Abstract
Germline BRCA1 mutations predispose to breast cancer. To identify genetic modifiers of this risk, we performed a genome-wide association study in 1,193 individuals with BRCA1 mutations who were diagnosed with invasive breast cancer under age 40 and 1,190 BRCA1 carriers without breast cancer diagnosis over age 35. We took forward 96 SNPs for replication in another 5,986 BRCA1 carriers (2,974 individuals with breast cancer and 3,012 unaffected individuals). Five SNPs on 19p13 were associated with breast cancer risk (Ptrend = 2.3 × 10−9 to Ptrend = 3.9 × 10−7), two of which showed independent associations (rs8170, hazard ratio (HR) = 1.26, 95% CI 1.17–1.35; rs2363956 HR = 0.84, 95% CI 0.80–0.89). Genotyping these SNPs in 6,800 population-based breast cancer cases and 6,613 controls identified a similar association with estrogen receptor–negative breast cancer (rs2363956 per-allele odds ratio (OR) = 0.83, 95% CI 0.75–0.92, Ptrend = 0.0003) and an association with estrogen receptor–positive disease in the opposite direction (OR = 1.07, 95% CI 1.01–1.14, Ptrend = 0.016). The five SNPs were also associated with triple-negative breast cancer in a separate study of 2,301 triple-negative cases and 3,949 controls (Ptrend = 1 × 10−7 to Ptrend = 8 × 10−5; rs2363956 per-allele OR = 0.80, 95% CI 0.74–0.87, Ptrend = 1.1 × 10−7).
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Antoniou, A. et al. Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case series unselected for family history: a combined analysis of 22 studies. Am. J. Hum. Genet. 72, 1117–1130 (2003).
Antoniou, A.C. et al. The BOADICEA model of genetic susceptibility to breast and ovarian cancers: updates and extensions. Br. J. Cancer 98, 1457–1466 (2008).
Begg, C.B. et al. Variation of breast cancer risk among BRCA1/2 carriers. J. Am. Med. Assoc. 299, 194–201 (2008).
Milne, R.L. et al. The average cumulative risks of breast and ovarian cancer for carriers of mutations in BRCA1 and BRCA2 attending genetic counseling units in Spain. Clin. Cancer Res. 14, 2861–2869 (2008).
Simchoni, S. et al. Familial clustering of site-specific cancer risks associated with BRCA1 and BRCA2 mutations in the Ashkenazi Jewish population. Proc. Natl. Acad. Sci. USA 103, 3770–3774 (2006).
Easton, D.F. et al. Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447, 1087–1093 (2007).
Hunter, D.J. et al. A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat. Genet. 39, 870–874 (2007).
Stacey, S.N. et al. Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor–positive breast cancer. Nat. Genet. 39, 865–869 (2007).
Stacey, S.N. et al. Common variants on chromosome 5p12 confer susceptibility to estrogen receptor–positive breast cancer. Nat. Genet. 40, 703–706 (2008).
Antoniou, A.C. et al. Common breast cancer-predisposition alleles are associated with breast cancer risk in BRCA1 and BRCA2 mutation carriers. Am. J. Hum. Genet. 82, 937–948 (2008).
Antoniou, A.C. et al. Common variants in LSP1, 2q35 and 8q24 and breast cancer risk for BRCA1 and BRCA2 mutation carriers. Hum. Mol. Genet. 18, 4442–4456 (2009).
Lakhani, S.R. et al. The pathology of familial breast cancer: predictive value of immunohistochemical markers estrogen receptor, progesterone receptor, HER-2, and p53 in patients with mutations in BRCA1 and BRCA2. J. Clin. Oncol. 20, 2310–2318 (2002).
Lakhani, S.R. et al. Prediction of BRCA1 status in patients with breast cancer using estrogen receptor and basal phenotype. Clin. Cancer Res. 11, 5175–5180 (2005).
Wellcome Trust Case Control Consortium. Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447, 661–678 (2007).
Zollner, S. & Pritchard, J.K. Overcoming the winner's curse: estimating penetrance parameters from case-control data. Am. J. Hum. Genet. 80, 605–615 (2007).
