Abstract
A snow-line is the region of a protoplanetary disk at which a major volatile, such as water or carbon monoxide, reaches its condensation temperature. Snow-lines play a crucial role in disk evolution by promoting the rapid growth of ice-covered grains1,2,3,4,5,6. Signatures of the carbon monoxide snow-line (at temperatures of around 20 kelvin) have recently been imaged in the disks surrounding the pre-main-sequence stars TW Hydra7,8,9 and HD163296 (refs 3, 10), at distances of about 30 astronomical units (au) from the star. But the water snow-line of a protoplanetary disk (at temperatures of more than 100 kelvin) has not hitherto been seen, as it generally lies very close to the star (less than 5 au away for solar-type stars11). Water-ice is important because it regulates the efficiency of dust and planetesimal coagulation5, and the formation of comets, ice giants and the cores of gas giants12. Here we report images at 0.03-arcsec resolution (12 au) of the protoplanetary disk around V883 Ori, a protostar of 1.3 solar masses that is undergoing an outburst in luminosity arising from a temporary increase in the accretion rate13. We find an intensity break corresponding to an abrupt change in the optical depth at about 42 au, where the elevated disk temperature approaches the condensation point of water, from which we conclude that the outburst has moved the water snow-line. The spectral behaviour across the snow-line confirms recent model predictions14: dust fragmentation and the inhibition of grain growth at higher temperatures results in soaring grain number densities and optical depths. As most planetary systems are expected to experience outbursts caused by accretion during their formation15,16, our results imply that highly dynamical water snow-lines must be considered when developing models of disk evolution and planet formation.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Zhang, K., Blake, G. A. & Bergin, E. A. Evidence of fast pebble growth near condensation fronts in the HL Tau protoplanetary disk. Astrophys. J. 806, L7–L12 (2015)
Okuzumi, S., Tanaka, H., Kobayashi, H. & Wada, K. Rapid coagulation of porous dust aggregates outside the snow line: a pathway to successful icy planetesimal formation. Astrophys. J. 752, 106–123 (2012)
Guidi, G. et al. Dust properties across the CO snowline in the HD 163296 disk from ALMA and VLA observations. Astron. Astrophys. 588, A112–A123 (2016)
Baillié, K., Charnoz, S. & Pantin, E. Time evolution of snow regions and planet traps in an evolving protoplanetary disk. Astron. Astrophys. 577, A65–A76 (2015)
Blum, J. & Wurm, G. The growth mechanisms of macroscopic bodies in protoplanetary disks. Annu. Rev. Astron. Astrophys. 46, 21–56 (2008)
Zhang, K. et al. On the commonality of 10–30 au sized axisymmetric dust structures in protoplanetary disks. Astrophys. J. 818, L16–L22 (2016)
Qi, C. et al. Imaging of the CO snow line in a solar nebula analog. Science 341, 630–632 (2013)
Nomura, H. et al. ALMA observations of a gap and a ring in the protoplanetary disk around TW Hya. Astrophys. J. 819, L7–L13 (2016)
Schwarz, K. et al. The radial distribution of H2 and CO in TW Hya as revealed by resolved ALMA observations of CO isotopologues. Astrophys. J. 823, 91S (2016)
Qi, C. et al. Chemical imaging of the CO snow line in the HD 163296 disk. Astrophys. J. 813, 128 (2015)
Kennedy, G. & Kenyon, S. Planet formation around stars of various masses: the snow line and the frequency of giant planets. Astrophys. J. 673, 502–512 (2008)
Morbidelli, A., Lambrechts, M., Jacobson, S. & Bitsch, B. The great dichotomy of the Solar System: small terrestrial embryos and massive giant planet cores. Icarus 258, 418–429 (2015)
Audard, M. et al. in Protostars and Planets VI (eds Beuther, H., Klessen, R. S., Dullemond, C. P. & Henning, T. ) 387–410 (Univ. Arizona Press, 2014)
Banzatti, A. et al. Direct imaging of the water snow line at the time of planet formation using two ALMA continuum bands. Astrophys. J. 815, L15–L20 (2015)
Evans, N. et al. The Spitzer c2d legacy results: star-formation fates and efficiencies; evolution and lifetimes. Astrophys. J. 181 (Suppl.), 321–350 (2009)
Dunham, M. & Vorobyov, E. Resolving the luminosity problem in low-mass star formation. Astrophys. J. 747, 52–72 (2012)
Strom, K. & Strom, S. The discovery of two FU Orionis objects in L1641. Astrophys. J. 412, L63–L66 (1993)
Menten, K. M., Reid, M. J., Forbrich, J. & Brunthaler, A. The distance to the Orion Nebula. Astron. Astrophys. 474, 515–520 (2007)
Sandell, G. & Weintraub, D. On the similarity of FU Orionis stars to class I protostars: evidence from the submillimeter. Astrophys. J. 134 (Suppl.), 115–132 (2001)
Casassus, S. et al. A compact concentration of large grains in the HD 142527 protoplanetary dust trap. Astrophys. J. 812, 126–139 (2015)
Williams, J. & Cieza, L. Protoplanetary disks and their evolution. Annu. Rev. Astron. Astrophys. 49, 67–117 (2011)
Collings, M. et al. A laboratory survey of the thermal desorption of astrophysically relevant molecules. Mon. Not. R. Astron. Soc. 354, 1133–1140 (2004)
