+
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Mini Review
  • Mini review series: Current topic in Hypertension 2024
  • Published:

Assessment of blood pressure variability: characteristics and comparison of blood pressure measurement methods

Abstract

Previous studies have reported that blood pressure variability (BPV) is associated with the risk of cardiovascular events independent of blood pressure (BP) levels. While there is little evidence from intervention trials examining whether suppressing BPV is useful in preventing cardiovascular disease, it is suggested that detection of abnormally elevated BPV may be useful in reducing cardiovascular events adding by complementing management of appropriate BP levels. Cuffless BP devices can assess beat-to-beat BPV. Although cuffless BP monitoring devices have measurement accuracy issues that need to be resolved, this is an area of research where the evidence is accumulating rapidly, with many publications on beat-to-beat BPV over several decades. Ambulatory BP monitoring (ABPM) can assess 24-hour BPV and nocturnal dipping patterns. Day-to-day BPV and visit-to-visit BPV are assessed by self-measured BP monitoring at home and office BP measurement, respectively. 24 h, day-to-day, and visit-to-visit BPV have been reported to be associated with cardiovascular prognosis. Although there have been several studies comparing whether ABPM and self-measured BP monitoring at home is the superior measurement method of BPV, no strong evidence has been accumulated that indicates whether ABPM or self-measured home BP is superior. ABPM and self-measured BP monitoring have their own advantages and complement each other in the assessment of BPV.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1

Similar content being viewed by others

References

  1. Fuchs FD, Whelton PK. High Blood Pressure and Cardiovascular Disease. Hypertension. 2020;75:285–92.

    CAS  PubMed  Google Scholar 

  2. Rothwell PM, Howard SC, Dolan E, O’Brien E, Dobson JE, Dahlöf B, et al. Prognostic significance of visit-to-visit variability, maximum systolic blood pressure, and episodic hypertension. Lancet. 2010;375:895–905.

    PubMed  Google Scholar 

  3. Muntner P, Shimbo D, Tonelli M, Reynolds K, Arnett DK, Oparil S. The relationship between visit-to-visit variability in systolic blood pressure and all-cause mortality in the general population: findings from NHANES III, 1988 to 1994. Hypertension. 2011;57:160–6.

    CAS  PubMed  Google Scholar 

  4. Johansson JK, Niiranen TJ, Puukka PJ, Jula AM. Prognostic value of the variability in home-measured blood pressure and heart rate: the Finn-Home Study. Hypertension. 2012;59:212–8.

    CAS  PubMed  Google Scholar 

  5. Mena LJ, Felix VG, Melgarejo JD, Maestre GE. 24-Hour Blood Pressure Variability Assessed by Average Real Variability: A Systematic Review and Meta-Analysis. J Am Heart Assoc. 2017;6:e006895.

  6. Hoshide S, Yano Y, Mizuno H, Kanegae H, Kario K. Day-by-Day Variability of Home Blood Pressure and Incident Cardiovascular Disease in Clinical Practice: The J-HOP Study (Japan Morning Surge-Home Blood Pressure). Hypertension. 2018;71:177–84.

    CAS  PubMed  Google Scholar 

  7. Narita K, Hoshide S, Kario K. Difference between morning and evening home blood pressure and cardiovascular events: the J-HOP Study (Japan Morning Surge-Home Blood Pressure). Hypertens Res. 2021;44:1597–605.

    PubMed  Google Scholar 

  8. Fujiwara T, Hoshide S, Kanegae H, Kario K. Clinical Impact of the Maximum Mean Value of Home Blood Pressure on Cardiovascular Outcomes: A Novel Indicator of Home Blood Pressure Variability. Hypertension. 2021;78:840–50.

    CAS  PubMed  Google Scholar 

  9. Wright JT Jr, Williamson JD, Whelton PK, Snyder JK, Sink KM, Rocco MV, et al. A Randomized Trial of Intensive versus Standard Blood-Pressure Control. N. Engl J Med. 2015;373:2103–16.

    CAS  PubMed  Google Scholar 

  10. Zhang W, Zhang S, Deng Y, Wu S, Ren J, Sun G, et al. Trial of Intensive Blood-Pressure Control in Older Patients with Hypertension. N. Engl J Med. 2021;385:1268–79.

    CAS  PubMed  Google Scholar 

  11. Bundy JD, Li C, Stuchlik P, Bu X, Kelly TN, Mills KT, et al. Systolic Blood Pressure Reduction and Risk of Cardiovascular Disease and Mortality: A Systematic Review and Network Meta-analysis. JAMA Cardiol. 2017;2:775–81.

