+
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Identification of potential biomarkers for hypertension based on transcriptomic analysis in rats

A Comment to this article was published on 09 June 2025

Abstract

Hypertension is a complex disorder influenced by genetic predisposition, neural and endocrine dysregulation, cardiovascular and renal dysfunction, and unhealthy lifestyles. It is a major risk factor for many diseases. However, the pathophysiological mechanisms underlying hypertension have not been systematically characterized to date. In this study, we compared physiological and molecular changes between spontaneously hypertensive rats (SHR) and Wistar Kyoto (WKY, control strain) models using RNA sequencing. Blood pressure increased significantly in SHR models over 3–15 weeks compared with WKY control rats. Furthermore, indicators of cardiac remodeling and fibrosis were elevated in SHR on echocardiography and immunohistochemical analyses. RNA sequencing findings revealed differentially expressed genes between SHRs and WKYs in each week, which were related to dysregulation of Epstein-Barr virus infection, fluid shear stress and atherosclerosis, RNA degradation, and endocrine resistance. Transcriptome analysis showed that differentially expressed genes related to hypertension were involved in the hypoxia inducible factor-1 (HIF-1) and interleukin-17 (IL-17) signaling pathways. Furthermore, Gene Ontology (GO) functional analysis showed that differentially expressed genes were mainly associated with catalytic activity and protein binding. The Venn diagram analysis identified KCNE1, Lad1, SLC9A3, and Frzb as potential targets of hypertension. In addition, the expression of these four genes exhibited excellent sensitivity and specificity, suggesting their potential diagnostic utility in hypertension. These findings support a theoretical basis for understanding hypertension and related heart remodeling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Carey RM, Moran AE, Whelton PK. Treatment of hypertension: a review. JAMA. 2022;328:1849–61.

    Article  PubMed  CAS  Google Scholar 

  2. Flack JM, Adekola B. Blood pressure and the new ACC/AHA hypertension guidelines. Trends Cardiovasc Med. 2020;30:160–4.

    Article  PubMed  Google Scholar 

  3. Vischer AS, Burkard T. How should we measure and deal with office blood pressure in 2021? Diagnostics (Basel). 2021;11:235.

    Article  PubMed  Google Scholar 

  4. Dzau VJ, Hodgkinson CP. Precision hypertension. Hypertension. 2024;81:702–8.

    Article  PubMed  CAS  Google Scholar 

  5. Egan BM, Kjeldsen SE, Grassi G, Esler M, Mancia G. The global burden of hypertension exceeds 1.4 billion people: should a systolic blood pressure target below 130 become the universal standard? J Hypertens. 2019;37:1148–53.

    Article  PubMed  CAS  Google Scholar 

  6. Trillaud E, Klemmer P, Malin SK, Erdbrugger U. Tracking biomarker responses to exercise in hypertension. Curr Hypertens Rep. 2023;25:299–311.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Kotta PA, Nambi V. Biomarker guided management of hypertension. Curr Opin Nephrol Hypertens. 2023;32:427–33.

    Article  PubMed  CAS  Google Scholar 

  8. Drazner MH. The progression of hypertensive heart disease. Circulation. 2011;123:327–34.

    Article  PubMed  Google Scholar 

  9. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018;39:3021–104.

    Article  PubMed  Google Scholar 

  10. Ismail TF, Frey S, Kaufmann BA, Winkel DJ, Boll DT, Zellweger MJ, et al. Hypertensive heart disease-the imaging perspective. J Clin Med. 2023;12:3122.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Okin PM, Devereux RB, Jern S, Kjeldsen SE, Julius S, Nieminen MS, et al. Regression of electrocardiographic left ventricular hypertrophy during antihypertensive treatment and the prediction of major cardiovascular events. JAMA. 2004;292:2343–9.

    Article  PubMed  CAS  Google Scholar 

  12. Nemtsova V, Burkard T, Vischer AS. Hypertensive heart disease: a narrative review series-part 2: macrostructural and functional abnormalities. J Clin Med 2023;12:5723.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Velculescu VE, Zhang L, Zhou W, Vogelstein J, Basrai MA, Bassett DE Jr, et al. Characterization of the yeast transcriptome. Cell. 1997;88:243–51.

    Article  PubMed  CAS  Google Scholar 

  14. Dal Molin A, Baruzzo G, Di Camillo B. Single-cell RNA-sequencing: assessment of differential expression analysis methods. Front Genet. 2017;8:62.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Stark R, Grzelak M, Hadfield J. RNA sequencing: the teenage years. Nat Rev Genet. 2019;20:631–56.

    Article  PubMed  CAS  Google Scholar 

  16. Zhang W, Zhang Y, Xia Y, Feng G, Wang Y, Wei C, et al. Choline induced cardiac dysfunction by inhibiting the production of endogenous hydrogen sulfide in spontaneously hypertensive rats. Physiol Res. 2023;72:719–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Doggrell SA, Brown L. Rat models of hypertension, cardiac hypertrophy and failure. Cardiovasc Res. 1998;39:89–105.

