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Temporal phosphoproteomics reveals
circuitry of phased propagation in insulin
signaling
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Delsi Altenhofen 1,2, D. Margriet Ouwens1,2,5, Pia Marlene Förster1,2,
Thorsten Wachtmeister 6, Karl Köhrer 6, Torben Stermann1,2,
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Insulin is a pleiotropic hormone that elicits itsmetabolic andmitogenic actions
through numerous rapid and reversible protein phosphorylations. The tem-
poral regulation of insulin’s intracellular signaling cascade is highly complex
and insufficiently understood. We conduct a time-resolved analysis of the
global insulin-regulated phosphoproteome of differentiated human primary
myotubes derived from satellite cells of healthy donors using high-resolution
mass spectrometry. Identification and tracking of ~13,000 phosphopeptides
over time reveal a highly complex and coordinated network of transient
phosphorylation and dephosphorylation events that can be allocated to time-
phased regulation of distinct and non-overlapping subcellular pathways.
Advanced network analysis combining protein-protein-interaction (PPI)
resources and investigation of donor variability in relative phosphosite occu-
pancy over time identifies novel putative candidates in non-canonical insulin
signaling and key regulatory nodes that are likely essential for signal propa-
gation. Lastly, we find that insulin-regulated phosphorylation of the pre-
catalytic spliceosome complex is associated with acute alternative splicing
events in the transcriptome of human skeletal muscle. Our findings highlight
the temporal relevance of protein phosphorylations and suggest that syn-
chronized contributions of multiple signaling pathways form part of the cir-
cuitry for propagating information to insulin effector sites.

Insulin exerts its action through activation of the insulin receptor that
triggers a complex intracellular signaling cascade involving protein
phosphorylation of multiple target proteins1. Insulin has pleiotropic
effects such as modulating energy metabolism, cell differentiation,
survival, and growth, resulting in complex, tissue-specific responses to
the hormone stimulation2. Compromised insulin action in skeletal
muscle precedes the onset and development of type 2 diabetes3, but

the cellular signaling pathways regulated by the hormone, and their
relevance for the etiology of the disease are not well understood4.

Insulin receptor-mediated tyrosine phosphorylation of insulin
receptor substrate (IRS) proteins and other cellular adapter molecules
leads to the activation of several Ser/Thr kinases, including AKT/PKB,
mTORC1, and S6K, which are part of a wide protein phosphorylation
network regulating metabolism and various other vital cell functions5.
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Conversely, phosphorylation of specific Ser/Thr residues in IRS and
other downstream targets is associated with the inhibition of insulin
signaling, which in turnmay contribute to counterregulatory feedback
mechanisms and/or play roles in the pathophysiology of insulin
resistance2. Adding to the complexity, insulin also affects the activity of
protein phosphatases such as PTB1B and SHP22,6, which dynamically
alter the phosphorylation status of cellular proteins. Furthermore,
multiple phosphorylation cascades overlap, possibly contributing to
redundancy in insulin signaling pathways and amplification of cellular
signals5. Collectively, the orchestrated action of insulin on the many
phosphorylation sites may be essential for distributing and amplifying
the insulin response within the cell and likely contributes to individual
differences in insulin sensitivity and susceptibility to diabetes.

Previous studies have identified numerous insulin-regulated phos-
phosites using rodent cell culture models of muscle cells7,8, induced
pluripotent stem cells (IPS) from human donors differentiated into
myoblasts9 and human skeletal muscle biopsies10 by unbiased mass
spectrometry (MS)-based phosphoproteomics. Although these studies
provide a deeper understanding of the metabolic and mitogenic path-
ways elicited by insulin, several limitations remain: (i) most studies have
been informed by single time point analysis, thus not considering tem-
poral propagation of insulin signaling; (ii) to the best of our knowledge,
no phosphoproteomics study has investigated time-dependent insulin
signaling in human primary myotubes that retain innate features of the
donorbut lack thecomplexityof themulticellularmuscle tissue, and, (iii)
analyzing the individual variation in insulin signaling of differentiated
human skeletal muscle cells derived from different donors has received
rather little attention in previous signaling studies.

Thus, the aim of this study is to explore the temporal develop-
ment of insulin signaling and its donor variation using differentiated
primary human myotubes derived from satellite cells of healthy
donors. Our results identify signaling nodes conferring donor varia-
bility in insulin signal transduction and reveal the dynamics of tem-
poral activation patterns for multiple pathways that are understudied
in the context of insulin signaling such as mRNA splicing.

Results
Quantitative analysis of the insulin-stimulated phosphopro-
teome of differentiated human skeletal muscle cells
For a global analysis of insulin signal transduction in human skeletal
muscle cells, we isolated satellite cells from muscle biopsies of five
normal-weight male subjects as described in “Methods” section and
Supplementary Table 1. Myoblasts were differentiated into myotubes
for 6 days by serum deprivation and characterized for insulin-
stimulated glycogen synthesis as previously described11. After differ-
entiation, the myotubes were serum starved for 6 h before being sti-
mulatedwith 100 nM insulin for different time intervals (1min, 2.5min,
5min, 15min, 30min, and 60min). Moreover, we also incubated
serum-starved myotubes in the absence of insulin for 2.5min, 15min,
and 60min as controls. Following incubation, the cells were lysed and
snap-frozen, before being further processed for phosphoproteomic
analysis. In addition, cell lysates were subjected to quantitative pro-
teomics analysis as described in “Methods” section to account for
potential donor-specific differences in total protein abundance.

Variation in the abundance of phosphopeptides between techni-
cal replicates for all five donors and seven time points was low with a
median Pearson’s r of 0.98 for all 70 measurements, i.e. 35 pairs of
technical replicates (Supplementary Figs. 1 and 2). Overall and across
all time points, we quantified 20,470 peptides, including 13,196
phosphopeptides corresponding to 11,572 class I phosphosites (i.e.
≥75% localization probability), and mapping to 4415 phosphoproteins
with the vast majority (>99%) being phosphorylated at Ser/Thr resi-
dues (Fig. 1a, Supplementary Fig. 3a). We also measured the total
proteomes fromeachdonor asdescribed in “Methods” section. Briefly,
myotubes at baseline, as well as 60min after insulin stimulation, were

lysed and analyzed, allowing quantitative determination of overall
25,593 peptides, corresponding to 3390 proteins. Stimulation with
insulin for 60min hardly had any effect on the protein abundance in
total lysates of donor cells with only ten significantly differential pro-
teins (adjusted p-value < 0.05; ⎸FC⎹ > 1.5; Supplementary Table 2;
Supplementary Fig. 4a). We then identified 1367 peptide sequences
that were quantitated in both analyses, total proteome derived from
cell lysates and phosphoproteome derived from the TiO2/Fe

2+IMAC
enrichment analysis. Likewise, 5322 phosphopeptides could be related
tomatching protein abundances of the total proteome. Normalization
of individual phosphorylation site abundance to the corresponding
peptide/protein abundance revealed that changes in phosphopeptide
abundance are due to phosphorylation events and not alterations in
protein abundance (Supplementary Fig. 4). As expected, the abun-
dance of the non-phosphorylated peptidoforms correlated mainly
with donor identity whereas differentially phosphorylated peptides
correlated with insulin treatment (Supplementary Fig. 4e–g).

We observed only a few differences in the abundance of phos-
phopeptides in the absence of insulin within 60min of incubation (i.e.
p <0.05; ⎸FC⎹ > 1.5 vs. t0; Supplementary Fig. 5). Therefore, non-
stimulated myotubes (t0) from each individual donor served as
respective basal control. Further analysis identified a varying number
of phosphopeptides that were significantly differentially phosphory-
lated (i.e. p < 0.05; ⎸FC⎹ > 1.5 vs. t0) over time in response to insulin
stimulation (Fig. 1b).

Over the entire time course, a total of 2741 unique phosphopep-
tides were differentially phosphorylated for at least one time point,
accounting for about 21% of all phosphopeptides analyzed. Interest-
ingly, the overlap of differentially phosphorylated sites between the
particular time points was rather moderate, reaching approx. 24–28%
(Supplementary Fig. 3). In addition, we identified phosphosites that
were exclusively regulated at one time point only, such as after one
minute (262 sites) or 60min (497 sites) of insulin stimulation,
respectively (Supplementary Fig. 3). Most regulated phosphopeptides
(approx. 75%) contained a single phosphorylated Ser/Thr residue, a
sizable fractionof regulatedpeptides, however, wasphosphorylated at
multiple Ser/Thr residues (Fig. 1d).

Figure 1e–g illustrates the dynamics in the abundance of phos-
phopeptides for each time point relative to the basal state. Several
phosphopeptides were not found in basal cells but readily detectable
after insulin stimulation, such as peptides derived from the gluco-
corticoid receptor (GR) containing S134, and C-Jun-amino-terminal
kinase-interacting protein 4 (JIP4) containing T595. Furthermore, at
each time point, insulin stimulation resulted in both increases and
decreases in the abundance of specific phosphopeptides when com-
pared to the basal value, whereas the distribution of fold changes
remained similar over the time course. After 1min of insulin stimula-
tion, 822 and 749 phosphopeptides were up- and downregulated
relative to baseline, and after 60min, 1048 and 720 phosphopeptides
were up- and downregulated, respectively.

Donor and time-dependent clustering of insulin-regulated
phosphopeptides
In further analyses, we considered only phosphopeptides that had
been quantified at each time point for each donor, resulting in a set of
11,612 phosphopeptides with continuous quantitative information
over the entire time course without missing values. We then investi-
gated the individual response to insulin for the different donors over
time using principal component analysis (PCA). When all quantified
phosphopeptides were considered, the samples from individual
donors showed the highest degree of similarity, mostly independent
from the time of insulin treatment (Supplementary Fig. 7). In contrast,
PCA of the most distinctively insulin-regulated phosphopeptides
(p < 0.01 and FC > 3 or <1/3 vs. t0; with continuous quantitative infor-
mation for each time point and donor) revealed distinct clusters
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dependent of the duration of insulin stimulation: A cluster comprising
phosphopeptides in the basal state (t0), a cluster corresponding to 1
and 2.5minof insulin stimulation (t1 and t2.5), a cluster after 30min and
60min (t30 and t60) of insulin stimulation and an intermediate cluster
corresponding to 5min and 15min (t5 and t15) respectively (Fig. 2a).We
therefore designated the clusters as reflecting early (t1, t2.5), inter-
mediate (t5, t15), and late (t30, t60) phosphorylation events in insulin
signaling. We next analyzed the overlap of significantly regulated
insulin targets across the different clusters. As shown in Fig. 2b, a
substantial fraction of phosphopeptides was unique for each of the
clusters while phosphorylation of >400 insulin-stimulated sites persist
over the entire time course.

