Genetic variants have been associated with myriad molecular phenotypes that provide new insight into the range of mechanisms underlying genetic traits and diseases. Identifying any particular genetic variant's cascade of effects, from molecule to individual, requires assaying multiple layers of molecular complexity. We introduce the Enhancing GTEx (eGTEx) project that extends the GTEx project to combine gene expression with additional intermediate molecular measurements on the same tissues to provide a resource for studying how genetic differences cascade through molecular phenotypes to impact human health.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Loss of MEF2C function by enhancer mutation leads to neuronal mitochondria dysfunction and motor deficits in mice
Molecular Neurodegeneration Open Access 07 February 2025
-
Housekeeping protein-coding genes interrogated with tissue and individual variations
Scientific Reports Open Access 30 May 2024
-
Integrative cross-omics and cross-context analysis elucidates molecular links underlying genetic effects on complex traits
Nature Communications Open Access 16 March 2024
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
References
Nicolae, D.L. et al. PLoS Genet. 6, e1000888 (2010).
GTEx Consortium. Science 348, 648–660 (2015).
Degner, J.F. et al. Nature 482, 390–394 (2012).
McVicker, G. et al. Science 342, 747–749 (2013).
Sun, W. Biometrics 68, 1–11 (2012).
van de Geijn, B., McVicker, G., Gilad, Y. & Pritchard, J.K. Nat. Methods 12, 1061–1063 (2015).
Kumasaka, N., Knights, A.J. & Gaffney, D.J. Nat. Genet. 48, 206–213 (2016).
Lappalainen, T. et al. Nature 501, 506–511 (2013).
Li, Y.I. et al. Science 352, 600–604 (2016).
Gibbs, J.R. et al. PLoS Genet. 6, e1000952 (2010).
Bell, J.T. et al. Genome Biol. 12, R10 (2011).
Gutierrez-Arcelus, M. et al. eLife 2, e00523 (2013).
Wu, L. et al. Nature 499, 79–82 (2013).
Hause, R.J. et al. Am. J. Hum. Genet. 95, 194–208 (2014).
Banovich, N.E. et al. PLoS Genet. 10, e1004663 (2014).
Gutierrez-Arcelus, M. et al. PLoS Genet. 11, e1004958 (2015).
Battle, A. et al. Science 347, 664–667 (2015).
Cenik, C. et al. Genome Res. 25, 1610–1621 (2015).
Ritchie, M.D., Holzinger, E.R., Li, R., Pendergrass, S.A. & Kim, D. Nat. Rev. Genet. 16, 85–97 (2015).
Vucic, E.A. et al. Genome Res. 22, 188–195 (2012).
Rooney, M.S., Shukla, S.A., Wu, C.J., Getz, G. & Hacohen, N. Cell 160, 48–61 (2015).
Fernandez-Banet, J. et al. Nat. Methods 13, 9–10 (2016).
Kosti, I., Jain, N., Aran, D., Butte, A.J. & Sirota, M. Sci. Rep. 6, 24799 (2016).
Carithers, L.J. et al. Biopreserv. Biobank. 13, 311–319 (2015).
GTEx Consortium. Nature http://dx.doi.org/10.1038/nature24277 (2017).
Li, X. et al. Nature http://dx.doi.org/10.1038/nature24267 (2017).
Weintraub, H. & Groudine, M. Science 193, 848–856 (1976).
Wu, C., Wong, Y.C. & Elgin, S.C. Cell 16, 807–814 (1979).
Maurano, M.T. et al. Science 337, 1190–1195 (2012).
Maurano, M.T. et al. Nat. Genet. 47, 1393–1401 (2015).
Neph, S. et al. Nature 489, 83–90 (2012).
Bannister, A.J. & Kouzarides, T. Cell Res. 21, 381–395 (2011).
Ernst, J. et al. Nature 473, 43–49 (2011).
Roadmap Epigenomics Consortium. Nature 518, 317–330 (2015).
Kasowski, M. et al. Science 342, 750–752 (2013).
Maurano, M.T. et al. Cell Rep. 12, 1184–1195 (2015).
Pervjakova, N. et al. Epigenomics 8, 789–799 (2016).
Li, E., Beard, C. & Jaenisch, R. Nature 366, 362–365 (1993).
Payer, B. & Lee, J.T. Annu. Rev. Genet. 42, 733–772 (2008).
Curradi, M., Izzo, A., Badaracco, G. & Landsberger, N. Mol. Cell. Biol. 22, 3157–3173 (2002).
Castel, S.E., Levy-Moonshine, A., Mohammadi, P., Banks, E. & Lappalainen, T. Genome Biol. 16, 195 (2015).
Zhang, R. et al. Nat. Methods 11, 51–54 (2014).
Kukurba, K.R. et al. PLoS Genet. 10, e1004304 (2014).
Rivas, M.A. et al. Science 348, 666–669 (2015).
Baran, Y. et al. Genome Res. 25, 927–936 (2015).
Pirinen, M. et al. Bioinformatics 31, 2497–2504 (2015).
Dominissini, D. et al. Nature 485, 201–206 (2012).
Meyer, K.D. et al. Cell 149, 1635–1646 (2012).
Ciaccio, M.F., Wagner, J.P., Chuu, C.P., Lauffenburger, D.A. & Jones, R.B. Nat. Methods 7, 148–155 (2010).
O'Huallachain, M., Karczewski, K.J., Weissman, S.M., Urban, A.E. & Snyder, M.P. Proc. Natl. Acad. Sci. USA 109, 18018–18023 (2012).
Haycock, P.C. et al. Br. Med. J. 349, g4227 (2014).
Stone, R.C. et al. PLoS Genet. 12, e1006144 (2016).