    PubMed  PubMed Central  Google Scholar 

  12. Rothwell PM, Howard SC, Dolan E, O’Brien E, Dobson JE, Dahlöf B, et al. Effects of beta blockers and calcium-channel blockers on within-individual variability in blood pressure and risk of stroke. Lancet Neurol. 2010;9:469–80.

    CAS  PubMed  Google Scholar 

  13. Yu J, Song Q, Bai J, Wu S, Bu P, Li Y, et al. Visit-to-Visit Blood Pressure Variability and Cardiovascular Outcomes in Patients Receiving Intensive Versus Standard Blood Pressure Control: Insights From the STEP Trial. Hypertension. 2023;80:1507–16.

    CAS  PubMed  Google Scholar 

  14. Narita K, Hoshide S, Kario K. Short- to long-term blood pressure variability: Current evidence and new evaluations. Hypertens Res. 2023;46:950–8.

    PubMed  Google Scholar 

  15. Sheikh AB, Sobotka PA, Garg I, Dunn JP, Minhas AMK, Shandhi MMH, et al. Blood Pressure Variability in Clinical Practice: Past, Present and the Future. J Am Heart Assoc. 2023;12:e029297.

    PubMed  PubMed Central  Google Scholar 

  16. Mogi M, Tanaka A, Node K, Tomitani N, Hoshide S, Narita K, et al. 2023 update and perspectives. Hypertens Res. 2024;47:6–32.

    PubMed  Google Scholar 

  17. Parati G, Bilo G, Kollias A, Pengo M, Ochoa JE, Castiglioni P, et al. Blood pressure variability: methodological aspects, clinical relevance and practical indications for management - a European Society of Hypertension position paper . J Hypertens. 2023;41:527–44.

    CAS  PubMed  Google Scholar 

  18. Schutte AE, Kollias A, Stergiou GS. Blood pressure and its variability: classic and novel measurement techniques. Nat Rev Cardiol. 2022;19:643–54.

    PubMed  PubMed Central  Google Scholar 

  19. Mukkamala R, Yavarimanesh M, Natarajan K, Hahn J-O, Kyriakoulis KG, Avolio AP, et al. Evaluation of the Accuracy of Cuffless Blood Pressure Measurement Devices: Challenges and Proposals. Hypertension. 2021;78:1161–7.

    CAS  PubMed  Google Scholar 

  20. Bakkar NZ, El-Yazbi AF, Zouein FA, Fares SA. Beat-to-beat blood pressure variability: an early predictor of disease and cardiovascular risk. J Hypertens. 2021;39:830–45.

    CAS  PubMed  Google Scholar 

  21. Webb AJS, Mazzucco S, Li L, Rothwell PM. Prognostic Significance of Blood Pressure Variability on Beat-to-Beat Monitoring After Transient Ischemic Attack and Stroke. Stroke. 2018;49:62–7.

    PubMed  Google Scholar 

  22. Webb AJS, Lawson A, Wartolowska K, Mazzucco S, Rothwell PM. Progression of Beat-to-Beat Blood Pressure Variability Despite Best Medical Management. Hypertension. 2021;77:193–201.

    CAS  PubMed  Google Scholar 

  23. Misaka T, Niimura Y, Yoshihisa A, Wada K, Kimishima Y, Yokokawa T, et al. Clinical impact of sleep-disordered breathing on very short-term blood pressure variability determined by pulse transit time. J Hypertens. 2020;38:1703–11.

    CAS  PubMed  Google Scholar 

  24. Kinoshita H, Saku K, Mano J, Mannoji H, Kanaya S, Sunagawa K. Very short-term beat-by-beat blood pressure variability in the supine position at rest correlates well with the nocturnal blood pressure variability assessed by ambulatory blood pressure monitoring. Hypertens Res. 2022;45:1008–17.

    PubMed  Google Scholar 

  25. Lohman T, Sible I, Kapoor A, Engstrom AC, Shenasa F, Alitin JPM, et al. Blood Pressure Variability, Central Autonomic Network Dysfunction, and Cerebral Small‐Vessel Disease in APOE4 Carriers. J Am Heart Assoc. 2024;13:e034116.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Abiri A, Chou E-F, Shen W, Fisher MJ, Khine M. Changes in beat-to-beat blood pressure and pulse rate variability following stroke. Sci Rep. 2023;13:19245.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Gibson LE, Henriques TS, Costa MD, Davis RB, Mittleman MA, Mathur P, et al. Comparison of Invasive and Noninvasive Blood Pressure Measurements for Assessing Signal Complexity and Surgical Risk in Cardiac Surgical Patients. Anesth Analg. 2020;130:1653–60.

    PubMed  Google Scholar 

  28. Henriques TS, Costa MD, Mathur P, Mathur P, Davis RB, Mittleman MA, et al. Complexity of preoperative blood pressure dynamics: possible utility in cardiac surgical risk assessment. J Clin Monit Comput. 2019;33:31–8.

