Abstract
The merger of two neutron stars has been predicted to produce an optical–infrared transient (lasting a few days) known as a ‘kilonova’, powered by the radioactive decay of neutron-rich species synthesized in the merger1,2,3,4,5. Evidence that short γ-ray bursts also arise from neutron-star mergers has been accumulating6,7,8. In models2,9 of such mergers, a small amount of mass (10−4–10−2 solar masses) with a low electron fraction is ejected at high velocities (0.1–0.3 times light speed) or carried out by winds from an accretion disk formed around the newly merged object10,11. This mass is expected to undergo rapid neutron capture (r-process) nucleosynthesis, leading to the formation of radioactive elements that release energy as they decay, powering an electromagnetic transient1,2,3,9,10,11,12,13,14. A large uncertainty in the composition of the newly synthesized material leads to various expected colours, durations and luminosities for such transients11,12,13,14. Observational evidence for kilonovae has so far been inconclusive because it was based on cases15,16,17,18,19 of moderate excess emission detected in the afterglows of γ-ray bursts. Here we report optical to near-infrared observations of a transient coincident with the detection of the gravitational-wave signature of a binary neutron-star merger and with a low-luminosity short-duration γ-ray burst20. Our observations, taken roughly every eight hours over a few days following the gravitational-wave trigger, reveal an initial blue excess, with fast optical fading and reddening. Using numerical models21, we conclude that our data are broadly consistent with a light curve powered by a few hundredths of a solar mass of low-opacity material corresponding to lanthanide-poor (a fraction of 10−4.5 by mass) ejecta.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Li, L.-X. & Paczyn´ ski, B. Transient events from neutron star mergers. Astrophys. J. 507, L59 (1998)
Rosswog, S. Mergers of neutron star–black hole binaries with small mass ratios: nucleosynthesis, γ-ray bursts, and electromagnetic transients. Astrophys. J. 634, 1202–1213 (2005)
Metzger, B. D. et al. Electromagnetic counterparts of compact object mergers powered by the radioactive decay of r-process nuclei. Mon. Not. R. Astron. Soc. 406, 2650–2662 (2010)
Wollaeger, R. T. et al. Impact of ejecta morphology and composition on the electromagnetic signature of neutron star mergers. Preprint at https://arxiv.org/abs/1705.07084 (2017)
Metzger, B. D. Kilonovae. Living Rev. Relativ. 20, 3 (2017)
Eichler, D. et al. Nucleosynthesis, neutrino bursts and γ-rays from coalescing neutron stars. Nature 340, 126–128 (1989)
Narayan, R., Paczynski, B. & Piran, T. γ-ray bursts as the death throes of massive binary stars. Astrophys. J. 395, L83 (1992)
Fong, W. & Berger, E. The locations of short γ-ray bursts as evidence for compact object binary progenitors. Astrophys. J. 776, 18 (2013)
Hotokezaka, K. et al. Mass ejection from the merger of binary neutron stars. Phys. Rev. D 87, 024001 (2013)
Kasen, D., Fernández, R. & Metzger, B. D. Kilonova light curves from the disc wind outflows of compact object mergers. Mon. Not. R. Astron. Soc. 450, 1777–1786 (2015)
Grossman, D. et al. The long-term evolution of neutron star merger remnants. II. Radioactively powered transients. Mon. Not. R. Astron. Soc. 439, 757–770 (2014)
Barnes, J. & Kasen, D. Effect of a high opacity on the light curves radioactively powered transients from compact object mergers. Astrophys. J. 775, 18–26 (2013)
Kasen, D., Badnell, N. R. & Barnes, J. Opacities and spectra of the r-process ejecta from neutron star mergers. Astrophys. J. 774, 25–37 (2013)
Tanaka, M. & Hotokezaka, K. Radiative transfer simulations of neutron star merger ejecta. Astrophys. J. 775, 113–128 (2013)
Perley, D. A. et al. GRB 080503: implications of a naked short γ-ray burst dominated by extended emission. Astrophys. J. 696, 1871–1885 (2009)
Tanvir, N. R. et al. A ‘kilonova’ associated with the short-duration γ-ray burst GRB 130603B. Nature 500, 547–549 (2013)
Berger, E., Fong, W. & Chornock, R. An r-process kilonova associated with the short-hard GRB 130603B. Astrophys. J. 774, L23 (2013)