    Article  PubMed  CAS  Google Scholar 

  18. Meng C, Jin X, Xia L, Shen SM, Wang XL, Cai J, et al. Alterations of mitochondrial enzymes contribute to cardiac hypertrophy before hypertension development in spontaneously hypertensive rats. J Proteome Res. 2009;8:2463–75.

    Article  PubMed  CAS  Google Scholar 

  19. Gu F, Randall EB, Whitesall S, Converso-Baran K, Carlson BE, Fink GD, et al. Potential role of intermittent functioning of baroreflexes in the etiology of hypertension in spontaneously hypertensive rats. JCI Insight. 2020;5:e139789.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Xu ML, Yu XJ, Zhao JQ, Du Y, Xia WJ, Su Q, et al. Calcitriol ameliorated autonomic dysfunction and hypertension by down-regulating inflammation and oxidative stress in the paraventricular nucleus of SHR. Toxicol Appl Pharm. 2020;394:114950.

    Article  CAS  Google Scholar 

  21. Gaudet P, Skunca N, Hu JC, Dessimoz C. Primer on the gene ontology. Methods Mol Biol. 2017;1446:25–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K. KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res. 2017;45:D353–D361.

    Article  PubMed  CAS  Google Scholar 

  23. Animals NRCUCftUotGftCaUoL. Guide for the Care and Use of Laboratory Animals, 8th edition. National Academies Press (US), Washington, DC, 2011.

  24. Kilkenny C, Browne W, Cuthill IC, Emerson M, Altman DG, National Centre for the Replacement, Refinement and Reduction of Amimals in R. Animal research: reporting in vivo experiments-the ARRIVE guidelines. J Cereb Blood Flow Metab. 2011;31:991–3.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Feng R, Ullah M, Chen K, Ali Q, Lin Y, Sun Z. Stem cell-derived extracellular vesicles mitigate ageing-associated arterial stiffness and hypertension. J Extracell Vesicles. 2020;9:1783869.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Wang H, Yuan Z, Wang B, Li B, Lv H, He J, et al. COMP (Cartilage Oligomeric Matrix Protein), a Novel PIEZO1 Regulator That Controls Blood Pressure. Hypertension. 2022;79:549–61.

    Article  PubMed  Google Scholar 

  27. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010;26:139–40.

    Article  PubMed  CAS  Google Scholar 

  28. Zhang C, Zhang B, Lin LL, Zhao S. Evaluation and comparison of computational tools for RNA-seq isoform quantification. BMC Genomics. 2017;18:583.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kemp CD, Conte JV. The pathophysiology of heart failure. Cardiovasc Pathol. 2012;21:365–71.

    Article  PubMed  CAS  Google Scholar 

  30. Burchfield JS, Xie M, Hill JA. Pathological ventricular remodeling: mechanisms: part 1 of 2. Circulation. 2013;128:388–400.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Elmarakby AA, Sullivan JC. Sex differences in hypertension: lessons from spontaneously hypertensive rats (SHR). Clin Sci (Lond). 2021;135:1791–804.

    Article  PubMed  CAS  Google Scholar 

  32. Wei J, Tan F, Long X, Fang Q, Wang Y, Wang J, et al. RNA-Seq transcriptome analysis of renal tissue from spontaneously hypertensive rats revealed renal protective effects of dapagliflozin, an inhibitor of sodium-glucose cotransporter 2. Eur J Pharm Sci. 2023;189:106531.

    Article  PubMed  CAS  Google Scholar 

  33. Li J, Kemp BA, Howell NL, Massey J, Mińczuk K, Huang Q, et al. Metabolic changes in spontaneously hypertensive rat hearts precede cardiac dysfunction and left ventricular hypertrophy. J Am Heart Assoc. 2019;8:010926.

    Article  Google Scholar 

  34. Noresson E, Ricksten SE, Thoren P. Left atrial pressure in normotensive and spontaneously hypertensive rats. Acta Physiol Scand. 1979;107:9–12.

    Article  PubMed  CAS  Google Scholar 

  35. Kockskamper J, Pluteanu F. Left atrial myocardium in arterial hypertension. Cells. 2022;11:3157.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Trott DW, Harrison DG. The immune system in hypertension. Adv Physiol Educ. 2014;38:20–24.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Madhur MS, Lob HE, McCann LA, Iwakura Y, Blinder Y, Guzik TJ, et al. Interleukin 17 promotes angiotensin II-induced hypertension and vascular dysfunction. Hypertension. 2010;55:500–7.

    Article  PubMed  CAS  Google Scholar 

  38. Nguyen H, Chiasson VL, Chatterjee P, Kopriva SE, Young KJ, Mitchell BM. Interleukin-17 causes Rho-kinase-mediated endothelial dysfunction and hypertension. Cardiovasc Res. 2013;97:696–704.