    PubMed  Google Scholar 

  29. Stergiou GS, Mukkamala R, Avolio A, Kyriakoulis KG, Mieke S, Murray A, et al. Cuffless blood pressure measuring devices: review and statement by the European Society of Hypertension Working Group on Blood Pressure Monitoring and Cardiovascular Variability. J Hypertens. 2022;40:1449–60.

    CAS  PubMed  Google Scholar 

  30. Bradley CK, Shimbo D, Colburn DA, Pugliese DN, Padwal R, Sia SK, et al. Cuffless Blood Pressure Devices. Am J Hypertens. 2022;35:380–7.

    PubMed  PubMed Central  Google Scholar 

  31. Stergiou GS, Avolio AP, Palatini P, Kyriakoulis KG, Schutte AE, Mieke S, et al. European Society of Hypertension recommendations for the validation of cuffless blood pressure measuring devices: European Society of Hypertension Working Group on Blood Pressure Monitoring and Cardiovascular Variability. J Hypertens. 2023;41:2074–87.

    CAS  PubMed  Google Scholar 

  32. Joung J, Jung C-W, Lee H-C, Chae M-J, Kim H-S, Park J, et al. Continuous cuffless blood pressure monitoring using photoplethysmography-based PPG2BP-net for high intrasubject blood pressure variations. Sci Rep. 2023;13:8605.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Kario K, Hoshide S, Mizuno H, Kabutoya T, Nishizawa M, Yoshida T, et al. Nighttime Blood Pressure Phenotype and Cardiovascular Prognosis: Practitioner-Based Nationwide JAMP Study. Circulation. 2020;142:1810–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Ohkubo T, Hozawa A, Yamaguchi J, Kikuya M, Ohmori K, Michimata M, et al. Prognostic significance of the nocturnal decline in blood pressure in individuals with and without high 24-h blood pressure: the Ohasama study. J Hypertens. 2002;20:2183–9.

    CAS  PubMed  Google Scholar 

  35. Huart J, Persu A, Lengelé J-P, Krzesinski J-M, Jouret F, Stergiou GS. Pathophysiology of the Nondipping Blood Pressure Pattern. Hypertension. 2023;80:719–29.

    CAS  PubMed  Google Scholar 

  36. de la Sierra A, Staplin N, Ruilope LM, Gorostidi M, Vinyoles E, Segura J, et al. A blunted nocturnal blood pressure decline is associated with all-cause and cardiovascular mortality. J Hypertens. 2024(e-pub ahead of print 20240306; https://doi.org/10.1097/hjh.0000000000003712).

  37. Du Y, Zhu B, Liu Y, Zhou W, Du Z, Yang W, et al. Association between nocturnal blood pressure phenotype and adverse cardiovascular prognosis in patients with coronary heart disease and hypertension. J Clin Hypertens (Greenwich). 2024;26:405–15.

    CAS  PubMed  Google Scholar 

  38. Komori T, Eguchi K, Saito T, Hoshide S, Kario K. Riser Pattern Is a Novel Predictor of Adverse Events in Heart Failure Patients With Preserved Ejection Fraction. Circ J. 2017;81:220–6.

    CAS  PubMed  Google Scholar 

  39. Ueda T, Kawakami R, Nakada Y, Nakano T, Nakagawa H, Matsui M, et al. Differences in blood pressure riser pattern in patients with acute heart failure with reduced mid-range and preserved ejection fraction. ESC Heart Fail. 2019;6:1057–67.

    PubMed  PubMed Central  Google Scholar 

  40. Floras JS. Hypertension and Sleep Apnea. Can J Cardiol. 2015;31:889–97.

    PubMed  Google Scholar 

  41. Crinion SJ, Ryan S, Kleinerova J, Kent BD, Gallagher J, Ledwidge M, et al. Nondipping Nocturnal Blood Pressure Predicts Sleep Apnea in Patients With Hypertension. J Clin Sleep Med. 2019;15:957–63.

    PubMed  PubMed Central  Google Scholar 

  42. Kansui Y, Matsumura K, Morinaga Y, Inoue M, Sakata S, Oishi E, et al. Impact of obstructive sleep apnea on long-term blood pressure variability in Japanese men: a cross-sectional study of a work-site population. Hypertens Res. 2018;41:957–64.

    PubMed  Google Scholar 

  43. Tanaka R, Hattori N. Abnormal circadian blood pressure regulation and cognitive impairment in α-synucleinopathies. Hypertens Res. 2022;45:1908–17.

    PubMed  Google Scholar 

  44. Faraci FM, Scheer F. Hypertension: Causes and Consequences of Circadian Rhythms in Blood Pressure. Circ Res. 2024;134:810–32.