Yang, B. et al. A possible macronova in the late afterglow of the long-short burst GRB 060614. Nat. Commun. 6, 7323 (2015)
Jin, Z.-P. et al. The macronova in GRB 050709 and the GRB-macronova connection. Nat. Commun. 7, 12898 (2016)
Abbott, B. P. et al. Multi-messenger observations of a binary neutron star merger. Astrophys. J. 848, https://doi.org/10.3847/2041-8213/aa91c9 (2017)
Kasen, D. et al. Origin of the heavy elements in binary neutron-star mergers from a gravitational-wave event. Nature http://doi.org/10.1038/nature24453 (2017)
LIGO Scientific Collaboration and Virgo Collaboration. GW170817: observation of gravitational waves from a binary neutron star inspiral. Phys. Rev. Lett. https://doi.org/10.1103/PhysRevLett.119.161101 (2017)
LIGO Scientific Collaboration et al. Advanced LIGO. Class. Quantum Gravity 32, 074001 (2015)
Acernese, F. et al. Advanced Virgo: a second generation interferometric gravitational wave detector. Class. Quantum Gravity 32, 024001 (2015)
Connaughton, V. Fermi GBM trigger 170817.529 and LIGO single IFO trigger. GCN Circ. 21506 (2017)
LIGO Scientific Collaboration and Virgo Collaboration. LIGO/Virgo G298048: further analysis of a binary neutron star candidate with updated sky localization. GCN Circ. 21513 (2017)
Brown, T. M. et al. Las Cumbres Observatory Global Telescope Network. Publ. Astron. Soc. Pacif. 125, 1031–1055 (2013)
Gehrels, N. et al. Galaxy strategy for LIGO-Virgo gravitational wave counterpart searches. Astrophys. J. 820, 136–144 (2016)
Singer, L. P. & Price, L. R. Rapid Bayesian position reconstruction for gravitational-wave transients. Phys. Rev. D 93, 024013 (2016)
Freedman, W. L. et al. Final results from the Hubble Space Telescope key project to measure the Hubble Constant. Astrophys. J. 553, 47–72 (2001)
Coulter, D. A. et al. LIGO/Virgo G298048: potential optical counterpart discovered by Swope telescope. GCN Circ. 21529 (2017)
Dietrich, T. & Ujevic, M. Gravitational waves and mass ejecta from binary neutron star mergers: effect of the mass ratio. Class. Quantum Gravity 34, 105014 (2017)
McCully, C. et al. The rapid reddening and featureless optical spectra of the optical counterpart of GW170817, AT 2017gfo, during the first four days. Astrophys. J. (in the press)
Lippuner, J. & Roberts, L. F. r-process lanthanide production and heating rates in kilonovae. Astrophys. J. 815, 82 (2015)
Kasliwal, M. et al. Illuminating gravitational waves: a concordant picture of photons from a neutron star merger. Science http://doi.org/10.1126/science.aap9455 (2017)
Arcavi, I. et al. Optical follow-up of gravitational-wave events with Las Cumbres Observatory. Astrophys. J. (in the press)
Allam S. et al. LIGO/Virgo G298048: DECam optical candidate. GCN Circ. 21530 (2017)
Yang, S. et al. LIGO/Virgo G298048: DLT40 optical candidate. GCN Circ. 21531 (2017)
Tanvir, N. R. & Levan, A. J. LIGO/Virgo G298048: VISTA/VIRCAM detection of candidate counterpart. GCN Circ. 21544 (2017)
Lipunov, M. et al. LIGO/Virgo G297595: MASTER observations of the NGC 4993. GCN Circ. 21546 (2017)
Coulter, D. A. et al. Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source. Science http://doi.org/10.1126/science.aap9811 (2017)
Soares-Santos, M. et al. The electromagnetic counterpart of the binary neutron star merger LIGO/VIRGO GW170817. I. Discovery of the optical counterpart using the dark energy camera. Astrophys. J. 848, https://doi.org/10.3847/2041-8213/aa9059 (2017)
Valenti, S. et al. The discovery of the electromagnetic counterpart of GW170817: kilonova AT 2017gfo/DLT17ck. Astrophys. J. 848, https://doi.org/10.3847/2041-8213/aa8edf (2017)
Valenti, S. et al. The diversity of type II supernovae versus the similarity in their progenitors. Mon. Not. R. Astron. Soc. 459, 3939–3962 (2016)
Becker, A. HOTPANTS: High Order Transform of PSF ANd Template Subtraction. Astrophys. Source Code Lib. ascl :1504.004 (2015)
Henden, A. A. et al. The AAVSO Photometric All-Sky Survey (APASS). AAS Meet. Abstr. 214, 407.02 (2009)
Schlafly, E. F. & Finkbeiner, D. P. Measuring reddening with Sloan Digital Sky Survey stellar spectra and recalibrating SFD. Astrophys. J. 737, 103–115 (2011)
Foreman-Mackey, D., Hogg, D. W., Lang, D. & Goodman, J. emcee: the MCMC Hammer. Publ. Astron. Soc. Pacif. 125, 306–312 (2013)