    Article  PubMed  CAS  Google Scholar 

  39. Dhillion P, Wallace K, Herse F, Scott J, Wallukat G, Heath J, et al. IL-17-mediated oxidative stress is an important stimulator of AT1-AA and hypertension during pregnancy. Am J Physiol Regul Integr Comp Physiol. 2012;303:R353–358.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Dong P, Li Q, Han H. HIF‑1alpha in cerebral ischemia (Review). Mol Med Rep. 2022;25:41.

    Article  PubMed  CAS  Google Scholar 

  41. Wang Q, Lin J, Li C, Lin M, Zhang Q, Zhang X, et al. Traditional Chinese medicine method of tonifying kidney for hypertension: clinical evidence and molecular mechanisms. Front Cardiovasc Med. 2022;9:1038480.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Jama HA, Muralitharan RR, Xu C, O'Donnell JA, Bertagnolli M, Broughton B, et al. Rodent models of hypertension. Br J Pharm. 2022;179:918–37.

    Article  CAS  Google Scholar 

  43. Mancia G, Grassi G. The autonomic nervous system and hypertension. Circ Res. 2014;114:1804–14.

    Article  PubMed  CAS  Google Scholar 

  44. Simms AE, Paton JF, Pickering AE, Allen AM. Amplified respiratory-sympathetic coupling in the spontaneously hypertensive rat: does it contribute to hypertension? J Physiol. 2009;587:597–610.

    Article  PubMed  CAS  Google Scholar 

  45. Abbott GW. KCNE1 and KCNE3: The yin and yang of voltage-gated K(+) channel regulation. Gene 2016;576:1–13.

    Article  PubMed  CAS  Google Scholar 

  46. Muhammad A, Calandranis ME, Li B, Yang T, Blackwell DJ, Harvey ML, et al. High-throughput functional mapping of variants in an arrhythmia gene, KCNE1, reveals novel biology.Genome Med. 2024;16:73.

  47. George AL Jr. Association of a common KCNE1 variant with heart failure. Heart Rhythm. 2010;7:368–9.

    Article  PubMed  Google Scholar 

  48. Mondejar-Parreno G, Perez-Vizcaino F, Cogolludo A. Kv7 channels in lung diseases. Front Physiol. 2020;11:634.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Schotten U, Verheule S, Kirchhof P, Goette A. Pathophysiological mechanisms of atrial fibrillation: a translational appraisal. Physiol Rev. 2011;91:265–325.

    Article  PubMed  Google Scholar 

  50. Hu L, Liu Y, Fu C, Zhao J, Cui Q, Sun Q, et al. The tumorigenic effect of the high expression of ladinin-1 in lung adenocarcinoma and its potential as a therapeutic target. Molecules. 2023;28:1103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Jiang Y, Feng Y, Huang J, Huang Z, Tan R, Li T, et al. LAD1 promotes malignant progression by diminishing ubiquitin-dependent degradation of vimentin in gastric cancer. J Transl Med. 2023;21:632.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Li J, Wang Z, Tie C. High expression of ladinin-1 (LAD1) predicts adverse outcomes: a new candidate docetaxel resistance gene for prostatic cancer (PCa). Bioengineered. 2021;12:5749–59.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Herum KM, Lunde IG, Skrbic B, Louch WE, Hasic A, Boye S, et al. Syndecan-4 is a key determinant of collagen cross-linking and passive myocardial stiffness in the pressure-overloaded heart. Cardiovasc Res. 2015;106:217–26.

    Article  PubMed  CAS  Google Scholar 

  54. Zhuo JL, Soleimani M, Li XC. New insights into the critical importance of intratubular Na(+)/H(+) exchanger 3 and its potential therapeutic implications in hypertension. Curr Hypertens Rep. 2021;23:34.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. LaPointe MS, Sodhi C, Sahai A, Batlle D. Na+/H+ exchange activity and NHE-3 expression in renal tubules from the spontaneously hypertensive rat. Kidney Int. 2002;62:157–65.

    Article  PubMed  CAS  Google Scholar 

  56. Wang S, Krinks M, Lin K, Luyten FP, Moos M Jr. Frzb, a secreted protein expressed in the Spemann organizer, binds and inhibits Wnt-8. Cell. 1997;88:757–66.

    Article  PubMed  CAS  Google Scholar 

  57. Vallee A, Vallee JN, Lecarpentier Y. WNT/beta-catenin pathway: a possible link between hypertension and Alzheimer’s disease. Curr Hypertens Rep. 2022;24:465–75.

    Article  PubMed  CAS  Google Scholar 

  58. Goswami VG, Patel BD. Recent updates on Wnt signaling modulators: a patent review (2014–2020). Expert Opin Ther Pat. 2021;31:1009–43.

    Article  PubMed  CAS  Google Scholar 

Download references

Funding

Beijing Municipal Public Welfare Research Institute Industry Fixed Fund (NO.2024-008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuoguang Wang.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, W., Liu, J., Liu, Y. et al. Identification of potential biomarkers for hypertension based on transcriptomic analysis in rats. Hypertens Res 48, 1939–1950 (2025). https://doi.org/10.1038/s41440-025-02200-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41440-025-02200-4

Keywords

This article is cited by

Search

Quick links

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载