    CAS  PubMed  Google Scholar 

  45. Vichayanrat E, Low DA, Iodice V, Stuebner E, Hagen EM, Mathias CJ. Twenty-four-hour ambulatory blood pressure and heart rate profiles in diagnosing orthostatic hypotension in Parkinson’s disease and multiple system atrophy. Eur J Neurol. 2017;24:90–7.

    CAS  PubMed  Google Scholar 

  46. Resuehr D, Wu G, Johnson RL Jr, Young ME, Hogenesch JB, Gamble KL. Shift Work Disrupts Circadian Regulation of the Transcriptome in Hospital Nurses. J Biol Rhythms. 2019;34:167–77.

    PubMed  PubMed Central  Google Scholar 

  47. Kanbay M, Copur S, Demiray A, Tuttler KR. Cardiorenal Metabolic Consequences of Nighttime Snacking: Is it an Innocent Eating Behavior? Curr Nutr Rep. 2022;11:347–53.

    CAS  PubMed  Google Scholar 

  48. Matsumoto T, Tabara Y, Murase K, Setoh K, Kawaguchi T, Nagashima S, et al. Nocturia and increase in nocturnal blood pressure: the Nagahama study. J Hypertens. 2018;36:2185–92.

    CAS  PubMed  Google Scholar 

  49. Del Giorno R, Troiani C, Gabutti S, Stefanelli K, Puggelli S, Gabutti L. Impaired Daytime Urinary Sodium Excretion Impacts Nighttime Blood Pressure and Nocturnal Dipping at Older Ages in the General Population. Nutrients. 2020;12:2013.

  50. Kario K, Pickering TG, Umeda Y, Hoshide S, Hoshide Y, Morinari M, et al. Morning surge in blood pressure as a predictor of silent and clinical cerebrovascular disease in elderly hypertensives: a prospective study. Circulation. 2003;107:1401–6.

    PubMed  Google Scholar 

  51. Hoshide S, Kario K. Morning Surge in Blood Pressure and Stroke Events in a Large Modern Ambulatory Blood Pressure Monitoring Cohort: Results of the JAMP Study. Hypertension. 2021;78:894–6.

    CAS  PubMed  Google Scholar 

  52. de la Sierra A, Sierra C, Murillo M, Aiello TF, Mateu A, Almagro P. Pulse Wave Velocity and Blood Pressure Variability as Prognostic Indicators in Very Elderly Patients. J Clin Med. 2023;12:1510.

  53. Özkan G, Ulusoy Ş, Arıcı M, Derici Ü, Akpolat T, Şengül Ş, et al. Does Blood Pressure Variability Affect Hypertension Development in Prehypertensive Patients? Am J Hypertens. 2022;35:73–8.

    PubMed  Google Scholar 

  54. Cuspidi C, Carugo S, Tadic M. Blood pressure variability and target organ damage regression in hypertension. J Clin Hypertens (Greenwich). 2021;23:1159–61.

    PubMed  Google Scholar 

  55. Sible IJ, Nation DA. 24-H Blood Pressure Variability Via Ambulatory Monitoring and Risk for Probable Dementia in the SPRINT Trial. J Prev Alzheimers Dis. 2024;11:684–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Diaz KM, Shimbo D. Physical activity and the prevention of hypertension. Curr Hypertens Rep. 2013;15:659–68.

    PubMed  PubMed Central  Google Scholar 

  57. Fiuza-Luces C, Santos-Lozano A, Joyner M, Carrera-Bastos P, Picazo O, Zugaza JL, et al. Exercise benefits in cardiovascular disease: beyond attenuation of traditional risk factors. Nat Rev Cardiol. 2018;15:731–43.

    CAS  PubMed  Google Scholar 

  58. Joseph G, Marott JL, Torp-Pedersen C, Biering-Sørensen T, Nielsen G, Christensen AE, et al. Dose-Response Association Between Level of Physical Activity and Mortality in Normal, Elevated, and High Blood Pressure. Hypertension. 2019;74:1307–15.

    CAS  PubMed  Google Scholar 

  59. Kario K, Tomitani N, Kanegae H, Yasui N, Nishizawa M, Fujiwara T, et al. Development of a New ICT-Based Multisensor Blood Pressure Monitoring System for Use in Hemodynamic Biomarker-Initiated Anticipation Medicine for Cardiovascular Disease: The National IMPACT Program Project. Prog Cardiovasc Dis. 2017;60:435–49.

    PubMed  Google Scholar 

  60. Kario K, Hoshide S, Saito K, Sato K, Hamasaki H, Suwa H, et al. Validation of the TM-2441 ambulatory blood pressure measurement device according to the ISO 81060-2: 2013 standard. Blood Press Monit. 2019;24:38–41.