Arcavi, I. Hydrogen-rich core collapse supernovae. In Handbook of Supernovae (eds Alsabti, A. W . & Murdin, P. ) (Springer, in the press)
Conley, A. et al. SiFTO: an empirical method for fitting SN Ia light curves. Astrophys. J. 681, 482–498 (2008)
Taddia, F. et al. Early-time light curves of type Ib/c supernovae from the SDSS-II supernova survey. Astron. Astrophys. 574, A60 (2015)
Poznanski, D. et al. An unusually fast-evolving supernova. Science 327, 58–60 (2010)
Kasliwal, M. M. et al. Rapidly decaying supernova 2010X: a candidate “.Ia” explosion. Astrophys. J. 723, L98 (2010)
Leonard, D. C. et al. The distance to SN 1999em in NGC 1637 from the expanding photosphere method. Publ. Astron. Soc. Pacif. 114, 35–64 (2002)
Yang, S. et al. LIGO/Virgo G298048: continued observation for DLT17ck. GCN Circ. 21579 (2017)
Tonry J. et al. LIGO/Virgo G298048: ATLAS pre-discovery limits 601 to 16 days before first detection of SSS17a/DLT17ck. GCN Circ. 21886 (2017)
Korobkin, O., Rosswog, S., Arcones, A. & Winteler, C. On the astrophysical robustness of the neutron star merger r-process. Mon. Not. R. Astron. Soc. 426, 1940–1949 (2012)
Kulkarni, S. R. Modeling supernova-like explosions associated with gamma-ray bursts with short durations. Preprint at https://arxiv.org/abs/astro-ph/0510256 (2005)
Coughlin, M. et al. Towards rapid transient identification and characterization of kilonovae. Preprint at https://arxiv.org/abs/1708.07714 (2017)
Barnes, J., Kasen, D., Wu, M.-R. & Martínez-Pinedo, G. Radioactivity and thermalization in the ejecta of compact object mergers and their impact on kilonova light curves. Astrophys. J. 829, 110–129 (2016)
Law, N. M. et al. The Palomar Transient Factory: system overview, performance and first results. Publ. Astron. Soc. Pacif. 121, 1395–1408 (2009)
Rau, A. et al. Exploring the optical transient sky with the Palomar Transient Factory. Publ. Astron. Soc. Pacif. 121, 1334–1351 (2009)
Guillochon, J. et al. An open catalog for supernova data. Astrophys. J. 835, 64 (2017)
Lipunov, V. et al. MASTER optical detection of the first LIGO/Virgo NSs merging GW170817/G298048. Astrophys. J. (in the press)
Acknowledgements
We are indebted to W. Rosing and the LCO staff for making these observations possible, and to the LIGO and Virgo science collaborations. We thank L. Singer, T. Piran and W. Fong for assistance with planning the LCO observing program. We appreciate assistance and guidance from the LIGO–Virgo Collaboration—Electromagnetic follow-up liaisons. We thank B. Tafreshi and G. M. Árnason for helping to secure Internet connections in Iceland while this paper was being reviewed. Support for I.A. and J.B. was provided by the National Aeronautics and Space Administration (NASA) through the Einstein Fellowship Program (via grant numbers PF6-170148 and PF7-180162, respectively). G.H., D.A.H. and C.M. are supported by US National Science Foundation (NSF) grant AST-1313484. D.P. and D.M. acknowledge support by Israel Science Foundation grant number 541/17. D.K. is supported in part by a Department of Energy (DOE) Early Career award DE-SC0008067, a DOE Office of Nuclear Physics award DE-SC0017616, and a DOE SciDAC award DE-SC0018297, and by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Divisions of Nuclear Physics, of the US Department of Energy under contract number DE-AC02-05CH11231. This research used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office of Science of the US Department of Energy under contract number DE AC02-05CH11231. This research has made use of the NASA/IPAC Extragalactic Database, which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with NASA. The Digitized Sky Surveys were produced at the Space Telescope Science Institute (STScI) under US Government grant number NAG W-2166. The UK Schmidt Telescope was operated by the Royal Observatory Edinburgh, with funding from the UK Science and Engineering Research Council (later the UK Particle Physics and Astronomy Research Council), until June 1988, and thereafter by the Anglo-Australian Observatory. Supplementary funding for sky-survey work at the STScI is provided by the European Southern Observatory.