Kibriya, M.G., Jasmine, F., Roy, S., Ahsan, H. & Pierce, B. Cancer Epidemiol. Biomarkers Prev. 23, 2667–2672 (2014).
Pierce, B.L. et al. Int. J. Mol. Epidemiol. Genet. 7, 18–23 (2016).
Kibriya, M.G., Jasmine, F., Roy, S., Ahsan, H. & Pierce, B.L. PLoS One 11, e0155548 (2016).
Jagannathan, S. & Bradley, R.K. Genome Res. 26, 1639–1650 (2016).
Gamazon, E.R. et al. Nat. Genet. 47, 1091–1098 (2015).
Nica, A.C. et al. PLoS Genet. 6, e1000895 (2010).
Hormozdiari, F. et al. Am. J. Hum. Genet. 99, 1245–1260 003 (2016).
Civelek, M. & Lusis, A.J. Nat. Rev. Genet. 15, 34–48 (2014).
Parikshak, N.N., Gandal, M.J. & Geschwind, D.H. Nat. Rev. Genet. 16, 441–458 (2015).
Zhu, J. et al. PLoS Biol. 10, e1001301 (2012).
Acknowledgements
The Genotype-Tissue Expression (GTEx) project was supported by the Common Fund of the Office of the Director of the US National Institutes of Health (NIH; see URLs). Additional funds were provided by the National Cancer Institute (NCI), National Human Genome Research Institute (NHGRI), National Heart, Lung, and Blood Institute (NHLBI), National Institute on Drug Abuse (NIDA), National Institute of Mental Health (NIMH), and National Institute of Neurological Disorders and Stroke (NINDS). Donors were enrolled at Biospecimen Source Sites funded by Leidos Biomedical. Leidos subcontracts to the National Disease Research Interchange (10XS170) and the Roswell Park Cancer Institute (10XS171). The LDACC was funded through a contract (HHSN268201000029C) to the Broad Institute. Biorepository operations were funded through a Leidos subcontract to the Van Andel Research Institute (10ST1035). Additional data repository and project management were provided by Leidos (HHSN261200800001E). The Brain Bank was supported by a supplement to University of Miami grant DA006227. E.K.T. is supported by a Hewlett-Packard Stanford Graduate Fellowship and a doctoral scholarship from the Natural Science and Engineering Council of Canada. NIH grant U01MH104393 supported A.P.F., K.D.H., L.F.R., and P.F.H. NIH grant U01HG007598 supported B.E.S. NIH grant U01HG007599 supported J.A.S. NIH grant U01HG007593 supported J.B.L. and S.B.M. NIH grant U01HG007591 supported J.M.A. NIH grant U01HG007610 supported M.K. NIH grant U01HG007601 supported B.L.P. NIH grant U01HL131042 supported M.P.S. and H.T.
Author information
Authors and Affiliations
Consortia
Contributions
All authors contributed to study design. L.E.B., R.H., M.H., C.J., M.J., G.K., W.F.L., J.T.L., A.M., B. Mestichelli, K.M., B.R., M.S., S.S., J.A.T., G.W., M. Washington, J.W., J.B., B.A.F., B.M.G., E.K., R. Kumar, M.M., M.T. Moser, S.D.J., R.G.M., D.C.R., D.R.V., D.A.D., and D.C.M. were part of the biospecimen collection group. S.E.G., P.G., S.K., A.R.L., C.M., H.M.M., A.R., J.P.S., and S.V. were NIH program management. K.D.H., P.F.H., L.F.R., L.H., Y.L., B. Molinie, Y.P., N.R., L.W., N.V.W., M.C., E.T.G., Q.L., S. Linder, R.Z., K.S.S., E.K.T., L.S.C., K.D., J.A.D., F.J., M.G.K., L.J., S. Lin, M. Wang, R.J., X.L., J.C., D.B., M.D., J.H., E.H., A.J., R. Kaul, K.L., M.T. Maurano, J.N., F.J.N., R.S., M.S.F., C.L., M.O., A.S., F.W., J.M.A., A.P.F., J.B.L., B.L.P., J.A.S., H.T., K.G.A., M.K., M.P.S., S.B.M., and B.E.S. were part of the eGTEx project working group. The writing group included E.K.T., J.M.A., M.T. Maurano, H.T., M.S., S.V., R. Kaul, J.A.S., L.F.R., B.L.P., H.M.M., K.G.A., M.K., S.B.M., and B.E.S. and was led by K.G.A., M.K., M.P.S., S.B.M., and B.E.S.
Corresponding authors
Ethics declarations
Competing interests
M.P.S. is a cofounder of Personalis and Q bio and is on the scientific advisory boards of Personalis, Epinomics, and Genapsys.
Rights and permissions
About this article
Cite this article
eGTEx Project. Enhancing GTEx by bridging the gaps between genotype, gene expression, and disease. Nat Genet 49, 1664–1670 (2017). https://doi.org/10.1038/ng.3969
Published:
Issue Date:
DOI: https://doi.org/10.1038/ng.3969
This article is cited by
-
Loss of MEF2C function by enhancer mutation leads to neuronal mitochondria dysfunction and motor deficits in mice
Molecular Neurodegeneration (2025)
-
Micro-RNA-140-3p Acts as a Tumor Suppressor Gene in Acute Promyelocytic Leukemia by Targeting Hepatocyte Growth Factor
Cell Biochemistry and Biophysics (2025)
-
The human and non-human primate developmental GTEx projects
Nature (2025)
-
Integrative cross-omics and cross-context analysis elucidates molecular links underlying genetic effects on complex traits
Nature Communications (2024)
-
Housekeeping protein-coding genes interrogated with tissue and individual variations
Scientific Reports (2024)