    PubMed  Google Scholar 

  61. Narita K, Hoshide S, Kario K. Improvement of Actisensitivity After Ventricular Reverse Remodeling in Heart Failure: New ICT-Based Multisensor Ambulatory Blood Pressure Monitoring. Am J Hypertens. 2020;33:161–4.

    PubMed  Google Scholar 

  62. Narita K, Hoshide S, Kario K. Changes in Blood Pressure Reactivity Against Physical Activity Evaluated by Multisensor-ABPM in Heart Failure Patients. JACC: Asia. 2022;2:387–9.

    PubMed  PubMed Central  Google Scholar 

  63. Shimbo D, Cohen MT, McGoldrick M, Ensari I, Diaz KM, Fu J, et al. Translational Research of the Acute Effects of Negative Emotions on Vascular Endothelial Health: Findings From a Randomized Controlled Study. J Am Heart Assoc. 2024;13:e032698.

  64. Tomitani N, Kanegae H, Suzuki Y, Kuwabara M, Kario K. Stress-Induced Blood Pressure Elevation Self-Measured by a Wearable Watch-Type Device. Am J Hypertens. 2021;34:377–82.

    PubMed  Google Scholar 

  65. Tomitani N, Kanegae H, Kario K. The effect of psychological stress and physical activity on ambulatory blood pressure variability detected by a multisensor ambulatory blood pressure monitoring device. Hypertens Res. 2023;46:916–21.

    PubMed  Google Scholar 

  66. Kikuya M, Ohkubo T, Metoki H, Asayama K, Hara A, Obara T, et al. Day-by-day variability of blood pressure and heart rate at home as a novel predictor of prognosis: the Ohasama study. Hypertension. 2008;52:1045–50.

    CAS  PubMed  Google Scholar 

  67. Juhanoja EP, Niiranen TJ, Johansson JK, Puukka PJ, Thijs L, Asayama K, et al. Outcome-Driven Thresholds for Increased Home Blood Pressure Variability. Hypertension. 2017;69:599–607.

    CAS  PubMed  Google Scholar 

  68. Kubozono T, Akasaki Y, Kawasoe S, Ojima S, Kawabata T, Makizako H, et al. The relationship between day-to-day variability in home blood pressure measurement and multiple organ function. Hypertens Res. 2022;45:474–82.

    CAS  PubMed  Google Scholar 

  69. Sasaki T, Sakata S, Oishi E, Furuta Y, Honda T, Hata J, et al. Day-to-Day Blood Pressure Variability and Risk of Incident Chronic Kidney Disease in a General Japanese Population. J Am Heart Assoc. 2022;11:e027173.

    PubMed  PubMed Central  Google Scholar 

  70. de Heus RAA, Olde Rikkert MGM, Tully PJ, Lawlor BA, Claassen J. Blood Pressure Variability and Progression of Clinical Alzheimer Disease. Hypertension. 2019;74:1172–80.

    PubMed  Google Scholar 

  71. Godai K, Kabayama M, Gondo Y, Yasumoto S, Sekiguchi T, Noma T, et al. Day-to-day blood pressure variability is associated with lower cognitive performance among the Japanese community-dwelling oldest-old population: the SONIC study. Hypertens Res. 2020;43:404–11.

    PubMed  Google Scholar 

  72. Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, et al. 2017 ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA Guideline for the Prevention, Detection, Evaluation, and Management of High Blood Pressure in Adults: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Hypertension 2018;71:e13–e115.

    CAS  PubMed  Google Scholar 

  73. Williams B, Mancia G, Spiering W, Agabiti Rosei E, Azizi M, Burnier M, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J. 2018;39:3021–104.

    PubMed  Google Scholar 

  74. Umemura S, Arima H, Arima S, Asayama K, Dohi Y, Hirooka Y, et al. The Japanese Society of Hypertension Guidelines for the Management of Hypertension (JSH 2019). Hypertens Res. 2019;42:1235–481.

    PubMed  Google Scholar 

  75. Mancia G, Facchetti R, Parati G, Zanchetti A. Visit-to-visit blood pressure variability, carotid atherosclerosis, and cardiovascular events in the European Lacidipine Study on Atherosclerosis. Circulation. 2012;126:569–78.

    PubMed  Google Scholar 

  76. Chiriacò M, Pateras K, Virdis A, Charakida M, Kyriakopoulou D, Nannipieri M, et al. Association between blood pressure variability, cardiovascular disease and mortality in type 2 diabetes: A systematic review and meta-analysis. Diabetes Obes Metab. 2019;21:2587–98.