Targets of canonical insulin signaling in human skeletal
myotubes
Next, we aimed at dissecting the time course of phosphorylation of the
canonical insulin signaling pathway and selected targets of AKT, such as
p70 ribosomal S6 kinase (p70S6K/RPS6KA/B) that is activated through
the phosphatidylinositol 3-kinase (PI3K)-AKT-mammalian target of
rapamycin complex 1 (mTORC1) pathway and p90 ribosomal S6 kinase
(p90RSK/RPS6KB) that is activated through Ras-Raf-extracellular signal-
regulated kinases (ERKs), MAPK1 and MAPK3 (Fig. 3a).

As illustrated in Fig. 3b, insulin stimulation resulted in rapid
phosphorylation of both regulatory sites, T309 and S474 in AKT2,with
maximal phosphorylation achieved after 5min. Several AKT substrates
including AKT1S1 (T246), FOXO3 (S253), GSK3B (S9), and MYO5A
(S1652) were phosphorylated with similar kinetics whereas others
showed a more delayed phosphorylation such as ACLY (S455), PDCD4
(S76), and TBC1D4 (T642). Phosphorylation of MAPK1 (T185) also
peaked at 5min and preceded that of MAPK3 (T202) and RPS6KA3
(S369), consistent with delayed phosphorylation of downstream tar-
gets suchas BAD (S75), eIF4B (S422) andRPS6 (S236). Phosphorylation
of mTOR (S2448), RICTOR (T1135), and p90RSK (S369) reached max-
imal levels after 30min, whereas phosphorylation of ACLY (S455), BAD
(S75), and eIF4B (S422) continued to increase further. Elevated phos-
phorylation levels were mostly maintained after 60min of insulin
exposure. Interestingly, insulin stimulation led to a rapid reduction in
phosphorylation of S50, a major activating site in the tyrosine phos-
phatase PTPN112 (Fig. 3b). Western blot analysis was used to validate
phosphorylation sites and kinetics of insulin target sites (Fig. 3c,
Supplementary Fig. 8).

We then analyzed the response to insulin for each of the five
donors separately, as well as their relation to each other by calculating
the average Pearson’s correlation coefficient (Pearson’s r) between all

Fig. 1 | Time-resolved phosphoproteomics analysis of insulin action in human
skeletal myotubes. a Study design and summary of quantified phosphopeptides.
Total proteomes (25,593 quantified peptides) and phosphoproteomes (20,470
quantified peptides) were determined from tryptic peptides after RP18 and TiO2/
IMAC chromatography, respectively. Myotubes from each donor were analyzed for
insulin-stimulated glycogen synthesis, as detailed in “Methods” section. b Number
of regulated and unregulated phosphopeptides (p-value < 0.05; ⎸FC⎹ > 1.5 vs. t0)
over time after insulin stimulation. c Donor and time-dependent coefficient of
variation (CV) of peptide abundances (n = 11,612 CV values for each time point). In
the box plots, median (horizontal line), minimum (lower whisker), maximum

(upper whisker), 25th and 75th percentile (lower and upper hinge) values of the
respective time-specific distributions of CVs are visualized. Median value 26.9%
across all donors, time points. dNumber of regulated phosphopeptides containing
one (mono-), two (di-), three (tri-), and more phosphorylated sites across the time
course of insulin stimulation. e–g Time point-specific volcano plots showing
increasing and decreasing abundance of phosphopeptides after insulin stimulation
relative to the basal state. Selected phosphosites are highlighted. Collectively, 822/
749, 829/550, 914/548, 1023/604, 1057/543, and 1048/720 phosphopeptides were
up/downregulated after 1min, 2.5min, 5min, 15min, 30min, and 60min (t-test p-
values, not adjusted). Source data are provided as a Source Data file.
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Fig. 3 | Time course and donor-to-donor variability of insulin-stimulated
phosphorylation for selected insulin targets in human myotubes. a Schematic
insulin signaling of established insulin-regulated kinases, substrates, and main
regulatory phosphorylation sites. Quantitated phosphosites for AKT are labeled in
red, and identified sites without quantification shown in gray. b Phosphorylation
kinetics based on quantification of phosphopeptides for 28 selected targets.

Abundance values for individual donors (symbols) and mean values (red lines) are
shown. The individual abundance values were used to calculate the average Pear-
son’s correlation coefficient r as a measure of variability between donors. Targets
with low variability (r <0.8) are indicated by blue color in (a). c Representative
Western blot analysis (n = 3 donors) of selected insulin-regulated phosphosites.
Source data are provided as a Source Data file.

Fig. 2 | Donor and time-dependent clustering of peptides and proteins in
human myotubes. a Principal component analysis (PCA) of most regulated
phosphopeptides for each donor and time point. b Time interval-specific and

interval-shared phosphopeptides regulated by insulin. Intervals include “Early” (1
and 2.5min), “Intermediate” (5 and 15min), and “Late” (30 and 60min) time points
of insulin stimulation. Source data are provided as a Source Data file.
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pairs of donors in order to assess the individual variability of phos-
phorylation kinetics over time (Fig. 3b). In fact, variation in the phos-
phorylation kinetics for all five donorswasmoderate and amounted to
a median Pearson’s r of 0.82 for all 28 selected phosphosites. The
correlation was substantially higher for annotated AKT sites (median
r =0.914) with T246 in AKT1S1 showing the least inter-donor variability
among the selected substrates (r =0.982; Fig. 3b).

Donor variability of insulin targets
As Pearson’s r may reflect the propensity of a specific Ser/Thr residue
to be directly phosphorylated by insulin-activated kinases, we calcu-
lated correlation coefficients for all of the 8301 monophosphorylated
peptides in our dataset quantified for all donors at all time points.
Pairwise correlation analysis (i.e. per phosphosite r values for all 10
different donor pairs were computed using their respective phos-
phorylation kinetics) revealed several phosphosites with low donor
variability, i.e. mean r >0.9 (Fig. 4a). AKT1S1-T246, GAB2-S210, and
NACA-S1112 were the three phosphosites with the lowest variability in
our dataset with r >0.96. On the other hand, EVA1B-T158, TLE4-S292,
and ADD3-S677 were the phosphosites with the highest donor varia-
bility with r < −0.218. Themedian of all 8,301 average r values was 0.31.
In fact, we observed negative correlations to be less frequent than
positive correlations in our 83,010 pairwise donor comparisons of
phosphorylation kinetics. Interestingly, some AKT target sites like
T246 in AKT1S1, S210 in GAB2, and S253 in FOXO3 had lower variability
in their phosphorylation profile than the two regulatory phosphor-
ylation sites in AKT2, T309, and S474. In addition to well-established
insulin targets, we identified several other insulin target sites with very
low donor variability in proteins like NACA, AFDN, and KHDRBS1
annotated for a variety of biological processes such as transcriptional
regulation, mRNA processing and protein trafficking (Fig.4b).

We compared the phosphorylation of canonical and non-
canonical insulin targets with phosphosites associated with cellular
stress response13 and type 2 diabetes9. While the majority of stressors
are linked to the phosphorylation of canonical insulin targets and
mTOR signaling in L6 myotubes, human iPSC-derived myoblasts
(iMyos) from T2D donors also showed alterations in insulin-stimulated

phosphorylation of some non-canonical targets including ARHGEF12,
NEK9, and PLEKHF2 as shown in Supplementary Fig. 9. In addition, we
used data from a recent large-scale multi-ancestry meta-analysis14 to
investigate the overlap of insulin target proteins with GWAS genes
associated with T2D. Our analysis revealed 43 proteins, mostly non-
canonical targets, that are differentially phosphorylated in response to
insulin and coded by T2D candidate genes (Supplementary Data 1).

Time-resolved regulation of Ser/Thr kinases
In response to insulin stimulation, we found 49 protein kinases dif-
ferentially phosphorylated, among those several reported to be
involved in intracellular signaling pathways regulating cytoskeleton
dynamics, vesicle transport, metabolism, apoptosis, mitosis, and
transcriptional control (Supplementary Data 2). In order to detail
temporal aspects of kinase signaling, we conducted kinase-substrate
overrepresentation analysis (KSORA) as described in “Methods” sec-
tion. Briefly, changes in phosphopeptide abundance over time (t1 …t60
versus t0)wereused to compute the respective kinase activationbased
on assignments of 13,664 annotated phosphosites and 403 unique
human protein kinases in the PhosphoSitePlus database15. Our analysis
revealed a distinct temporal pattern of kinase activation where for
each time point, a different set of Ser/Thr kinases was identified to be
activated (Fig. 5a). According to the kinase-substrate over-
representation analysis, insulin stimulation led to activation of a total
of 159 Ser/Thr kinases of which the most significant 19 are shown in
Fig. 5a.At early timepoints (t1…t2.5), enrichedkinases are annotated for
regulating cell cycle and differentiation (e.g. PLK1, MARK2, CDK6).
Intermediate time points (t5…t15) showed enrichment of well-known
kinases of the insulin signaling pathway, such as AKTs upstream acti-
vating kinases PDPK1/PDK1, and a diverse set of kinases implicated as
regulators of the cytoskeleton (e.g. OXSR1, MAPKAPK2), cell cycle and
mitosis (AURKB, CDK1, CDK5), and metabolism (e.g. mTOR). Kinases
enriched at late time points (t30…t60) include p70 and p90 ribosomal
S6 kinases RPS6KA/RPS6KB, extracellular signal-regulated kinases
MAPK1/MAPK3, MAPK14, and other kinases such PKCs, SGKs involved
in metabolic actions, transcriptional control and skeletal muscle
homeostasis.