Author information
Authors and Affiliations
Contributions
I.A. is Principal Investigator of the LCO gravitational-wave follow-up program; he initiated and analysed the observations presented here and wrote the manuscript. G.H. helped with the LCO alert listener and ingestion pipeline, with follow-up observations and image analysis, and performed the blackbody fits. D.A.H. is the LCO–LIGO liaison, head of the LCO supernova group, and helped with the manuscript. C.M. assisted with obtaining and analysing data, and helped with the LCO alert listener. D.P. helped design the LCO follow-up program, assisted with the galaxy prioritization pipeline and contributed to the manuscript. D.K. and J.B. developed theoretical models and interpretations. M.Z. built the galaxy prioritization pipeline. S. Vasylyev built the LCO alert listener and ingestion pipeline. D.M. helped in discussions and with the manuscript. S. Valenti helped with image analysis and with the manuscript.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Additional information
Reviewer Information Nature thanks R. Chevalier, C. Miller and the other anonymous reviewer(s) for their contribution to the peer review of this work.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Extended data figures and tables
Extended Data Figure 1 Timeline of the discovery and the observability of AT 2017gfo in the first 24 h following the merger.
The curved lines denote the airmass and altitude (in degrees above the horizon) of the position of AT 2017gfo on the sky at each LCO Southern Hemisphere site from the start of the night until the hour-angle limit of the LCO 1-m telescopes. The vertical thick lines denote the times when LCO images were obtained (colours correspond to the different filters as denoted in the legend of Fig. 3). AT 2017gfo was observable for approximately 1.5 h at the beginning of the night. Having three Southern Hemisphere sites allowed us to detect the kilonova approximately 6.5 h after the LIGO-Virgo localization, follow it approximately 10 h later, and continue to observe it three times per 24-h period for the following days (Fig. 3). Counterpart announcement is from ref. 31.
Extended Data Figure 2 Blackbody fits.
MCMC parameter distributions (a–f) and spectral energy distributions (luminosity density Lλ as a function of wavelength) with the blackbody fits (g–l) are shown for the six epochs (noted by their modified Julian dates, MJD) with observations in more than two bands after excluding w-band data. In the parameter distributions, contour lines denote 50% and 90% bounds, the red and blue solid lines overplotted on each histogram denote the mean and median of each parameter distribution (respectively), and the dashed lines denote 68% confidence bounds. Error bars on the luminosity densities denote 1σ uncertainties.
Extended Data Figure 3 Bolometric luminosity, photospheric radius and temperature deduced from blackbody fits.
Error bars denote 1σ uncertainties (n = 200). The large uncertainties in the later epochs might be due to a blackbody that peaks redward of our available data, so these data points should be considered to be temperature upper limits. Our MCMC fits of an analytical model32 to the bolometric luminosity are shown in blue, and the numerical models21 from Fig. 3 are shown in red in the top panel. The numerical models were tailored to fit Vriw bands, but not the g band, which is driving the high bolometric luminosity at early times.
Extended Data Figure 4 AT 2017gfo evolves faster than any known supernova, contributing to its classification as a kilonova.
We compare our w-band data of AT 2017gfo (red; arrows denote 5σ non-detection upper limits reported by others55,56) to r-band templates of common supernova types (types Ia and Ib/c normalized to peaks of −19 mag and −18 mag, respectively)50,51, to r-band data of two rapidly evolving supernovae52,53 (SN 2002bj and SN 2010X) and to R-band data of the drop from the plateau of the prototypical type IIP supernova54 SN 1999em (dashed line; shifted by 1 mag for clarity).
Extended Data Figure 5 Peak luminosity and time of AT 2017gfo compared to simple analytical predictions.
