts is
only available via those projects directly. Specifically: access to 1KGP3
is made publicly available by the International Genome Sample
Resource (IGSR),withdata sets accessible from thedata portal (https://
www.internationalgenome.org/data-portal). The DDD cohort data is
available from the European Genome-phenome Archive (EGA, https://
ega-archive.org/), with the study ID EGAS00001000775. To access
thesedata sets, please contactdatasharing@sanger.ac.uk. Anoverview
of HipSci cell lines and assay data that are publicly available is available
on the cell lines and data browser (https://www.hipsci.org/data). It also
provides links to publicly available HipSci data in the EBI data archives.
To access the managed-access genetic and genomic data in HipSci,
please follow the steps stated in the data browser (https://www.hipsci.
org/data#overview), and apply via the Wellcome Trust Sanger Insti-
tute’s Electronic Data Access Mechanism (https://www.sanger.ac.uk/
legal/DAA).

Code availability
Code for the preparation, parsing and classification of DTC data files
is available via the GenomePrep38 resource already published as an
ancillary output of this work that could be of value to others. The
website running the pipeline providing questions to participants for
the DTC study is available as a free service for up to 500 genotype
files per submission (~24hr turnaround), and on request to run on
larger datasets; we wish to collaborate with as many genetic cohorts

as possible to provide predictions that can be made available within
each of their data sharing portals to their registered users. The code
used for the phenotype prediction to exemplify the Nomaly frame-
work is not available for download. Individual applications for a
license for non-commercial use are possible via the resources web-
page (https://supfam.org/nomaly) to be considered on a case-by-
case basis per project. Pipeline scripts behind the DTC cohort
website are available via the resources website on request (not
available for direct download due to web security risks). Scripts for
conducting the permutation tests, generating the statistics for
covariates and producing Fig. 5 are available for direct download via
the resources website.
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