Fig. 4 | Donor variability of insulin-regulated phosphosites. aAbundance values
for monophosphorylated peptides from each of the five donors were used to cal-
culate pairwise (empty circles) Pearson’s correlation coefficient r andmean r values
(filled circles) as a measure for donor variability. b Time course of selected insulin

targets with low donor variability and respective Gene Ontology annotations
(GO:Biological process, BP). Symbols denote single donor values, red lines repre-
sent mean values. Source data are provided as a Source Data file.
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A varying number of substrates were regulated at different time
points of insulin stimulation with AKT, as expected, representing the
most dominant kinase among thepanel (Fig. 5b)with up to27 annotated
substrates at t30. The >500 known human protein kinases have been
classified into 7 major groups, based on sequence comparisons of their
catalytic domains16.Mappingof the enrichedkinases to thephylogenetic
kinome tree indicated that insulin stimulation in skeletal muscle cells
results in group-specific activation of kinases, with AGC familymembers
being the most predominant category (Supplementary Fig. 10).

Network propagation and subnetwork identification
We further aimed to structure the insulin-regulatedphosphoproteome
by applying the method of network propagation which has been suc-
cessfully used previously in identifying critical nodes and functional
modules of genes and proteins controlling complex traits17. Briefly, we
utilized the “NetCore” algorithm that, in an iterative manner, super-
imposes protein–protein interaction (PPI)-based networks on nodes in
the network consisting of kinases, phosphatases, and corresponding
substrates while considering network topology features to eventually
derive phosphorylation-dependent relationships of proteins18.

We used a filtered subset of 1552 significantly regulated phos-
phopeptides with continuous quantitative information for each time
point (fold change versus t0 for t1–t60) to initialize the PPI network and
conducted network propagation utilizing 10,642 proteins and 139,266
interactions for each time point separately as described in “Methods”
section. Each of the resulting networks was finally merged into a
combined PPI network consisting of 220 nodes and 582 connections,
representing first and second-degree neighbors/interaction partners
that share similar temporal dynamics of phosphorylation in response
to insulin stimulation (Fig. 6). Further functional classification identi-
fied a signaling module of 14 Ser/Thr protein kinases with 57 first-
degree neighbors and 4 protein phosphatases connected to 47 first-
degree neighbors. Both kinases and phosphatases are linked through a
set of 15 shared first-degree neighbors that include adapter proteins
(YWHAH, GRB2), regulators of transcription and splicing (e.g. SNW1,

SNRNP70, SRSF1, ZC3H18) and actin cytoskeleton (CAPZA1, LIMA1,
FLNA).Moreover, 5 kinases were identified as first-degree neighbors of
phosphatases, including MAP3K3, MAPK1, MAPK3, NTRK1, and PRKD1
propagated by NetCore. Conversely, the two phosphatases PPP1CC
and PPP1CA, the latter propagated by NetCore, were identified as first-
degree neighbors of kinases. About half of the kinases inferred by
NetCore were also identified by KSORA as insulin targets, including
AKT2, MAPK1, MAPK3, MAPKAPK2, MYLK, and PDPK1.

We further extracted a subnetwork of 18 phosphoproteins with
the lowest donor variability between nodes (Pearson’s r >0.78) and
along edges (Pearson’s r > 0.73), reflecting high connectivity within the
network interaction and similarity in phosphorylation kinetics
(Fig. 6b, c). As expected, all nodes directly connected by anedge in this
subnetwork exhibit similar phosphorylation kinetics, both on average
and in donor-to-donor comparisons (Supplementary Fig. 11). Several
proteins of the Reactome mTOR signaling pathway (AKT1S1, AKT2,
RPS6, EIF4B) were significantly enriched (p = 7.39 × 10-6) in this sub-
network, in addition to RNA-binding proteins involved in processing
and splicing of mRNA (EIF4B, KHDRBS1, MATR3, RMB34, SNRNP70,
THRAP3, ZFP36L1) or rRNA (LYAR), respectively.

Temporal regulation of biological pathways
For phosphopeptides significantly regulated at early (t1, t2.5), inter-
mediate (t5, t15), and late (t30, t60) timepoints,we conducted functional
enrichment analysis using the Reactome pathway database. Briefly, for
each time interval, differentially regulated phosphopeptides were fil-
tered (⎸FC⎹ > 1.3; p <0.05) and mapped to a non-redundant set of
proteins, which was used to conduct overrepresentation analysis as
described in “Methods” section. Hierarchical clustering revealed a
distinct temporal pattern of significantly enriched pathways related to
growth factor signaling, cytoskeleton and muscle contraction, cell
development, AKT signaling, protein trafficking, andmRNAprocessing
and splicing (Fig. 7a and Supplementary Data 3).

Interestingly, pathways associated with cell cycle control were
enriched at very early time points (59 differentially phosphorylated

Fig. 5 | Time course of kinase-substrate overrepresentation after insulin sti-
mulation of human myotubes. Kinase-substrate overrepresentation analysis
(KSORA) with 4030 differentially regulated phosphopeptides was performed as
described in “Methods” section. a Heat map of the top 19 overrepresented kinases
(one-sided Fisher’s exact test p-value ≤0.075, not adjusted) across all time points

where colors represent z-scores of the respective −log10(p-values) of the KSORA.
Asterisks denote p-values *<0.075; *<0.05; **<0.01; ***<0.001. b Corresponding
numbers of substrates over time that are annotated for the most highly enriched
kinases. Source data are provided as a Source Data file.
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proteins) with rapid phosphorylation of the mitotic protein kinase
NEK9, proteins associated with the nuclear lamina (e.g. EMD, LMNA),
and the nuclear pore complex (e.g. TPR, NUP188, RANBP2) or nuclear
transport (e.g. SUMO1,NPM). Pathways associatedwith tyrosine kinase
signaling (65 differentially phosphorylated proteins) were enriched at
intermediate and late time points and include knowndocking proteins
in signaling such as CRK, GAB2, IRS1, IRS2, SH2B2, SHC1, SOS1, mito-
genic kinases like MAPK1, MAPK3 and MAPK14, and transcriptional
regulators like MEF2C and YAP1. Conversely, the pathway for vesicle-
mediated transport (74 differentially phosphorylated proteins) was
enriched at late time points, including proteins involved in clathrin-
dependent transport (e.g. AAK1, AP3B1), GEFs and GAPs of Rabs (e.g.
DENND1A, RAB3GAP1, TBC1D2) and Arf GTPases (ARFGAP1, GBF1) and
various steps in intra-organelle membrane traffic (e.g. KIF1B, KIF13B,
SEC16A, SEC22B, SNX9, TRAPPC12, VAMP3).

In most pathways, insulin led to both increased or decreased
phosphorylation of proteins compared to the basal state. We further
investigated the dynamics of pathway activation by segregating
phosphoproteins with either increasing or decreasing phosphoryla-
tion in response to insulin within each pathway. As shown in Fig. 7b,
insulin increased the number of phosphorylated peptides over time
for “mTOR signaling” (R-HSA-165159) without such changes in the

pathway for “Muscle contraction” (R-HSA-397014). Conversely, insulin
reduced the number of phosphopeptides with decreased phosphor-
ylationover timecompared tobaseline in “Muscle contraction”but not
in the “mTOR signaling” pathway. Other pathways, like “Membrane
trafficking” (R-HSA-199991), displayed an intermediate pattern where
the number of phosphorylated peptides increased over time and, in
parallel, less peptides were found that had decreased phosphorylation
compared to the basal state (Fig. 7b). Collectively, the data indicate
complex temporal segregation of insulin signaling within the different
biological pathways. We also analyzed donor-to-donor variability in
pathway activation by conducting pairwise correlation analysis of
phosphosites assigned to proteins of the enriched Reactomepathways
(Fig. 7c). While activation of pathways related to mTOR and AKT sig-
naling displayed the lowest donor variability (Pearsons’s r >0.8), TGF
beta signaling and signaling of non-receptor tyrosine kinases exhibited
high donor variability (Pearsons’s r > 0.8) (Fig. 7c).

Temporal dynamics of relative phosphosite occupancy
We further investigated the temporal dynamicsof relative phosphosite
occupancy during insulin stimulation by tracking the phosphorylation
of individual phosphopeptides over time. For the analysis, we selected
a subset of 2741 phosphopeptides that have a significant regulation

Fig. 6 | Donor- and time-dependent protein–protein interaction network of
insulin-regulated kinases and phosphatases. a Proteins with significantly regu-
lated phosphopeptides in response to insulin (n = 1552; t-test p-values < 0.05,
adjusted using the Benjamini–Hochberg method) were selected for network pro-
pagation and assembled into a combined PPI network using NetCore and Con-
sensusPathDB as described in “Methods” section. The resulting network of 220
nodes and 582 edges reflects annotated connections and similar temporal
dynamics of phosphorylation in response to insulin stimulation. Indicated are
protein kinases (green) and phosphatases (orange), and their respective first-
degree protein–protein interaction neighbors (light colors). Diamonds denote
proteins propagated from NetCore analysis. b Subnetwork of phosphoproteins

with low donor variability and similar phosphorylation kinetics. Nodes represent
proteins with the lowest inter-donor variability (mean of Pearson’s r between all
donors >0.78), and edges indicate similar phosphorylation kinetics of phospho-
peptides with lowvariability (meanof Pearson’s r between all donors >0.73). Shown
are protein kinases (green) and phosphatases (orange), and their respective first-
degree protein–protein interaction neighbors (light colors). RNA-binding proteins
are marked in red. Dotted lines connect proteins with highly similar phosphoryla-
tion kinetics (Pearson’s r >0.9). c Correlationmatrix of Perason’s r values for edges
(phosphorylation kinetics) betweenNetCore-connectedphosphopeptideswith low
donor variability. Source data are provided as a Source Data file.
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with respect to baseline (0min) for at least one time point from the
11,612 phosphopeptides with continuous quantitative information for
each of the 7 time points. We then assessed the phosphorylation of
each phosphopeptide over the entire time course and aggregated the
data in a flow diagram. As illustrated in Fig. 8a, insulin stimulation
results in a complex pattern of phosphorylation and depho-
sphorylation events over time, where the former were more common
than the latter (Supplementary Fig. 12). The individual rates of phos-
phorylation and dephosphorylation showed complementary, interval-
specific patterns for each time point with highest dynamics early after
insulin stimulation (Fig. 8b).