    PubMed  Google Scholar 

  77. Nwabuo CC, Yano Y, Moreira HT, Appiah D, Vasconcellos HD, Aghaji QN, et al. Long-Term Blood Pressure Variability in Young Adulthood and Coronary Artery Calcium and Carotid Intima-Media Thickness in Midlife: The CARDIA Study. Hypertension. 2020;76:404–9.

    CAS  PubMed  Google Scholar 

  78. Wang Y, Zhao P, Chu C, Du MF, Zhang XY, Zou T, et al. Associations of Long-Term Visit-to-Visit Blood Pressure Variability With Subclinical Kidney Damage and Albuminuria in Adulthood: a 30-Year Prospective Cohort Study. Hypertension. 2022;79:1247–56.

    CAS  PubMed  Google Scholar 

  79. Ma Y, Blacker D, Viswanathan A, van Veluw SJ, Bos D, Vernooij MW, et al. Visit-to-Visit Blood Pressure Variability, Neuropathology, and Cognitive Decline. Neurology. 2021;96:e2812–e23.

    PubMed  PubMed Central  Google Scholar 

  80. Sible IJ, Nation DA. Visit-to-Visit Blood Pressure Variability and Longitudinal Tau Accumulation in Older Adults. Hypertension. 2022;79:629–37.

    CAS  PubMed  Google Scholar 

  81. Rouch L, De Souto Barreto P, Hanon O, Vidal JS, Amar J, Andrieu S, et al. Visit-to-Visit Blood Pressure Variability and Incident Frailty in Older Adults. J Gerontol A Biol Sci Med Sci. 2021;76:1369–75.

    PubMed  Google Scholar 

  82. Yang L, Li L, Lewington S, Guo Y, Sherliker P, Bian Z, et al. Outdoor temperature, blood pressure, and cardiovascular disease mortality among 23 000 individuals with diagnosed cardiovascular diseases from China. Eur Heart J. 2015;36:1178–85.

    PubMed  PubMed Central  Google Scholar 

  83. Stergiou GS, Palatini P, Modesti PA, Asayama K, Asmar R, Bilo G, et al. Seasonal variation in blood pressure: Evidence, consensus and recommendations for clinical practice. Consensus statement by the European Society of Hypertension Working Group on Blood Pressure Monitoring and Cardiovascular Variability. J Hypertens. 2020;38:1235–43.

    CAS  PubMed  Google Scholar 

  84. Kollias A, Menti A, Ntousopoulos V, Destounis A, Kyriakoulis KG, Kalogeropoulos P, et al. Seasonal effects on blood pressure variability in treated hypertensive patients assessed by office, home, and ambulatory measurements. Hypertens Res. 2024;47:790–3.

    CAS  PubMed  Google Scholar 

  85. Kollias A, Kyriakoulis KG, Stambolliu E, Ntineri A, Anagnostopoulos I, Stergiou GS. Seasonal blood pressure variation assessed by different measurement methods: systematic review and meta-analysis. J Hypertens. 2020;38:791–8.

    CAS  PubMed  Google Scholar 

  86. Narita K, Hoshide S, Fujiwara T, Kanegae H, Kario K. Seasonal Variation of Home Blood Pressure and Its Association With Target Organ Damage: The J-HOP Study (Japan Morning Surge-Home Blood Pressure). Am J Hypertens. 2020;33:620–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Narita K, Hoshide S, Kario K. Seasonal Variation in Day-by-Day Home Blood Pressure Variability and Effect on Cardiovascular Disease Incidence. Hypertension. 2022;79:2062–70.

    CAS  PubMed  Google Scholar 

  88. Modesti PA, Morabito M, Bertolozzi I, Massetti L, Panci G, Lumachi C, et al. Weather-related changes in 24-hour blood pressure profile: effects of age and implications for hypertension management. Hypertension. 2006;47:155–61.

    CAS  PubMed  Google Scholar 

  89. Modesti PA, Morabito M, Massetti L, Rapi S, Orlandini S, Mancia G, et al. Seasonal blood pressure changes: an independent relationship with temperature and daylight hours. Hypertension. 2013;61:908–14.

    CAS  PubMed  Google Scholar 

  90. Saeki K, Obayashi K, Iwamoto J, Tone N, Okamoto N, Tomioka K, et al. Stronger association of indoor temperature than outdoor temperature with blood pressure in colder months. J Hypertens. 2014;32:1582–9.

    CAS  PubMed  Google Scholar 

  91. Umishio W, Ikaga T, Kario K, Fujino Y, Hoshi T, Ando S, et al. Cross-Sectional Analysis of the Relationship Between Home Blood Pressure and Indoor Temperature in Winter: A Nationwide Smart Wellness Housing Survey in Japan. Hypertension. 2019;74:756–66.