The parameters11 from equations (1) and (2) are shown for different values of the ejecta mass Mej (solid lines), the opacity κ (dashed lines), and for two different ejecta velocities vej (red and blue lines). The rise time and peak luminosity of AT 2017gfo (black arrow) can be reproduced by an ejecta velocity vej ≈ 0.3c and a low opacity of κ ≲ 1 cm2 g−1. Matching the data with higher opacities would require higher ejecta velocities.
Extended Data Figure 6 Parameter distribution for MCMC fits of analytical kilonova models32 to our bolometric light curve.
The contour lines denote 50% and 90% bounds. The red and blue solid lines overplotted on each histogram denote the mean and median of each parameter distribution (respectively). The dashed lines denote 68% confidence bounds. The fits converge on an ejecta mass of (4.02 ± 0.05) × 10−2M⊙ but they do not constrain the velocity (converging on the largest possible range) or the geometrical parameters (θej and Φej), nor do they reproduce the colour evolution of our event (not shown). This indicates that these models may not be entirely valid for AT 2017gfo (although in ref. 59 it is shown that the geometrical parameters cannot be constrained either way). Our numerical models21, on the other hand, which include detailed radiation transport calculations, do provide a good fit to the data (Fig. 3) with Mej = (2–2.5) × 10−2M⊙, vej = 0.3c, and a lanthanide mass fraction of Xlan = 10−4.5, corresponding to an effective opacity of κ ≲ 1 cm2 g−1.
Extended Data Figure 7 Expected kilonova rates in optical transient surveys.
The number of AT 2017gfo-like events per year detectable by r-band transient surveys in two (solid lines), three (dashed lines) and five (dotted lines) epochs before fading from view. The numbers of events refer to the entire sky, and should be multiplied by the fraction of sky covered by the survey. We assume that the intrinsic rate of events is one per year out to 40 Mpc (scaling accordingly to larger distances).
Source data
Rights and permissions
About this article
Cite this article
Arcavi, I., Hosseinzadeh, G., Howell, D. et al. Optical emission from a kilonova following a gravitational-wave-detected neutron-star merger. Nature 551, 64–66 (2017). https://doi.org/10.1038/nature24291
Received:
Accepted:
Published:
Issue date:
DOI: https://doi.org/10.1038/nature24291
This article is cited by
-
Stars and stellar populations in Milky Way and the nearby galaxies
Journal of Astrophysics and Astronomy (2025)
-
JWST detection of a supernova associated with GRB 221009A without an r-process signature
Nature Astronomy (2024)
-
Heavy-element production in a compact object merger observed by JWST
Nature (2024)
-
A long-duration gamma-ray burst of dynamical origin from the nucleus of an ancient galaxy
Nature Astronomy (2023)
Xinhang Shen
Please be aware that the theory LIGO uses to make its calculations is completely wrong! All the authors of this article should have the capability to understand the following reasoning. It will be a crime to deliberately mislead the public with wrong information.
Einstein's relativity theory has already been disproved both logically and experimentally (see "Challenge to the special theory of relativity", March 1, 2016 on Physics Essays and a press release "Special Theory of Relativity Has Been Disproved Theoretically" on Eurekalert website: https://www.eurekalert.org/... ). The problem of Einstein's relativity is that it has redefined time and space through Lorentz Transformation. The newly defined time is no longer the physical time measured with physical clocks, which can be easily demonstrated by the following thought experiment of candle clocks:
There are a series of vertically standing candles with the same burning rate and moving at different constant horizontal velocities in an inertial reference frame of (x, y, z, t) where x, y, z, t are relativistic positions and time. At any moment t of relativistic time, all candles have the same height H in the reference frame of (x, y, z, t) and the height has been calibrated to physical time as physical clocks. Therefore, we have the simultaneous events of the observation measured in both relativistic time and physical time in the frame of (x, y, z, t): (Candle1, x1, y1, H, t), (candle2, x2, y2, H, t), ?, (CandleN, xN, yN, H, t). When these events are observed on anther horizontally moving inertial reference frame (x', y', z', t'), according to special relativity, these events in the reference frame of (x', y', z', t') can be obtained through Lorentz Transformation: (Candle1, x'1, y'1, H, t'1), (Candle2, x'2, y'2, H, t'2), ? , (CandleN, x'N, y'N, H, t'N) where t'1, t'2, ?, and t'Nਊre relativistic times of the events in the frame of (x', y', z', t'). It is seen that these events have different relativistic times after Lorentz Transformation in the frame of (x', y', z', t'), i.e., they are no longer simultaneous measured with relativistic time in the frame of (x', y', z', t'), but the heights of the candles remain the same because the vertical heights here do not experience any Lorentz contraction. Since the heights of the candles are the measures of the physical time, we can see these events still have the same physical time, i.e., they are still simultaneous measured with the physical time. Therefore, the physical time is invariant of inertial reference frames, which is different from relativistic time. As relativistic time is no longer the physical time we measure with physical devices, the des cription of special relativity is irrelevant to the physical world.