Of the 976 phosphopeptides significantly regulated after 1min of
insulin stimulation, only 131 of those phosphopeptides (~13%)
remained continuously differentially phosphorylated for 60min.
Notably, about a third of these phosphosites were in proteins asso-
ciated with the cytoskeleton and cytoskeleton organization
(GO:0005856, GO:0007010; 40 proteins, p-adj = 1.08e-08) and intra-
cellular signal transduction (GO:0035556; 36 proteins, p-adj =
0.000201), including important upstream kinases for AKT, PDPK1 and
mTOR (Supplementary Table 3). Interestingly, several of the

upregulated phosphopeptides (10 out of 110) were derived from pro-
teins implicated in insulin-stimulated GLUT4 traffic, such as BIN1,
DENND4C, ESYT1, MYO5A, PHLDB1, RALGAPA2, RAPGEF1/C3G, STX4,
STX16, and TXNIP, presumably also phosphorylated by kinases
upstream of AKT (Supplementary Table 4). Conversely, of the 1133
significantly regulated phosphopeptides at 60min, a large proportion
of 603 peptides (53%) was derived from phosphorylation/depho-
sphorylation events that occurred at 60min. Interestingly, these late
phosphorylation sites targeted a large number of RNA-binding pro-
teins (GO:0003723, 113 proteins, p-adj = 1.85e-26), with 398 of the 1133
differentially phosphorylated proteins annotated for nuclear localiza-
tion (GO:0005634, p-adj = 6.22e-22).

Analysis of phosphorylated sequence motifs of all phosphopep-
tides in the subset revealed interval-specific differences during insulin
stimulation. The basophilic consensus motif of AKT targets, (RxRxxS/
T)5, was more common in phosphopeptides exhibiting continuous
phosphosite occupancy, whereas peptides dephosphorylated in
response to insulin appeared to be enriched for proline-directed
consensus sequences (Fig. 8c). Moreover, proline-directed/acidic
motifs were more enriched in phosphosites at very early time points

Fig. 7 | Time course and donor variability of overrepresented Reactome path-
ways after insulin stimulation of human myotubes. a Reactome pathways
overrepresentation analysis (RORA) was performed for three time intervals, early,
intermediate, and late, corresponding to 1 and 2.5min, 5min and 15min, and 30
and 60min after insulin stimulation with 969 differentially phosphorylated pro-
teins as described in “Methods” section. The heat map colors represent z-scores of
the respective -log10(FDR) values of the RORAs to visualize differential phos-
phorylation within the respective pathway. b Numbers of differentially regulated

phosphopeptides for selected Reactome pathways. The red and blue bars repre-
sent phosphopeptides havingpositive or negative log-fold changes versus baseline,
respectively. c Donor variability of pathway enrichment. Pearson’s correlation
coefficient r of abundance values were calculated for the differentially regulated
phosphoproteins within each pathway, and the values displayed as a measure for
variability between donors. Red points represent the mean values. Source data are
provided as a Source Data file.
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(Supplementary Fig. 13). We further investigated the temporal coor-
dination of relative phosphosite occupancy using Gene Ontology and
Reactome databases with our subset of phosphopeptides with con-
tinuous quantitative information for each of the time points (Supple-
mentary Fig. 14). Differential phosphorylation of proteins assigned to
pathways was complex and interval specific. For instance, mTOR sig-
naling was accompanied by early, intermediate, and late phosphor-
ylation events occurring over the whole time course of insulin
stimulation, in addition to continuous phosphorylation of mTOR
S2248, and the majority of other proteins being phosphorylated
between 5 and 15min (Fig. 8d). Similar patterns of activation were
found for other pathways like Ras signaling (Supplementary Fig. 15).

Insulin-stimulated phosphorylation of splicing-related proteins
A substantial number of insulin-regulated phosphopeptides were
derived from proteins annotated for processing of mRNA at various
stages. For instance, we found differentially regulated phosphopep-
tides mapped to 49 out of the 191 proteins within the Reactome
pathway “mRNA Splicing” (R-HSA-72172.3). In accordance, recent
phosphoproteomics studies also reported insulin-regulated

phosphorylation of spliceosome-associated proteins in iPS-derived
myoblasts but without information on the temporal coordination of
the process9. We, therefore, investigated more closely the time-
dependent phosphorylation of spliceosomal proteins in primary
human myotubes.

As illustrated in Fig. 9a, mRNA splicing, i.e. the removal of introns
from precursor mRNA, occurs through a series of highly coordinated
steps carried out by the spliceosome, a very large RNA–protein com-
plex that assembles anew on each individual pre-mRNA substrate to
specific intermediate complexes19.While the spliceosome is composed
of five small nuclear ribonucleoproteins (snRNPs), U1, U2, U4, U5, and
U6 snRNPs19, and several spliceosome-associated proteins (SAPs), it
dynamically assembles on themRNA precursor in several, functionally
distinct complexes (termed E, A, B, B*, and C) that altogether encom-
pass the more than 120 different proteins involved in the different
steps of mRNA splicing19. Our analysis revealed numerous spliceoso-
mal proteins that are differentially phosphorylated in response to
insulin, including SNRNP70, SF3A1, SNRNP200, and SART1, that con-
stitute components of the U1, U2, U5, and U4/U6-U5 tri-snRNP,
respectively and are required for the assembly of the pre-catalytic

Fig. 8 | Temporal dynamics of phosphopeptide regulation. a Flow diagram of
relative phosphosite occupancy for 2741 unique phosphopeptides. Each phos-
phopeptide is represented by a single line where the colors denote the initial time
point of continuous differential phosphorylation in response to insulin (⎸FC⎹ > 1.3
vs. baseline; p <0.05). Lines aggregate continuous and discontinuous differential
phosphorylation of individual peptides over time. Numbers in boxes indicate the
numbers of unregulated (top level) and differentially phosphorylated peptides for
each time point. b Time-dependent relative abundances (normalized to maximum
values) for phosphorylation anddephosphorylation of peptides from the strands in
(a) using the same color code regarding the initial time point of differential
phosphorylation. Strand-specific numbers of peptides: n1 = 111, n2.5 = 28, n5 = 53,

n15 = 98, n30 = 128, n60 = 345 (phosphorylation); n1 = 20, n2.5 = 7, n5 = 11, n15 = 17,
n30 = 57, n60 = 258 (dephosphorylation). In the box plots, median (horizontal line),
minimum (lower whisker), maximum (upper whisker), 25th and 75th percentile
(lower and upper hinge) values of the respective phosphopeptide abundances are
visualized. c Phosphositemotif analysis for 206 targets phosphorylated at 5min; of
those, 49 sites continuously phosphorylated until 60min; and 197 targets depho-
sphorylated at 5min. The frequency of residues surrounding the phosphorylated
residue is indicated by the size of the letters, as described in “Methods” section;
d Time-resolved relative phosphosite occupancy of selected Ser/Thr residues in
proteins significantly overrepresented in the Reactome mTOR signaling pathway
(Supplementary Data 4). Source data are provided as a Source Data file.
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Fig. 9 | Phosphorylation of the spliceosome. a Schematic overview of the splicing
process steps consisting of intron/exon recognition, ligation (complexes A, B),
catalytic activation (complex C), and cleavage and exon ligation step.
b Phosphorylation kinetics of spliceosomal phosphosites in 12 selected spliceoso-
mal proteins, and their assignment to the splicing complexes indicated by colors.
Data aremean values ± SEM (n = 5). cDistributionof differentmRNA splicing events

in myotubes from 3 donors after 1 h stimulation with insulin. d Insulin-regulated
alternative splicing of transcripts. The percent spliced in index (PSI; n = 3 ± SEM)
refers to the ratio between reads including or excluding exons (denoted by aster-
isks) as described in “Methods” section. A total of 153 transcripts were found to be
differentially spliced in response to insulin (SupplementaryData 5). Source data are
provided as a Source Data file.
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spliceosome complex A and B (Fig. 9a, b; Supplementary Fig. 16). SRSF
protein kinase 2, a regulator of RNA-binding SR proteins, splicing
factor SRSF1, SRSF2 and associatedmRNAbindingproteins SRRM1and
SRRM2, U2AF2, RBFOX2, and RMB10, all found to be involved in either
constitutive or alternative splicing, were also phosphorylated or
dephosphorylated after stimulation with insulin. Interestingly, the
temporal pattern of phosphosite occupancy within spliceosomal
proteins exhibited substantial variation during insulin stimulation.
While some sites showed a rapid and transient increase in abundance
(e.g. S207 in SNRNP200; tmax 1min), others increased more steadily
(e.g. S448 in SART1) or decreased rapidly (S154 in RBM10) in response
to insulin.

We further investigated a possible association of insulin-
stimulated phosphorylation of spliceosomal proteins with insulin-
regulated alternative splicing using the same cells from our donors
that were used for phosphoproteome analysis. After starvation for 6 h,
fully differentiated primary myotubes from 3 different donors were
incubated with and without 100 nM insulin for 1 h, harvested, and the
resulting RNA was subjected to Next Generation Sequencing as
described in “Methods” section. Differential expression at the whole
transcriptome level was only moderately changed, affecting 21 genes
(20/1 up/downregulated), some of which are implicated in different
metabolic and biological responses such as regulation of insulin sen-
sitivity (FOXC2, NR4A1, EGR1), cell growth (FOS, GADD45B) and
mitochondrial biogenesis (PPRC1) (Supplementary Table 5). We
applied multivariate analysis of transcript splicing (MATS) to identify
transcripts that were differentially spliced in response to insulin. We
found 153 transcripts for 131 coding genes and9 long non-codingRNAs
(lncRNAs) that were differentially spliced in response to insulin (Sup-
plementary Data 5), and, according to principal component analysis,
independent of the donor (Supplementary Fig. 17b). The majority of
detected splicing events included skipped exons (SE), followed by
alternative 3′ splicing (A3SS),mutually exclusive exons (MXE), retained
introns (RI) and 5′ splicing (A5SS; Fig. 9c). The splicing of several
mRNAs (e.g. UDP-glucose ceramide glucosyltransferase, UGCG)
is predicted to result in nonsense-mediated decay (NMD; Fig. 9d;
Supplementary Data 5).