Buisson, M., Anczukow, O., Zetoune, A.B., Ware, M.D. & Mazoyer, S. The 185delAG mutation (c.68_69delAG) in the BRCA1 gene triggers translation reinitiation at a downstream AUG codon. Hum. Mutat. 27, 1024–1029 (2006).
Mazoyer, S. et al. A BRCA1 nonsense mutation causes exon skipping. Am. J. Hum. Genet. 62, 713–715 (1998).
Perrin-Vidoz, L., Sinilnikova, O.M., Stoppa-Lyonnet, D., Lenoir, G.M. & Mazoyer, S. The nonsense-mediated mRNA decay pathway triggers degradation of most BRCA1 mRNAs bearing premature termination codons. Hum. Mol. Genet. 11, 2805–2814 (2002).
Antoniou, A.C. et al. RAD51 135G→C modifies breast cancer risk among BRCA2 mutation carriers: results from a combined analysis of 19 studies. Am. J. Hum. Genet. 81, 1186–1200 (2007).
Liu, H.X., Cartegni, L., Zhang, M.Q. & Krainer, A.R. A mechanism for exon skipping caused by nonsense or missense mutations in BRCA1 and other genes. Nat. Genet. 27, 55–58 (2001).
Feng, L., Huang, J. & Chen, J. MERIT40 facilitates BRCA1 localization and DNA damage repair. Genes Dev. 23, 719–728 (2009).
Shao, G. et al. MERIT40 controls BRCA1-Rap80 complex integrity and recruitment to DNA double-strand breaks. Genes Dev. 23, 740–754 (2009).
Wang, B., Hurov, K., Hofmann, K. & Elledge, S.J. NBA1, a new player in the Brca1 A complex, is required for DNA damage resistance and checkpoint control. Genes Dev. 23, 729–739 (2009).
Thompson, D.J. et al. Identification of common variants in the SHBG gene affecting sex hormone-binding globulin levels and breast cancer risk in postmenopausal women. Cancer Epidemiol. Biomarkers Prev. 17, 3490–3498 (2008).
Medland, S.E. et al. Common variants in the trichohyalin gene are associated with straight hair in Europeans. Am. J. Hum. Genet. 85, 750–755 (2009).
Antoniou, A.C. et al. A weighted cohort approach for analysing factors modifying disease risks in carriers of high-risk susceptibility genes. Genet. Epidemiol. 29, 1–11 (2005).
Amin, N., van Duijn, C.M. & Aulchenko, Y.S. A genomic background based method for association analysis in related individuals. PLoS ONE 2, e1274 (2007).
Leutenegger, A.L. et al. Estimation of the inbreeding coefficient through use of genomic data. Am. J. Hum. Genet. 73, 516–523 (2003).
Boos, D.D. On generalised score tests. Am. Stat. 46, 327–333 (1992).
Aulchenko, Y.S., Ripke, S., Isaacs, A. & van Duijn, C.M. GenABEL: an R library for genome-wide association analysis. Bioinformatics 23, 1294–1296 (2007).
Clayton, D. & Leung, H.T. An R package for analysis of whole-genome association studies. Hum. Hered. 64, 45–51 (2007).
Lange, K., Weeks, D. & Boehnke, M. Programs for pedigree analysis: MENDEL, FISHER, and dGENE. Genet. Epidemiol. 5, 471–472 (1988).
Acknowledgements
Financial support for this study was provided by the Breast Cancer Research Foundation (BCRF), Susan G. Komen for the Cure and US National Institutes of Health grant CA128978 to F.J.C. and by Cancer Research UK to D.F.E. and A.C.A. A.C.A. is a Cancer Research UK Senior Cancer Research Fellow and D.F.E. is a Cancer Research UK Principal Research Fellow. The authors thank Cancer Genetic Markers of Susceptability (CGEMS) and Wellcome Trust Case Control Consortium (WTCCC) for provision of genotype data from controls. Study specific acknowledgments listed in Supplementary Note.