Now let's have a look at the symmetric twin paradox. Two twins made separate space travels in the same velocity and acceleration relative to the earth all the time during their entire trips but in opposite directions. According to special relativity, each twin should find the other twin?s clock ticking more slowly than his own clock during the entire trip due to the relative velocity between them because acceleration did not have any effect on kinematic time dilation in special relativity. But when they came back to the earth, they found their clocks had exact the same time because of symmetry. Thus, there is a contradiction which has disproved special relativity. This thought experiment demonstrates that relativistic time is not our physical time and can never be materialized on physical clocks.
Now let's look at clocks on the GPS satellites which is thought as one of the strong evidences of Einstein's relativity. Many physicists claim that clocks on the GPS satellites are corrected according to both special relativity and general relativity. This is not true because the corrections of the atomic clocks on the GPS satellites are absolute changes of the clocks (i.e. the same observed in all reference frames), none of which is relative to a specific observer as claimed by special relativity. After all corrections, the clocks are synchronized not only relative to the ground clocks but also relative to each other, i.e., time is absolute and special relativity is wrong.
This is a fact as shown on Wikipedia. But some people still argue that the clocks on the GPS satellites are only synchronized in the earth centered inertial reference frame, and are not synchronized in the reference frames of the GPS satellites. If it were true, then the time difference between a clock on a GPS satellite and a clock on the ground observed in the satellite reference frame would monotonically grow due to their relative velocity while the same clocks observed on the earth centered reference frame were still synchronized. If you corrected the clock on the satellite when the difference became significant, the correction would break the synchronization of the clocks observed in the earth centered frame. That is, there is no way to make such a correction without breaking the synchronization of the clocks observed in the earth centered frame. Therefore, it is wrong to think that the clocks are not synchronized in the satellite frame.
Hefele-Keating experiment is also considered as another evidence of relativistic effects. It is clear that all the differences of the clocks after flights in Hefele-Keating experiment were absolute (i.e., they were the same no matter whether you observe them on the earth, on the moon or on the space station). But according to relativity, if the clocks were observed on the earth, the two clocks after flights had experienced the equivalent paths of same velocity and same distance in same elevation, and thus should generate the same kinematic time dilation and the same gravitational time dilation, directly contradicting the experimental result. Therefore, the differences of the clocks were nothing to do with the velocities relative to each other or relative to the earth as claimed by relativists, but were the result of the velocities relative to one medium which seems fully dragged by the earth on its surface but partially dragged on the altitude of the airplanes. It is wrong to interpret the differences of the displayed times of the clocks as the results of relativistic effects.
Experiments show that electrons will emit photons when they are "moving", but ?moving? is relative. All electrons on the earth can be considered "moving" when you observe them on a rocket. According to special relativity, you should see them emit photons. Why in a rocket frame don't you see the electrons emit photons? It is because special relativity is wrong. It is not the velocity relative to the observer which makes an electron emit photons, but it is the velocity relative to ?something? makes an electron emit photons. This ?something? is aether, the existence of which has been proved in the above paper. Photons are waves of aether which is a compressible viscous fluid filling up the entire visible part of the universe, though its viscosity is very very small. It is the velocity relative to aether makes an electron emit photons, just as a boat on a water generates waves only when it moves relative to the water.
The increase of the lives of muons in particle accelerators or going through the atmosphere are the effects of aether caused by their velocities relative to aether, which are absolute changes and the same observed in all reference frames, nothing to do with relativity.
All so-called proofs of relativistic effects are just misinterpretations of experiments and observations without exception, and all what relativity describes is irrelevant to physical phenomena, including the speed of light which in special relativity is constant in all inertial reference frames, but which in real physical world still follows Newton's velocity addition formula (see the paper).
That is, time is absolute and space is 3D Euclidean. There is nothing called spacetime continuum in nature, not to mention the ripples of spacetime.