Discussion
In the present study, we conducted a time-resolved analysis of the
global insulin-regulated phosphoproteome of human primary skeletal
muscle cells. Our results identify a complex set of temporally regulated
networks and their donor-to-donor variation and provide novel
insights into the impact of insulin onmRNA processing and splicing in
human myotubes.

Insulin action in skeletal muscle is critical for whole-body energy
substratemetabolism and homeostasis, and impaired insulin signaling
in muscle has been associated with early onset and development of
type 2 diabetes3. Insulin induces rapid and reversible phosphorylation
of target proteins, but the complex network of its signaling cascade in
muscle is not sufficiently understood. Previous studies have investi-
gated insulin-regulated muscle phosphoproteomes at a fixed time
point after hormone stimulation using rat L6 myotubes (15min;
100 nM insulin), human immortalized muscle precursor cells (10min;
100 nM insulin), and biopsies from human skeletal muscle tissue (2 h;
hyperinsulinemic-euglycemic clamp)8–10. Consistent with these stu-
dies, our phosphoproteomics analysis of human primary myotubes
revealed a large number of insulin-regulated phosphopeptides,
reflecting the phosphorylation status of >11,500 unique Ser/Thr
phosphosites over the course of 1 h in the presence of the hormone.
However, a few sites (e.g. TBC1D4 S570), were phosphorylated in both
starving and insulin-stimulated conditions, presumably reflecting
activation of AKT and AMPK, two distinct metabolically controlled
kinases20. Importantly, our data demonstrate strong temporal
dynamics in insulin-regulated phosphorylationwithout corresponding

changes in protein abundance. While some sites were phosphorylated
transiently only at very early time points (e.g. SNRNP200 S207) others
showed multimodal phosphorylation patterns (e.g. NACA-S1112) or
had phosphorylation levels reaching a plateau (e.g. AKT1S1-T246). In
fact, a substantial fraction of phosphopeptides, approximately 30%, is
differentially regulated only at specific intervals during the course of
insulin stimulation, and approx. 1400 regulated phosphosites would
not have been observed when analyzing only phosphopeptides after
15min of insulin stimulation. Thus, time-resolved analysis of the
phosphoproteome provides enhanced sensitivity and resolution of
phosphorylation events and may aid in identifying novel aspects of
insulin signaling in muscle cells. For instance, while recent genome-
wide association studies (GWAS) have identified numerous loci com-
prising >600 human protein-coding candidate genes for insulin
resistanceandT2D14, little is knownabout theirpotential role as targets
for insulin-regulated phosphorylation. We explored the overlap of our
phosphorylation data and found 43, mostly non-canonical target
proteins, whichmay be of interest for further studies on insulin action
in skeletal muscle cells20.

As expected, substrates for AKT kinase are overrepresented in the
phosphoproteome after insulin stimulation. In addition, several other
kinases assigned to multiple Ser/Thr kinase phyla appear to be regu-
lated at distinct time points, either preceding or following the activa-
tion of AKT. Among the kinases whose substrates are enriched
relatively early in the time course (<5min) are PDPK1, a well-known
upstream activating kinase of AKT21, as well as cell cycle regulating
kinases CDK1/5/6 and PLK1, whereas substrates for p70 and p90
ribosomal S6 kinases are enriched at later timepoints. Thus, consistent
with a previous kinase-substrate prediction analysis for AKT, mTOR,
and PKA in 3T3-L1 adipocytes22, we found interval-specific phosphor-
ylation patterns of kinases and respective substrates in primary human
myotubes. Interestingly, our enrichment analysis reveals a distinct
temporal patternof kinase activationwith phase lengths in theorderof
minutes, resulting in little to moderate overlap between the different
time points after insulin stimulation. This transient kinase activation
pattern in the presence of insulin implies persistent activity of protein
phosphatases, continuously reverting phosphorylation by the kinases,
as well as kinase-driven feedback loops. While previous studies found
phosphorylation-dependent feedback regulation in insulin signaling at
multiple levels, including insulin receptor, IRS1, and AKT signaling via
S6K1-mediated phosphorylation of PDK1, relatively little is known
about the complex regulatory network of protein phosphatases in
insulin signaling12,23–25.

Following a kinase/substrate annotation-independent approach,
we analyzed potential interdependencies of insulin signaling compo-
nents by using the propagation algorithm “NetCore” that utilizes PPI
data to segregate and identify functional networks within large and
dynamic datasets and considers node coreness as a topological fea-
ture, i.e. whether a node belongs to a densely connected part of the
network or its periphery18. This unsupervised method identified a
signaling module encompassing 220 members, including 15 protein
kinases and 4 phosphatases and their respective first-degree neigh-
bors, some of which share similar temporal dynamics of phosphor-
ylation in response to insulin stimulation. Module-associated
phosphatases include PPP1CA and PPP1CC, catalytic subunits of PP1, a
regulator of glycogen synthase26, substrate specificity conferring reg-
ulatory subunits like the myosin targeting subunit PPP1R12B, and
Calcineurin (PPP3CC), a Ca2+/Calmodulin-regulated Ser/Thr protein
phosphatase shown to be involved in regulating insulin signaling
proteins and insulin-stimulated glucose uptake in skeletal muscle27.
Moreover, the module includes CDC14B, which preferably depho-
sphorylates targets of proline-directed Ser/Thr kinases and has been
recently implicated in regulating ciliogenesis28,29. Interestingly, 52
nodes, about a quarter of the network, were first-degree neighbors of
four phosphatases, whereas 72 nodeswere exclusively connected to 15
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kinases, emphasizing the different levels of integration of kinases and
phosphatases in the signaling network. However, incomplete kinase/
substrate and phosphatase/substrate annotation (“dark proteome”)
and overlapping substrate specificities of kinases represent major
caveats in understanding the complexity of insulin signaling30. In fact,
despite using large data repositories, the majority of our quantified
phosphosites could not be unequivocally associated with a specific
kinase.

Using human primary cells frommatched healthy donors allowed
us to address individual variability in insulin signaling, albeit with the
caveat of analyzing a relatively low number of donor samples. Analysis
of donor variability within the PPI-based network and correlation of
phosphorylation kinetics revealed a subnetwork of proteins with
similar phosphorylation patterns enriched in proteins involved in RNA
processing, indicating insulin’s regulatory effect on transcription at
multiple levels. While some connections between proteins were con-
sistent with PPI-based associations, several highly correlated phos-
phositesmay reveal novel associations and need further exploration. A
comparison of site-specific kinetics revealed variability across donors
in human skeletal myotubes. Donor variability was relatively low for
phosphosites belonging to the canonical insulin signaling pathway
with Pearson’s r >0.9, such as AKT1S1 (T246), FOXO3 (S253), and TSC2
(S939). Consequently, donor variability of Reactome pathway regula-
tion was low for AKT-driven processes, such as “mTOR signaling” (R-
HSA-165159) and GLUT4 translocation pathway (R-HSA-1445148). This
result is consistent with previous studies that have shown that co-
occurring phosphorylation and correlated phosphorylation levels
between different phosphosites indicate their functional
association31,32. Proteins that are part of a protein–protein complex
participate in the same biological processes and may become co-
phosphorylated, presumably by the same kinase31,32, thus reducing
variability in phosphorylation kinetics. Low donor variability repre-
sents another aspect of phospho-kinetic similarity that reflects highly
efficient target sequences (e.g. in AKT1S1). Nodes with phosphoryla-
tion kinetics that are robust to individual differences of healthy donors
couldbe particularly important switching points inbiological signaling
networks. Hence, the deviating kinetics of such phosphosites may
identify novel, biologically relevant insulin targets and might be used
to exploit future precision medicine approaches. Conversely, phos-
phosites exhibiting substantial donor variability are less likely to con-
tribute to altered systemic insulin action or serve as informative
biomarkers for insulin sensitivity33. Interestingly, several substrates
with very low donor variability constitute RNA-binding proteins that
were not previously assigned to insulin signaling pathways, indicative
of insulin’s possible role in regulating RNA processing and splicing.

We investigated the dynamics of relative phosphosite occupancy
and pathway regulation for a subset of phosphopeptides with con-
tinuous quantitative information for each time point. Interestingly,
while many phosphorylations were transient, even in the presence of
insulin, a fraction of sites were differentially phosphorylated for longer
periods of time.More than 100 sites were phosphorylatedwithin 1min
in response to insulin stimulation and maintained their phosphoryla-
tion status for up to 1 h. Of those, many proteins were associated with
the cytoskeleton and functions relayed by small GTP-binding proteins,
indicative of insulin’s fundamental role in regulating cell structure and
subcellular organization. Conversely, more than 340 of the sites
phosphorylated after 1min apparently became dephosphorylated
thereafter, most of them within the following 5min during the time
course.

Kinetic analysis of the individual rates and consensus sequences
of phosphorylated and dephosphorylated peptides at each interval
substantiate time-dependent preferences for kinases and/or phos-
phatases, consistent with phased regulation of the enzymes. Sites
phosphorylated early and maintained for longer intervals become
enriched for more basophilic motifs, particularly the AKT target motif

RxRxxS/T and RxxS/T, the latter being also a potential target for many
AGC family kinases from such as PKA, PKC, RSK, ROCK, and multi-
functional calmodulin-dependent protein kinase II34. Conversely, early
dephosphorylated sites are enriched for Proline at position -1, pre-
ferred sites for Pro-directed kinases such as conventional and atypical
MAPKs and Cyclin-Dependent Kinases34, indicating consecutive deac-
tivation of these kinases over time in the presence of insulin and/or
activation of phosphatases targeting proline-containing motifs, such
as CDC14B, identified by our Netcore analysis.

Consistent with the distinct temporal pattern of kinase activation,
we found a similar time-dependent relationship in the regulation of
biological pathways as annotated in the Reactome database. Transient
regulationof pathways such as cell cycle control occurred shortly after
stimulation with insulin whereas pathways related to e.g. mRNA pro-
cessing and splicing became differentially regulated after prolonged
stimulation with the hormone.