Fayolle, E. et al. Laboratory H2O:CO2 ice desorption data: entrapment dependencies and its parameterization with an extended three-phase model. Astron. Astrophys. 529, A74–A84 (2011)
Martín-Doménech, R., Muñoz Caro, G. M., Bueno, J. & Goesmann, F. Thermal desorption of circumstellar and cometary ice analogs. Astron. Astrophys. 564, A8–A19 (2014)
Mulders, G., Ciesla, F., Min, M. & Pascucci, I. The snow line in viscous disks around low-mass stars: implications for water delivery to terrestrial planets in the habitable zone. Astrophys. J. 807, 9–15 (2015)
Siess, L., Dufour, E. & Forestini, M. An internet server for pre-main sequence tracks of low- and intermediate-mass stars. Astron. Astrophys. 358, 593–599 (2000)
ALMA Partnership et al. The 2014 ALMA long baseline campaign: first results from high angular resolution observations toward the HL Tau region. Astrophys. J. 808, L3–L12 (2015)
Ros, K. & Johansen, A. Ice condensation as a planet formation mechanism. Astron. Astrophys. 552, A137–A150 (2013)
Birnstiel, T., Dullemond, C. P. & Brauer, F. Gas- and dust evolution in protoplanetary disks. Astron. Astrophys. 513, A79–A99 (2010)
McMullin, J. P. et al. CASA architecture and applications. Astron. Soc. Pac. Conf. Ser. 376, 127–130 (2007)
Rau, U. & Cornwell, T. A multi-scale multi-frequency deconvolution algorithm for synthesis imaging in radio interferometry. Astron. Astrophys. 532, A71–A87 (2011)
Casassus, S. et al. Flows of gas through a protoplanetary gap. Nature 493, 191–194 (2013)
Maret, S. Thindisk 1.0: compute the line emission from a geometrically thin protoplanetary disk. Zenodohttps://zenodo.org/record/13823 (2015)
Powell, M. J. An efficient method for finding the minimum of a function of several variables without calculating derivatives. Computer J. 7, 155–162 (1964)
Acknowledgements
We thank the referees for their valuable comments. We also thank A. Banzatti and P. Pinilla for providing their model predictions in tabular form (Fig. 2d, e). ALMA is a partnership of the European Southern Observatory (ESO; representing its member states), the National Science Foundation (NSF; USA) and the National Institutes of Natural Sciences (Japan), together with the National Research Council (Canada) and the National Science Council and the Academia Sinica Institute of Astronomy and Astrophysics (Taiwan), in cooperation with the Republic of Chile. The Joint ALMA Observatory is operated by ESO, Associated Universities Inc./National Radio Astronomy Observatory (NRAO), and the National Astronomical Observatory of Japan. The NRAO is a facility of the NSF, operated under cooperative agreement by Associated Universities. Support for this work was provided by the Millennium Science Initiative (Chilean Ministry of Economy), through grants RC130007 and IC120009. L.A.C., D.A.P., J.L.P. and C.C. acknowledge support from CONICYT FONDECYT grants 1140109, 3150550, 1151445 and 3140592, respectively. H.C. acknowledges support from the Spanish Ministerio de Economía y Competitividad under grant AYA2014-55840P. Our work made use of ALMA data available at https://almascience.eso.org/alma-data with the following accession numbers: 2013.1.00710.S and 2015.1.00350.S.
Author information
Authors and Affiliations
Contributions
L.A.C. led the ALMA cycle-2 and cycle-3 proposals (with the contribution of most of the other authors) and the writing of the manuscript. S.C. analysed the cycle-3 data and performed the grey-body analysis. J.T. and S.A.B. determined the stellar dynamical mass. J.P.W. analysed the cycle-2 molecular line data. S.P. and Z.Z. performed the simulations supporting the cycle-3 proposal. All co-authors commented on the manuscript and contributed to the interpretation of the results.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Additional information
Reviewer Information
Nature thanks E. Bergin and the other anonymous reviewer(s) for their contribution to the peer review of this work.
Extended data figures and tables
Extended Data Figure 1 Sketch of the observed phenomenon.
a, During quiescence, the water snow-line around stars of Solar masses is located 5 au or less from the star, where the temperature of the disk reaches the sublimation point of water. b, During protostellar accretion outbursts, this line moves out to more than 40 au, where it can be detected. Outward of the snow-line, grain growth is promoted by the high coagulation efficiency of ice-covered grains (brown and blue concentric circles). Inward of this line, dust production is promoted by the high fragmentation efficiency of bared silicates (brown circles). This results in the observed break in the disk intensity profile, a steep reduction in the 1.3-mm dust opacity, and a sharp increase in the spectral index across the snow-line.
Rights and permissions
About this article
Cite this article
Cieza, L., Casassus, S., Tobin, J. et al. Imaging the water snow-line during a protostellar outburst. Nature 535, 258–261 (2016). https://doi.org/10.1038/nature18612
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nature18612