    CAS  PubMed  Google Scholar 

  92. Shiue I, Shiue M. Indoor temperature below 18 °C accounts for 9% population attributable risk for high blood pressure in Scotland. Int J Cardiol. 2014;171:e1–2.

    PubMed  Google Scholar 

  93. World Health Organization (WHO). Housing and Health Guidelines. 2018. https://www.who.int/publications/i/item/9789241550376. Accessed December 26.

  94. Hanazawa T, Asayama K, Watabe D, Tanabe A, Satoh M, Inoue R, et al. Association Between Amplitude of Seasonal Variation in Self-Measured Home Blood Pressure and Cardiovascular Outcomes: HOMED-BP (Hypertension Objective Treatment Based on Measurement By Electrical Devices of Blood Pressure) Study. J Am Heart Assoc. 2018;7.

  95. Kikuya M, Hozawa A, Ohokubo T, Tsuji I, Michimata M, Matsubara M, et al. Prognostic significance of blood pressure and heart rate variabilities: the Ohasama study. Hypertension. 2000;36:901–6.

    CAS  PubMed  Google Scholar 

  96. Mancia G, Bombelli M, Facchetti R, Madotto F, Corrao G, Trevano FQ, et al. Long-term prognostic value of blood pressure variability in the general population: results of the Pressioni Arteriose Monitorate e Loro Associazioni Study. Hypertension. 2007;49:1265–70.

    CAS  PubMed  Google Scholar 

  97. Ohkubo T. Prognostic significance of variability in ambulatory and home blood pressure from the Ohasama study. J Epidemiol. 2007;17:109–13.

    PubMed  PubMed Central  Google Scholar 

  98. Hansen TW, Thijs L, Li Y, Boggia J, Kikuya M, Björklund-Bodegård K, et al. Prognostic value of reading-to-reading blood pressure variability over 24 h in 8938 subjects from 11 populations. Hypertension. 2010;55:1049–57.

    CAS  PubMed  Google Scholar 

  99. Asayama K, Kikuya M, Schutte R, Thijs L, Hosaka M, Satoh M, et al. Home blood pressure variability as cardiovascular risk factor in the population of Ohasama. Hypertension. 2013;61:61–9.

    CAS  PubMed  Google Scholar 

  100. Stergiou GS, Ntineri A, Kollias A, Ohkubo T, Imai Y, Parati G. Blood pressure variability assessed by home measurements: a systematic review. Hypertens Res. 2014;37:565–72.

    PubMed  Google Scholar 

  101. Stevens SL, Wood S, Koshiaris C, Law K, Glasziou P, Stevens RJ, et al. Blood pressure variability and cardiovascular disease: systematic review and meta-analysis. Bmj. 2016;354:i4098.

    PubMed  PubMed Central  Google Scholar 

  102. Kario K, Tomitani N, Fujiwara T, Okawara Y, Kanegae H, Hoshide S. Peak home blood pressure as an earlier and strong novel risk factor for stroke: the practitioner-based nationwide J-HOP study extended. Hypertens Res. 2023;46:2113–23.

    PubMed  Google Scholar 

  103. Schwartz JE, Muntner P, Kronish IM, Burg MM, Pickering TG, Bigger JT, et al. Reliability of Office, Home, and Ambulatory Blood Pressure Measurements and Correlation With Left Ventricular Mass. J Am Coll Cardiol. 2020;76:2911–22.

    PubMed  PubMed Central  Google Scholar 

  104. Narita K, Hoshide S, Kario K. Association of Home and Ambulatory Blood Pressure With Cardiovascular Prognosis in Practice Hypertensive Outpatients. Hypertension. 2023;80:451–9.

    CAS  PubMed  Google Scholar 

  105. Mancia G, Facchetti R, Seravalle G, Cuspidi C, Corrao G, Grassi G. Adding Home and/or Ambulatory Blood Pressure to Office Blood Pressure for Cardiovascular Risk Prediction. Hypertension. 2021;77:640–9.

    CAS  PubMed  Google Scholar 

  106. Niiranen TJ, Maki J, Puukka P, Karanko H, Jula AM. Office, home, and ambulatory blood pressures as predictors of cardiovascular risk. Hypertension. 2014;64:281–6.

    CAS  PubMed  Google Scholar 

  107. Kollias A, Kyriakoulis KG, Komnianou A, Stathopoulou P, Stergiou GS. Prognostic value of home versus ambulatory blood pressure monitoring: a systematic review and meta-analysis of outcome studies. J Hypertens. 2024;42:385–92.

    CAS  PubMed  Google Scholar 

  108. Narita K, Hoshide S, Kario K Comparison of Ambulatory and Home Blood Pressure Variability for Cardiovascular Prognosis and Biomarkers. Hypertension. 2023(e-pub ahead of print 20230906; https://doi.org/10.1161/hypertensionaha.123.20897).