Interestingly, pathways such as mTOR signaling appear to be
activated in a phased fashion where early onset insulin phosphosites
are dephosphorylated over time to be replaced with phosphosites in
other proteins annotated for this pathway, while only mTOR phos-
phosites are continuously phosphorylated during the time course.
Similar patterns were found for other regulated pathways, indicating
that pathway components, some of which are shared among different
pathways, contribute in a time-synchronized manner to multiple sig-
naling pathways to form the circuitry connecting insulin effector sites.
Thus, activation of insulin-regulated biological pathways follows a
complex time-dependent pattern that requires consideration when
evaluating the efficacy of insulin signaling and phosphorylation of
downstream effectors. It could be speculated that insulin resistance
may have a different impact on targets regulated at the very early or
late stages of insulin signaling, respectively, as each timepoint displays
a different pattern of phosphorylated targets.

In skeletal muscle, insulin regulates both transcription and
translation of proteins where the former has been attributed to FoxO
transcription factors, targets of AKT, that control expression of mito-
chondrial genes andmay contribute to the decreasedmuscle strength
and mass in diabetes35. In muscle cells, insulin has also been reported
to affect alternative splicing of the insulin receptor and PKCβ, and
growing evidence indicates that alternative mRNA splicing can reg-
ulate energymetabolism andmay affect cellular insulin sensitivity and
susceptibility for diabetes36–38.

Among the most enriched pathways in our study with differential
phosphorylation in response to insulin were sets of proteins involved
in mRNA processing and splicing. The spliceosome, a key component
of the splicing machinery, constitutes a very large, macromolecular
RNA–protein complex that assembles de novo on nascent pre-mRNA
molecules for subsequent removal of intronic sequences19. We iden-
tified several spliceosomal proteins with distinct temporal patterns of
differential phosphorylation upon insulin stimulation. The abundance
of the respective phosphopeptides exhibited site-specific kinetics,
indicating that insulin stimulation results in increases or decreases of
phosphorylation of targets at different time points. The majority of
these phosphopeptides were derived from proteins involved in the
early steps of spliceosome formation, including assembly of the pre-
catalytic spliceosome complexes A and B that precedes the removal of
introns and the ligation of neighboring exons to produce mature
mRNA for protein biosynthesis on the ribosome.

To further investigate the link between insulin and alternative
splicing, we conducted an RNASeq analysis of human primary myo-
tubes with and without insulin stimulation. Consistent with a previous
transcriptional analysis of skeletal muscle in mice, short-term (<1 h)
stimulation with insulin has only a relatively minor effect on differ-
ential gene expression39. Early responding genes were associated with
cellular metabolism and transcriptional control, including genes (e.g.
NR4A1, EGR1) previously implicated in regulating insulin sensitivity in
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skeletalmuscle cells40,41. In addition, insulin stimulationwas associated
with the altered abundance of alternatively spliced mRNAs, including
transcripts with retained introns and NMD variants that are predicted
to reduce the half-time of the respective mRNAs42.

SRSF protein kinase 2 (SRPK2), a target for mTORC1-activated
S6K1 (S494) and subsequently CK1 (S497) has been demonstrated to
undergo nuclear translocation in its phospho-form to phosphorylate
splicing factors such as members of the SR family proteins that pro-
mote exon-inclusion or exon-skipping during alternative splicing43.
Interestingly, in HEK293E cells, the knockdown of SRPK2 led to
increased intron retention of lipogenic genes, triggering nonsense-
mediated mRNA decay (NMD), whereas in MCF-7 breast cancer cells,
stimulation with IGF1 for 6 h had the opposite effect, reducing intron
retention and increasing the stability of transcripts44,45. In line with
these data, we found that short-term simulation of primary human
myotubes with insulin was associated with phosphorylation and acti-
vation of SRPK2, phosphorylation of SR proteins (e.g. SRSF1 and
SRSF2) and reduced intron retention of transcripts like EPS8, a sig-
naling protein involved in regulating actindynamics46 or exon skipping
and NMD of UGCG, a ceramide glucosyltransferase and regulator of
glucose metabolism47.

A recent study of iPSC-derived human myotubes from donors
with T2D reported diabetes-associated alterations in the phosphor-
ylation of proteins involved in mRNA splicing9. While several compo-
nents of the spliceosome and pre-mRNA binding proteins, SRRM2,
SF3B2, SRSF5, SRSF7, and HNRNPM displayed reduced phosphoryla-
tion in cells from T2D donors, phosphorylation of other splicing-
associated proteins including SNRNP70, SF1, and HNRMPAB were
increased compared to controls9. However, in this study, only a few
phosphosites in these spliceosomal proteins were reported to be
regulated by insulin, SF3B1 (S190), and SNRNP70 (S410), whereas our
analysis revealed many additional insulin-regulated phosphosites in
the spliceosome over the entire time course. These differences may
relate to the different cell types, i.e. primary cells with native epige-
netic marks vs. stem cells, quantitation of different phosphopeptides,
and/or differences in temporal resolution, the latter being highly likely
as evidenced by the intermittent phosphorylation patterns of many
sites. Nevertheless, our finding that phosphorylation of spliceosomal
proteins, which has been shown to be reduced in T2D, was, in fact,
increased in response to insulin, albeit at different target sites, in pri-
mary myotubes supports the hypothesis that insulin resistance may
generally impair the functionality of the splicing machinery. Thus,
while our data indicate that in human primary myotubes, insulin
acutely regulates transcription and alternative splicing through phos-
phorylation of spliceosomal proteins, further work is necessary to
investigate the scale and scope of insulin’s acute effects.

Our study has several limitations, including (i) only partial overlap
of the phosphoproteome and global proteome, preventing the calcu-
lation of absolute phosphosite occupancies, (ii) limited sample size
due to the exploratory design of the study which needs follow-up in a
cross-sectional clinical study, covering a broader spectrum of pheno-
types, (iii) rudimentary assignment of substrates with kinases and
phosphatases, and (iv) insufficient information on the functional
relevance of insulin-regulated phosphosites and splicing events, which
require further studies. In conclusion, our analysis revealed time-
dependent phasic phosphorylation patterns in insulin-induced signal
propagation, demonstrating that regulation of specific kinases, phos-
phatases, and corresponding downstream pathways are timely syn-
chronized through cellular feedback loops. Our data highlight the
importance of analyzing the kinetics in insulin signaling and provide a
resource for assessing donor-specific and temporal variation, which
might aid the identification of critical nodes in the circuitry of insulin
signaling. Finally, our study links insulin-regulatedphosphorylations of
the splicing machinery with alternative splicing of mRNA, suggesting
hormonal control of the structure and function of the transcriptome.

Methods
Skeletal muscle satellite cell isolation
All study participants provided informed written consent regarding
the sampling of biopsies and publication of data. The study design and
conduct complied with all relevant regulations regarding the use of
human study participants and was conducted in accordance with the
criteria set by the Declaration of Helsinki. Ethical approval was granted
by the Regional Committee for Medical and Health Research Ethics
South East, Oslo, Norway (reference number: 2011/2207). The donors
were healthy men, 24 ( ± 1.04) years old, with a body mass index of
24.57 ( ± 0.74) kg/m2 (Supplementary Table 1). Biopsies of the vastus
lateralismuscle were obtained under local anesthesia (lidocaine) with
a Bergström-needle. The biopsy material was released from fat tissue
and kept in Ham’s F10 medium (Thermo Fisher Scientific) at 4 °C. The
tissue was minced, and the satellite cells were isolated by three sub-
sequent trypsin (0.125%) digestions at room temperature. The super-
natants from this digestion were combined and spun down at 500 × g
for 7min to collect the cells. The cells were resuspended in PromoCell
skeletalmuscle cell growthmedium (PromoCell GmbH) supplemented
with PromoCell SupplementMix (PromoCell GmbH), 25 IU penicillin
(Thermo Fisher Scientific), 25 µg/ml streptomycin (Thermo Fisher
Scientific) and 1.25 µg/ml amphotericin B (Thermo Fisher Scientific).
The resuspended cells were transferred to a collagen-coated (0.01%)
25 cm2 cell culture flask. Cells were kept at 37 °C, 5% CO2, and medium
was changed every 24–48 h until confluent.

Culture of human myotubes
The cells were cultured on cell culture dishes (145 × 20mm) inDMEM-
GlutamaxTM (5.5mM glucose) (Thermo Fisher Scientific) supple-
mented with 10% FBS (Gibco), 25 IU penicillin, 25 µg/ml streptomycin,
1.25 µg/ml amphotericin B, 50 ng/ml gentamicin (Sigma-Aldrich),
0.05% BSA, 10 ng/ml hEGF (Thermo Fisher Scientific), 0.39 µg/ml
dexamethasone (Sigma-Aldrich) and 25mM HEPES (Sigma-Aldrich).
When the cells had grown to approximately 80% confluence, the
growth medium was replaced by differentiation medium (DMEM-
GlutamaxTM (5.5mM glucose) supplemented with 10% horse serum
(ATCC), 25 IU penicillin and 25 µg/ml streptomycin). The cells were
incubated at 37 °C in a humidified 5% CO2 atmosphere, and the
medium was changed every 2–3 days. All experiments were per-
formed after 6 days Insulin-stimulated glycogen synthesis was per-
formed as previously described11.

Insulin stimulation for phosphoproteomics analysis
On day 6 of differentiation, the medium was aspirated, and the cells
were washed twice with PBS before given starvation medium (DMEM
without phenol red (5.5mM glucose) supplemented with 4mM Glu-
tamax, 25 IU penicillin and 25 µg/ml streptomycin). The cells were
serum starved for six hours prior to stimulation with or without
100nM insulin for 0, 1, 2.5, 5, 15, 30, and 60min (t0, t1, t2.5, …, t60)
before being lysed and harvested in a buffer containing Tris, DTT,
protease and phosphatase inhibitor, and snap-frozen in liquid N2.
Protein concentration was determined using the PierceTM BCA
assay kit.

