+
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Report
  • Published:

An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus

Abstract

Passive serotherapy can confer immediate protection against microbial infection, but methods to rapidly generate human neutralizing monoclonal antibodies are not yet available. We have developed an improved method for Epstein-Barr virus transformation of human B cells. We used this method to analyze the memory repertoire of a patient who recovered from severe acute respiratory syndrome coronavirus (SARS-CoV) infection and to isolate monoclonal antibodies specific for different viral proteins, including 35 antibodies with in vitro neutralizing activity ranging from 10−8M to 10−11M. One such antibody confers protection in vivo in a mouse model of SARS-CoV infection. These results show that it is possible to interrogate the memory repertoire of immune donors to rapidly and efficiently isolate neutralizing antibodies that have been selected in the course of natural infection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of the SARS-CoV neutralizing S3.1 monoclonal antibody.
Figure 2: Binding and neutralization capacity of monoclonal antibodies specific for SARS-CoV spike.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Behring, E. & Kitasato, S. [On the development of immunity to diphtheria and tetanus in animals]. Dtsch Med. Wochenschr. 90, 2183 (1965).

    CAS  PubMed  Google Scholar 

  2. Keller, M.A. & Stiehm, E.R. Passive immunity in prevention and treatment of infectious diseases. Clin. Microbiol. Rev. 13, 602–614 (2000).

    Article  CAS  Google Scholar 

  3. Kohler, G. & Milstein, C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256, 495–497 (1975).

    Article  CAS  Google Scholar 

  4. Steinitz, M., Klein, G., Koskimies, S. & Makel, O. EB virus-induced B lymphocyte cell lines producing specific antibody. Nature 269, 420–422 (1977).

    Article  CAS  Google Scholar 

  5. Kozbor, D. & Roder, J.C. Requirements for the establishment of high-titered human monoclonal antibodies against tetanus toxoid using the Epstein-Barr virus technique. J. Immunol. 127, 1275–1280 (1981).

    CAS  PubMed  Google Scholar 

  6. Lanzavecchia, A. Antigen-specific interaction between T and B cells. Nature 314, 537–539 (1985).

    Article  CAS  Google Scholar 

  7. Kozbor, D., Roder, J.C., Chang, T.H., Steplewski, Z. & Koprowski, H. Human anti-tetanus toxoid monoclonal antibody secreted by EBV-transformed human B cells fused with murine myeloma. Hybridoma 1, 323–328 (1982).

    Article  CAS  Google Scholar 

  8. Karpas, A., Dremucheva, A. & Czepulkowski, B.H. A human myeloma cell line suitable for the generation of human monoclonal antibodies. Proc. Natl. Acad. Sci. USA 98, 1799–1804 (2001).

    Article  CAS  Google Scholar 

  9. Jones, P.T., Dear, P.H., Foote, J., Neuberger, M.S. & Winter, G. Replacing the complementarity-determining regions in a human antibody with those from a mouse. Nature 321, 522–525 (1986).

    Article  CAS  Google Scholar 

  10. McCafferty, J., Griffiths, A.D., Winter, G. & Chiswell, D.J. Phage antibodies: filamentous phage displaying antibody variable domains. Nature 348, 552–554 (1990).

    Article  CAS  Google Scholar 

  11. Green, L.L. Antibody engineering via genetic engineering of the mouse: XenoMouse strains are a vehicle for the facile generation of therapeutic human monoclonal antibodies. J. Immunol. Methods 231, 11–23 (1999).

    Article  CAS  Google Scholar 

  12. Brekke, O.H. & Sandlie, I. Therapeutic antibodies for human diseases at the dawn of the twenty-first century. Nat. Rev. Drug Discov. 2, 52–62 (2003).

    Article  CAS  Google Scholar 

  13. Johnson, S. et al. Development of a humanized monoclonal antibody (MEDI-493) with potent in vitro and in vivo activity against respiratory syncytial virus. J. Infect. Dis. 176, 1215–1224 (1997).

    Article  CAS  Google Scholar 

  14. Drosten, C. et al. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 348, 1967–1976 (2003).

    Article  CAS  Google Scholar 

  15. Ksiazek, T.G. et al. A novel coronavirus associated with severe acute respiratory syndrome. N. Engl. J. Med. 348, 1953–1966 (2003).

