Table 2 Architecture of the convolutional neural network used in this work

From: Insightful classification of crystal structures using deep learning

Layer type

Specifications

Convolutional layer

(Kernel: 7 × 7; 32 filters)

Convolutional layer

(Kernel: 7 × 7; 32 filters)

Max pooling layer

(Pool size: 2 × 2; stride: 2 × 2)

Convolutional layer

(Kernel: 7 × 7; 16 filters)

Convolutional layer

(Kernel: 7 × 7; 16 filters)

Max pooling layer

(Pool size: 2 × 2; stride: 2 × 2)

Convolutional layer

(Kernel: 7 × 7; 8 filters)

Convolutional layer

(Kernel: 7 × 7; 8 filters)

Fully connected layer + dropout

(Size: 128; dropout: 25%)

Batch normalization

(Size: 128)

Softmax

(Size: 7)