Sample preparation and mass spectrometry (MS)
For phosphoproteomic profiling, differentiated skeletal muscle cells
were solubilized in denaturing SDS buffer (100mM Tris-HCl, 4% SDS,
and 100mM DTT, supplemented with CompleteTM (Roche) and Phos-
STOP (Merck)) and homogenized by passing 10 times through a syr-
inge/26 gauge needle, followed by sonication. After centrifugation at
75,000 × g for 30min at 4 °C, supernatants were transferred to fresh
reaction tubes and protein concentrations were determined by direct
photometric measurements (Nanodrop, Thermo Fisher Scientific).
Protease digestion was conducted with the filter-aided sample pre-
paration (FASP) method48. Briefly, 1mg of total protein lysate was
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incubated for 10min at 96 °C and subsequently diluted 1:10 (v/v) with
urea buffer (UB: 8M urea, 100mMTris-HCl pH 8). After concentration
using filter devices (Amicon 30 kDa, Merck), samples were alkylated
(50mM iodoacetamide) for 15min at RT. After three times washing
with UB, protein digestion was performed utilizing LysC/Trypsin mix
(Promega) in a 1:25 (w/w) enzyme/protein ratio overnight at 37 °C.

Peptides were collected by centrifugation through the filter
device. Subsequently, peptides were acidified with trifluoroacetic acid
(TFA), a final concentration of 0.1% (v/v), and purified by C18 solid
phase extraction (Strata C18-E, 1 g/6ml, Phenomenex) according to the
manufacturer’s instructions. Eluates were lyophilized and subjected to
Sequential enrichment from Metal Oxide Affinity Chromatography
(SMOAC)49. For consecutive enrichment of phosphopeptides, we
applied the peptides to HiSelect TiO2 phosphopeptide enrichment
columns (Thermo Fisher Scientific PN#A32993) and used the corre-
sponding flow-through and wash fractions to load HiSelect Fe-NTA
phosphopeptide enrichment columns (Thermo Fisher Scientific
PN#32992). All steps of SMOAC enrichment were carried out accord-
ing to the manufacturer’s instructions.

For MS analysis, lyophilized phosphopeptides were then recon-
stituted in 1% TFA (v/v), including iRTpeptides (indexed retention time
peptides, Biognosys) and separated by liquid chromatography (Ulti-
mate 3000, Thermo Fisher Scientific). Accordingly, peptides were
trapped on an Acclaim PepMap C18-LC-column (ID: 75μm, 2 cm
length; PN#164535 Thermo Fisher Scientific) and subsequently sepa-
rated on a 50cm µPACTM (PN#552503518050, Pharmafluidics) column
connected to an EASYspray ion source of an Orbitrap Fusion Lumos
mass spectrometer (Thermo Fisher Scientific).

Peptides were separated using a 100min linear gradient from
buffer A (0.1% formic acid) to 1–34% buffer B (80% ACN, 0.1% formic
acid) at a flow rate of 300nl/min followed by a 20min linear gradient
increasing buffer B to 50% and a 1min linear gradient increasing buffer
B to 90%. Column temperature was set to 40 °C.

MS data were acquired in duplicate on an Orbitrap Fusion Lumos
instrument (Thermo Fisher Scientific) operated in data-dependent
mode.MS spectrawereobtained at 120,000 resolution (3 s cycle time),
m/z range of 350–1600, and a target value of 45 ions, with a maximum
injection time of 50ms. For fragmentation precursor selection, filters
were set to charge state between 2 and 7, dynamic exclusion of 30 s,
and intensity threshold of 2.54. Fragmentation of precursors was done
with an isolation window (m/z) 1.2, HCD (Higher-energy collisional
dissociation) energy of 32%, Orbitrap resolution of 30,000, and an ion
target value of 1.05 with a maximum injection time of 120ms.

Analysis of mass spectrometry raw data
Mass spectrometry raw files were analyzed with Proteome
DiscovererTM 3.0 software (Thermo Fisher Scientific). ‘SpectrumRC’
node was used with the FASTA database (UniProtKB database,
reviewed SwissProt, Homo Sapiens TaxID=9606, v2022-01-30 for
phosphoproteome and v2022-03-30 for total proteome analysis) to
recalibrate spectra. For quantification purposes, the ‘Minora Feature
Detector’nodewasusedwith standard settings (minimum trace length
5, max. delta RT of isotope pattern multiplets of 0.2min, and for fea-
ture to ID linking, use only high confident PSMs). HTsequest search
was done against UniProtKB database (reviewed SwissProt, Homo
Sapiens TaxID=9606, v2022-01-30 for phosphoproteome and v2022-
03-30 for total proteome analysis), the enzyme was set to trypsin with
maximum of 2 missed cleavage sites allowed. For HCD fragmentation,
b and y Ions were selected with a fragment mass tolerance of 0.02Da.
Carbamidomethylation of cysteine was set as a fixed modification.
N-terminal acetylation, N-terminal methionine loss, N-terminal
methionine loss, and acetylation, methionine oxidation, as well as
phosphorylation (+79.699Da) of serine, threonine, or tyrosine were
allowed as variable modifications. The percolator node (max delta Cn:
0.01) and the ptmRS node included in Proteome DiscovererTM were

applied. Label-free quantification of phosphopeptides using nested
design was performed with RT alignment of max 10min, precursor
mass toleranceof 10 ppm, and aminimumS/N thresholdof 5 for linked
and mapped features. Precursor abundance quantification was based
on intensity and a minimum occurrence of 20% in the replicate fea-
tures. Sample loading normalization of phosphopeptide abundances
was performed by the ‘Precursor Ions Quantifier’ node based on total
phosphopeptide content. Missing values were imputed using
replicate-based resampling.

Sample preparation for RNA sequencing
Human myotubes were cultured as described above. RNA from basal
and insulin-stimulated cells (100 nM, 1 h) was isolated using the
RNeasy® Plus Mini Kit (Qiagen PN#74134) according to the Manu-
facturer’s instructions. Whole transcriptome sequencing (2 technical
replicates) was conducted at the Genomics & Transcriptomics
Laboratory (https://www.gtl.hhu.de/en/). Prior to library preparation,
total RNA samples were fluorometrically quantified via Qubit RNA HS
Assay (Thermo Fisher Scientific), and quality was measured by capil-
lary electrophoresis using the Fragment Analyzer and the ‘Total RNA
Standard Sensitivity Assay’ (Agilent Technologies). All samples in this
study showedhigh-quality RNAQuality Numbers (RQNabove 9.8). The
library preparation was performed according to the manufacturer’s
protocol using the ‘Illumina Stranded Total RNA Prep, Ligation with
Ribo-Zero Plus Library Prep Kit’ (Illumina Inc.; Document #
1000000124514 v02). Briefly, 500ng total RNAwasused for ribosomal
depletion, fragmentation, synthesis of cDNA, adapter ligation, and
library amplification. Bead-purified libraries were normalized and
subsequently sequenced on the NextSeq 2000 system (Illumina Inc.)
with a paired-end read setup of 2 × 151 bp and a sequencing depth of
around 30 million reads per sample. The bcl2fastq2 tool was used to
convert the bcl files to fastq files as well for adapter trimming and
demultiplexing. The median/mean CVs of the read counts (26,848
transcripts) from the 3 donors were approx. 27%/33% for both basal
and insulin-stimulated states, indicating moderate variation of tran-
script abundance in the samples.

Bioinformatics
General. All bioinformatic analyses, unless explicitly described
otherwise below, were performed using a custom data analysis pipe-
line that we implemented in R v4.2.150. For data analysis using this
pipeline, quantitative phosphoproteomics data were imported from
ProteomeDiscoverer into R. The normalized abundances of peptides,
time point-specific abundance ratios of peptides against basal time
point t0, abundance ratio p-values, adjusted abundance ratio p-values,
peptide and protein identifications, and phosphosite localizations
generated by Proteome Discoverer were adopted for our bioinfor-
matic analyses.

Regulated phosphopeptides. As a basic analysis step, we identified
per time point those phosphopeptides that showed significant differ-
ential phosphorylation compared with the basal time point t0.
According to our criteria, these differential or regulated phospho-
peptides had to have an abundance ratio against t0 of >1.5 (upregu-
lated phosphopeptides) or <2/3 (downregulated phosphopeptides), as
well as an abundance ratio p-value of <0.05. To retain a sufficiently
large number of differential phosphopeptides in all time points over
time and for all donors as input for the downstream cross-time point
analyses, the unadjusted p-value was chosen for the threshold at this
point. The 2741 differential phosphopeptides identified using these
criteria were visualized with volcano plots, where the dashed lines
represent the thresholds p < 0.05 and fold change >1.5 or <2/3 vs. t0. In
contrast, if the adjusted p-value had been chosen here, only 1521 dif-
ferential phosphopeptides would have been included in the down-
stream analyses.
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Principal component analysis and total proteome. For principal
component analysis (PCA) and all subsequent time course overlapping
analyses, a filtered dataset was used with 11,517 phosphopeptides
quantified at all time points t1–t60 in all subjects (i.e., no missing (‘NA’)
values; for comparison: 11,612 phosphopeptides were counted as
quantified if theywerequantified at all timepoints in at least onedonor
only). Moreover, for PCA computation and visualization based on
regulated phosphopeptides, the most differential 714 phosphopep-
tides were filtered using the more stringent criteria of p-value < 0.01
and ratio against t0 > 3 or <1/3 (for comparison: 809 phosphopeptides
were quantified at all timepoints in at least one donor only) to obtain a
robust group separation. For comparison, PCA with all 11,517 phos-
phopeptides without NA values has also been performed.

To account forpotential differences in protein abundance, the 714
most differential phosphopeptides of the phosphoproteome were
mapped to the 167 corresponding non-phosphorylated peptides
quantified in the total proteome with the same amino acid sequence.
Conversely, all 25,803 non-phosphorylated peptides quantified in the
total proteome were mapped to the 125 corresponding phosphopep-
tides quantified in the analysis of the phosphoproteome and included
in the set of the 714most differential phosphopeptides. The respective
mapped peptides in the phosphoproteome and total proteome were
used to perform PCAs in the phosphoproteome and total proteome,
respectively. For comparison, also PCA with all 25,803 total proteome
peptides was performed.