  109. Smith TO, Sillito JA, Goh CH, Abdel-Fattah AR, Einarsson A, Soiza RL, et al. Association between different methods of assessing blood pressure variability and incident cardiovascular disease, cardiovascular mortality and all-cause mortality: a systematic review. Age Ageing. 2020;49:184–92.

    PubMed  Google Scholar 

  110. Juraschek SP, Bello NA, Chang AR, Cluett JL, Griffin KA, Hinderliter A, et al. Trends in Ambulatory Blood Pressure Monitoring in Five High-Volume Medical Centers. Hypertension. 2023;80:e131–e3.

    CAS  PubMed  Google Scholar 

  111. Springer MV, Malani P, Solway E, Kirch M, Singer DC, Kullgren JT, et al. Prevalence and Frequency of Self-measured Blood Pressure Monitoring in US Adults Aged 50-80 Years. JAMA Netw Open. 2022;5:e2231772.

    PubMed  PubMed Central  Google Scholar 

  112. Wang T-D, Ohkubo T, Bunyi ML, Chadachan VM, Chia YC, Kario K, et al. Current realities of home blood pressure monitoring from physicians’ perspectives: results from Asia HBPM survey 2020. Hypertension Res. 2023;46:1638–49.

    Google Scholar 

  113. Siddique S. Asian management of hypertension: Current status, home blood pressure, and specific concerns in Pakistan. J Clin Hypertens (Greenwich). 2020;22:501–3.

    PubMed  Google Scholar 

  114. Mancia Chairperson G, Kreutz Co-Chair R, Brunström M, Burnier M, Grassi G, Januszewicz A, et al. 2023 ESH Guidelines for the management of arterial hypertension The Task Force for the management of arterial hypertension of the European Society of Hypertension Endorsed by the European Renal Association (ERA) and the International Society of Hypertension (ISH). J Hypertens. 2023(e-pub ahead of print 20230621; https://doi.org/10.1097/hjh.0000000000003480).

  115. Parati G, Pomidossi G, Albini F, Malaspina D, Mancia G. Relationship of 24-hour blood pressure mean and variability to severity of target-organ damage in hypertension. J Hypertens. 1987;5:93–8.

    CAS  PubMed  Google Scholar 

  116. Frattola A, Parati G, Cuspidi C, Albini F, Mancia G. Prognostic value of 24-hour blood pressure variability. J Hypertens. 1993;11:1133–7.

    CAS  PubMed  Google Scholar 

  117. Sega R, Corrao G, Bombelli M, Beltrame L, Facchetti R, Grassi G, et al. Blood pressure variability and organ damage in a general population: results from the PAMELA study (Pressioni Arteriose Monitorate E Loro Associazioni). Hypertension. 2002;39:710–4.

    CAS  PubMed  Google Scholar 

  118. Mena LJ, Maestre GE, Hansen TW, Thijs L, Liu Y, Boggia J, et al. How many measurements are needed to estimate blood pressure variability without loss of prognostic information? Am J Hypertens. 2014;27:46–55.

    PubMed  Google Scholar 

  119. Hsu PF, Cheng HM, Wu CH, Sung SH, Chuang SY, Lakatta EG, et al. High Short-Term Blood Pressure Variability Predicts Long-Term Cardiovascular Mortality in Untreated Hypertensives But Not in Normotensives. Am J Hypertens. 2016;29:806–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  120. Asayama K, Ohkubo T, Hanazawa T, Watabe D, Hosaka M, Satoh M, et al. Does Antihypertensive Drug Class Affect Day-to-Day Variability of Self-Measured Home Blood Pressure? The HOMED-BP Study. J Am Heart Assoc. 2016;5:e002995.

    PubMed  PubMed Central  Google Scholar 

  121. Wei FF, Li Y, Zhang L, Xu TY, Ding FH, Wang JG, et al. Beat-to-beat, reading-to-reading, and day-to-day blood pressure variability in relation to organ damage in untreated Chinese. Hypertension. 2014;63:790–6.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keisuke Narita.

Ethics declarations

Conflict of interest

K. Narita has received the grant from International Medical Research Foundation. K. Kario has received research funding from Omron Healthcare Co., Fukuda Denshi, and A&D Co. D. Shimbo reports no potential conflicts of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Narita, K., Shimbo, D. & Kario, K. Assessment of blood pressure variability: characteristics and comparison of blood pressure measurement methods. Hypertens Res 47, 3345–3355 (2024). https://doi.org/10.1038/s41440-024-01844-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1038/s41440-024-01844-y

Keywords

Search

Quick links

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载