Author information
Authors and Affiliations
Consortia
Contributions
F.J.C., A.C.A. and D.F.E. designed the study and obtained financial support. G.C.-T. founded CIMBA in order to provide the infrastructure for the BRCA1 GWAS. F.J.C. and X.W. coordinated collection of samples. A.C.A. directed the statistical analysis. D.F.E. advised on the statistical analysis. C.K., Z.S.F. and T.L. carried out analyses. Z.S.F., R.T., J.M., L.M. and D.B. provided bioinformatics and database support. F.J.C., H. Hakonarson and X.W. directed the genotyping of the BRCA1 carrier and triple-negative samples. M.G. directed the genotyping of the UK case-control samples. A.C.A., F.J.C. and D.F.E. drafted the manuscript. F.J.C. was the overall project leader.
O.M.S. and S.H. coordinated the BRCA1 mutation classification. T.K., J.V., M.M.G., D.A. and C.G. were involved in the BRCA2 GWAS genotyping and coordination. K.O. led the BRCA2 GWAS.
S.P., M.C., C.O., D.F., D.E., D.G.E., R.E., L.I., C.C., F.D., J.P., O.M.S., D.S.-L., C.H., S.M., S.G., C.L., A.R., O.C., A.H., P.B., F.B.L.H., M.A.R., A.J., A.v.d.O., N.H., R.B.v.d.L., H.M.-H., E.B.G.G., P.D., M.P.G.V., J.L., A.J., J.G., T.H., T.B., B.G., C.C., A.B.S., H.H., D.E., E.M.J., J.L.H., M.S., S.S.B., M.B.D., M.-B.T., R.K.S., B.W., C.E., A.M., S.P.-A., N.A., D.N., C.S., S.M.D., K.L.N., T.R., J.L.B., M.P., G.C.R., K.W., J.F.B., J.B., S.V.B., E.F., B.K., Y.L., R.M., I.L.A., G.G., H.O., N.L., K.H., J.R., H.E., A.-M.G., M.T., L.S., P.P., S.M., B.B., A.V., P.R., T.C., M.d.l.H., C.F.S., A.F.-R., M.H.G., P.L.M., J.T.L., L.G., N.M.L., T.V.O.H., F.C.N., I.B., C.L., J.G., S.J.R., S.A.G., C.P., S.N., C.I.S., J.B., A.O., H.N., T.H., M.A.C., M.S.B., U.H., A.K.G., M.M., C.C., S.L.N., B.Y.K., N.T., A.E.T., J.W., O.O., J.S., P.S., W.S.R., A.A. and G.R. collected data and samples on BRCA1 and or BRCA2 mutation carriers.
N.G.M., G.W.M., J.C.-C., D.F.-J., H.B., G.S., L.B., A.C., S.S.C., P.M., S.M.G., W.T., D.Y., G.F., P.A.F., M.W.B., I.d.S.S., J.P., D.L., R.P., T.R., A.F., R.W., K.P., R.B.D., A.M.L., J.E.-P., C.V., F.B., K.D., A.D. and P.P.D.P. collected data and samples for the TNBCC case-control and/or the SEARCH studies.
All authors provided critical review of the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Additional information
A full list of members is provided in the Supplementary Note.
A full list of members is provided in the Supplementary Note.
A full list of members is provided in the Supplementary Note.
A full list of members is provided in the Supplementary Note.
A full list of members is provided in the Supplementary Note.
A full list of members is provided in the Supplementary Note.
A full list of members is provided in the Supplementary Note.
Supplementary information
Supplementary Text and Figures
Supplementary Figures 1 and 2, Supplementary Tables 1–5 and Supplementary Note (PDF 875 kb)
Rights and permissions
About this article
Cite this article
Antoniou, A., Wang, X., Fredericksen, Z. et al. A locus on 19p13 modifies risk of breast cancer in BRCA1 mutation carriers and is associated with hormone receptor–negative breast cancer in the general population. Nat Genet 42, 885–892 (2010). https://doi.org/10.1038/ng.669
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/ng.669