Analysis of phosphorylation kinetics. To investigate the inter-donor
variability in phosphorylation kinetics of phosphosites, only the
abundance values of the 8301monophosphorylated phosphopeptides
quantified at all time points t0–t60 and in all donors were considered.
Pearson’s correlation coefficients (Pearson’s r) were calculated for
each of these phosphopeptides for all 10 different donor pairs. In the
method used, the seven time point-specific abundance values of a
particular donor were combined into a temporal profile for each
phosphopeptide. Mathematically, the profile ai for the Donor A and
phosphopeptide i is a seven-dimensional vector of abundance values
aij where j 2 ft0, t1, t2:5, t5, t15, t30, t60g represents one of the seven
time points. Each of the five donor-specific temporal profiles ai, bi, ci,
di and ei represents the realization of a variable that is independent of
the other four variables, since sample-matched values, by definition,
are only foundwithin a profile and not between two profiles. To assess
donor variability, we calculated Pearson’s correlation coefficient r for
each of the 10 pairwise combinations ðai ,biÞ, ðai , ciÞ, ðai , diÞ, ðai , eiÞ,
ðbi , ciÞ, ðbi , diÞ, ðbi , eiÞ, ðci , diÞ, ðci , eiÞ, ðdi , eiÞ of the five independent
profiles, aswell as the average correlation coefficient across the 10 pair
combinations. Pearson’s correlation coefficient, which identifies linear
correlation relationships, allowed us to validate kinetics with very low
inter-donor variability using 8301 plots of donor-specific curves of
phosphopeptide abundance values in the log2 scale. We used the
average of the respective Pearson’s r of the 10 donor pairings as a
measure of the inter-donor variability of the phosphorylation kinetics
of the respective phosphosites.

Kinase-substrate overrepresentation analysis. To analyze kinase
activity over time after insulin stimulation, we performed a kinase-
substrate overrepresentation analysis (KSORA). In this analysis, an
overrepresentation analysis (ORA)was used to test whether kinases are
statistically significantly overrepresented at a given time point t1–t60
because their respective phosphosites are located in phosphopeptides
that are differential at that time point. We downloaded the necessary
information on which phosphosite is a substrate of which kinase from
the PhosphoSitePlus database15 (database version as of 09/09/2022).
This included 403 unique human kinases with their annotated sub-
strate phosphosites (13,664 kinase phosphosite annotations, i.e. an
average of 33.9 phosphosites per kinase and 9540 unique

phosphosites). For KSORA, we used a total of 319 phosphosites quan-
tified in our dataset (out of a total of 2996 phosphosites of all 4030
regulated phosphopeptides, which did not need to be quantified at all
time points) for which we found a matching kinase-substrate annota-
tion in PhosphoSitePlus. This made it possible to check which of these
phosphosites were located in a differential phosphopeptide at which
time point t1–t60. With this information, a Fisher’s exact test-based p-
value was calculated for each of the corresponding kinases using the
function enrichmentTest of theRpackageClueRv1.451, expressing their
overrepresentation. These p-values were adjusted using the
Benjamini–Hochberg method to obtain associated FDR values. Finally,
KSORA results were visualized in a heat map of 19 kinases with the
lowest p-values (p <0.075), in which the colors represent the asso-
ciated −log10(FDR) values in the z-score scale of each kinase across the
six time points. To further clarify the KSORA results, the respective
numbers of substrates over time were visualized with bar plots for the
10 most overrepresented kinases. Finally, the top 35 kinases with the
lowest p-values (p <0.15) were placed in a phylogenetic kinase family
tree. The software tool Coral was used for this purpose52.

Network propagation. The PPI network provided by the Con-
sensusPathDB, version 3553 was used as a scaffold for mapping the
phosphoprotein data. This network has been integrated from 18 dif-
ferent public resources such as BIND, Biogrid, Reactome, and INTACT,
among others, and showed very good performance in a comprehen-
sive network propagation benchmark study54. Individual PPIs have
been assigned a confidence value, c, (range [0,1]) that incorporates
topological as well as annotation-based criteria55. For this study, we
used the high confidence PPIs (c ≥0.9) resulting in a network of 10,642
different proteins and 139,266 interactions.

We used a subset of 1552 significantly regulated phosphopeptides
with continuous quantitative information for each time point (no
missing values in t1–t60; however,missing values in t0 allowed; adjusted
p-value < 0.05 in at least one of t1–t60), which were mapped to 905
unique HNGC accessions. For each time point t1–t60, a separate net-
work propagation was performed: proteins (network nodes) were
scored according to the significance of their deviation from t0. Let pij
be the adjusted p-value of the statistical test for an abundance of
phosphopeptide i in time point tj compared with time point t0, then
the score for the corresponding protein is -log(pij). If more than one
phosphopeptide is associated with the protein, the largest score is
used. Thus, for each time point, the network initialization reflects the
significance of the phosphopeptide abundance differences from the
control time point.

Network propagation was done with the NetCore tool18 with a two-
step procedure: In the first step, initial node weights were spread
through the network with a modified random walk with a restart pro-
cedure toobtain a re-rankingof the initial nodeweights. The reweighted
nodes were then compared against random permutations of the net-
work, and a p-value was assigned to each node. In the second step,
significantly reweighted nodes were connected with seed nodes (top
100 nodes from the initialization) in order to compute subgraphs that
represent parts of the PPI network that are mostly affected by the data.

Network dynamics analysis. Following the network propagation for
each time point, the resulting p proteins and their interactions were
merged into a single non-redundant network, which was subsequently
integrated as nodes and edges into Cytoscape V3.9.156. Additional
databases and manually curated information regarding protein func-
tion (Kinase or Phosphatase) as well as derivation of the nodes
(through input or propagation) were added and mapped to the net-
work as color and shape, respectively.

Pathway overrepresentation analysis. For the pathway over-
representation analysis pathways from the Reactome pathway
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database57 were used. Our data analysis pipeline used the R package
ReactomePA v1.4.058 to perform the pathway overrepresentation
analysis based on differential proteins found in early (t1, t2.5), inter-
mediate (t5, t15), and late (t30, t60) time points. Thus, a total of 734
unique differential phosphopeptides from the early time points, 816
from the middle time points, and 1080 from the late time points were
mapped to the respective genes (Entrez IDs) of their respective unique
proteins. The resulting three sets of genes were passed as input to the
enrichPathway function of ReactomePA using Fisher’s exact test to
calculate p-values and adjust them (FDR computation via the method
of Benjamini and Hochberg) in order to identify overrepresented
Reactome pathways. Then, 60 statistically significantly over-
represented pathways with the lowest p-values (where all respective
FDRs <0.00175 after p-value adjustment) were taken from each of the
three time periods early, intermediate, and late. Due to overlaps, this
was a total of 90 distinct overrepresented pathways. Of these, 30
pathways covering themost diverse biological functionswere selected
and visualized in a heat map (function heatmap.2 of the R package
gplots v3.1.359), where colors represent z-scores of −log10(FDR) values,
to show the varying overrepresentation of their respective phospho-
proteins in the early, intermediate and late time points after insulin
stimulation. For six selected Reactome pathways, the respective
numbers of associated up- and downregulated differential phospho-
peptides were visualized with bar plots across the three time periods
using the R packages ggplot2 v3.3.660 and ggpubr v0.4.061. Moreover,
for each of the 30 pathways shown in the heatmap, themean values of
their respective average inter-donor Pearson’s r of the respective
associated differential phosphopeptides were computed as a measure
for inter-donor pathway variability. After sorting the 30 pathways by
thesemean values, the pathway-specific distributions of average inter-
donor Pearson’s r were visualized along with their respective mean
values in a strip chart.

Splicing analysis. The general pipeline was generated with Python
(v.3.7) and R (v4.2.3) in snakemake62. RNA reads were mapped to the
human genome (hg38, GRCh38.primary_assembly.genome.fa) with
STAR v2.7.10b63 using the GENCODE annotation (gencode.v44.
primary_assembly.annotation.gtf)64. Subsequently, the genome align-
ments were analyzed with rMATS-turbo (v4.2.0)65 and additionally
counted with kallisto66. Further downstream analysis was done fol-
lowing the pipeline and parameters according to Love67 with
DRIMSeq68.

Temporal dynamics of relative phosphosite occupancy. We used
the abundance value ratios of the phosphopeptides relative to time
zero (t0) to determine the relative occupancy of the respective site.
The information on the number and identity of phosphopeptides that
are differentially regulated compared to t0 for each time point (t1–t60)
was plotted as a Sankey flow diagram to visualize the temporal
dynamics of the underlying phosphorylations and depho-
sphorylations. The R packages ggplot2 v3.3.660, ggsankey
v0.0.9999969, and dplyr v1.0.970 were used for this purpose. We used a
self-developed R code to group the regulated phosphopeptides into
temporal strands, allowing assessment of kinetics and duration of
regulated phosphorylation events, as well as visualization of strand-
specific properties and distributions of relative abundances (each
normalized by the maximum abundance) of the respective up- or
downregulated differential phosphopeptides using box plots.

Strand- and time-point-specific sequence motifs of the phos-
phorylation sites were visualized with the function ggseqlogo of the R
package ggseqlogo v0.171. For the visualization of the sequencemotifs
using ggseqlogo, the log10(bits+1) height method was used, with the
calculation of bits and their log10 scaling performed with self-
developed R code. The data structure was also used to automatically
perform time point-specific pathway ORAs using the R packages

ReactomePAv1.40.058 and topGOv2.48.072 for the respective temporal
strands and compare manually selected ORA results using multiple
databases with the CPDB web application53. Based on the ORA results,
the mapping to temporal strands was manually visualized for some
selectedReactome andGOpathways in diagramsdepictingdifferential
phosphopeptides of the respective pathway and their respective
phosphosites as color-coded containers. In these diagrams, the pre-
sence of a container represents the quantification of the correspond-
ing differential phosphopeptide at that particular time point, and its
color code corresponds to the strand-specific color code in the Sankey
flow diagram.
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tion and FAIR data management75. The RNASeq data have been depos-
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BioProject database (https://www.ncbi.nlm.nih.gov/bioproject/). Source
data are provided with this paper.
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