    Article  CAS  Google Scholar 

  16. Rota, P.A. et al. Characterization of a novel coronavirus associated with severe acute respiratory syndrome. Science 300, 1394–1399 (2003).

    Article  CAS  Google Scholar 

  17. Fouchier, R.A. et al. Aetiology: Koch's postulates fulfilled for SARS virus. Nature 423, 240 (2003).

    Article  CAS  Google Scholar 

  18. Poutanen, S.M. et al. Identification of severe acute respiratory syndrome in Canada. N. Engl. J. Med. 348, 1995–2005 (2003).

    Article  Google Scholar 

  19. Lee, N. et al. A major outbreak of severe acute respiratory syndrome in Hong Kong. N. Engl. J. Med. 348, 1986–1994 (2003).

    Article  Google Scholar 

  20. Donnelly, C.A. et al. Epidemiological determinants of spread of causal agent of severe acute respiratory syndrome in Hong Kong. Lancet 361, 1761–1766 (2003).

    Article  Google Scholar 

  21. Giachino, C., Padovan, E. & Lanzavecchia, A. κ+λ+ dual receptor B cells are present in the human peripheral repertoire. J. Exp. Med. 181, 1245–1250 (1995).

    Article  CAS  Google Scholar 

  22. Hartmann, G. & Krieg, A.M. Mechanism and function of a newly identified CpG DNA motif in human primary B cells. J. Immunol. 164, 944–953 (2000).

    Article  CAS  Google Scholar 

  23. Bernasconi, N.L., Traggiai, E. & Lanzavecchia, A. Maintenance of serological memory by polyclonal activation of human memory B cells. Science 298, 2199–2202 (2002).

    Article  CAS  Google Scholar 

  24. Subbarao, K. et al. Prior infection and passive transfer of neutralizing antibody protect mice from subsequent infection with SARS coronavirus. J. Virol. 78, 3572–3577 (2004).

    Article  CAS  Google Scholar 

  25. Gebauer, F. et al. Residues involved in the antigenic sites of transmissible gastroenteritis coronavirus S glycoprotein. Virology 183, 225–238 (1991).

    Article  CAS  Google Scholar 

  26. Graham, B.S., Perkins, M.D., Wright, P.F. & Karzon, D.T. Primary respiratory syncytial virus infection in mice. J. Med. Virol. 26, 153–162 (1988).

    Article  CAS  Google Scholar 

  27. Stack, A.M. et al. Primary respiratory syncytial virus infection: pathology, immune response, and evaluation of vaccine challenge strains in a new mouse model. Vaccine 18, 1412–1418 (2000).

    Article  CAS  Google Scholar 

  28. Becker, S., Feldmann, H., Will, C. & Slenczka, W. Evidence for occurrence of filovirus antibodies in humans and imported monkeys: do subclinical filovirus infections occur worldwide? Med. Microbiol. Immunol. (Berl.) 181, 43–55 (1992).

    Article  CAS  Google Scholar 

  29. Karber, G. 50% end-point calculation. Arch. Exp. Pathol. Pharmak. 162, 480–483 (1931).

    Article  Google Scholar 

  30. Perri, S. et al. An alphavirus replicon particle chimera derived from Venezuelan equine encephalitis and Sindbis viruses is a potent gene-based vaccine delivery vector. J. Virol. 77, 10394–10403 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. McAuliffe and L. Vogel from the Laboratory of Infectious Diseases, NIAID, for expert assistance in performing the animal studies. We thank I. Giacchetto for expert technical assistance and F. Sallusto for critical reading and comments. A.L. is supported by the Helmut Horten Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonio Lanzavecchia.

Ethics declarations

Competing interests

The Institute for Research in Biomedicine has a patent application that covers the method described in this article.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Traggiai, E., Becker, S., Subbarao, K. et al. An efficient method to make human monoclonal antibodies from memory B cells: potent neutralization of SARS coronavirus. Nat Med 10, 871–875 (2004). https://doi.org/10.1038/nm1080

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue date:

  • DOI: https://doi.org/10.1038/nm1080

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载