+
X
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Advertisement

Heredity
  • View all journals
  • Search
  • Log in
  • Content Explore content
  • About the journal
  • Publish with us
  • Sign up for alerts
  • RSS feed
  1. nature
  2. heredity
  3. original article
  4. article
The mating system and population genetic structure in a bird-pollinated mallee, Eucalyptus rhodantha
Download PDF
Download PDF
  • Original Article
  • Published: 01 December 1989

The mating system and population genetic structure in a bird-pollinated mallee, Eucalyptus rhodantha

  • Jane F Sampson1 nAff3,
  • Stephen D Hopper2 &
  • Sidney H James1 

Heredity volume 63, pages 383–393 (1989)Cite this article

  • 1041 Accesses

  • 53 Citations

  • Metrics details

Abstract

The mating system and spatial genetic structure of the rare and endangered bird-pollinated mallee Eucalyptus rhodantha were investigated in a remnant stand, using progeny arrays and pollen assayed at four polymorphic allozyme loci. Comparisons of the genetic diversity within and between the pollen pools and maternal parents of two arbitrary subpopulations indicated the presence of spatial genetic heterogeneity which was not broken down by pollen flow. It was suggested that this is the result of a high level if inbreeding and limited pollen dispersal by birds. Estimates of outcrossing rate ranged between t̂=0·59 and t̂=0·67 and were at the low end of the range reported for other eucalypts. It was concluded that E. rhodantha has a mixed mating system with a significant proportion of self-pollination. Biparental inbreeding within small neighbourhoods probably also contributed to the high level of inbreeding. The low level of outcrossing observed in E. rhodantha was not consistent with the hypothesis that bird pollination leads to high levels of outcrossing in the Australian flora. However, the level of outcrossing achieved through bird pollination together with high levels of gene flow between populations contribute to the maintenance of the relatively high levels of diversity which characterise the dissected populations of this species.

Similar content being viewed by others

Reproductive strategies and their consequences for divergence, gene flow, and genetic diversity in three taxa of Clarkia

Article 12 September 2023

Lack of pollinators selects for increased selfing, restricted gene flow and resource allocation in the rare Mediterranean sage Salvia brachyodon

Article Open access 29 February 2024

Plant-pollinator trait matching affects pollen transfer but not feeding efficiency of Australian honeyeaters (Aves, Meliphagidae)

Article Open access 01 March 2025

Article PDF

References

  • Allard, R W. 1975. The mating system and microevolution. Genetics, 79, 115–126.

    PubMed  Google Scholar 

  • Beltran, I C, and James, S H. 1974. Complex hybridity in Isotoma petraea. IV. Heterosis in interpopulational heterozygotes. Aust J Bot, 22, 251–264.

    Article  Google Scholar 

  • Bond, H W, and Brown, N L. 1979. The exploitation of floral nectar in Eucalyptus incrassata by honeyeaters and honeybees. Oecologia, 44, 105–111.

    Article  PubMed  Google Scholar 

  • Bos, M. Harmens, H, and Vrieling, K. 1986. Gene flow in Plantago I. Gene flow and neighbourhood size in P. lanceolata. Heredity, 6, 43–54.

    Article  Google Scholar 

  • Brown, A H D. 1979. Enzyme polymorphism in plant populations. Theor Pop Biol, 15, 1–42.

    Article  Google Scholar 

  • Brown, A H D, and Allard, R W. 1970. Estimation of the mating system in open-pollinated maize populations using isozyme polymorphisms. Genetics, 66, 133–145.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown, A H D, and Weir, B A. 1983. Measuring genetic variability in plant populations. In Tanksley, S. D. and Orton, T. J. (eds.) Isozymes in Plant Genetics and Breeding, Elsevier, Amsterdam, pp. 219–239.

    Google Scholar 

  • Brown, A H D. Barrett, S C H, and Moran, G F. 1985. Mating system estimation in forest trees: models methods and meanings. In Gregorius, H. R. (ed.) Population Genetics of Forestry, Lecture Notes in Biomathematics, vol. 60, Springer-Verlag, Berlin, pp. 32–49.

    Chapter  Google Scholar 

  • Brown, A H D. Matheson, A C, and Eldridge, K G. 1975. Estimation of the mating system of Eucalyptus obliqua L'Hérit. by using allozyme polymorphisms. Aust J Bot, 23, 931–949.

    Article  CAS  Google Scholar 

  • Clegg, M T. Kahler, A L, and Allard, R W. 1978. Estimation of life cycle components of selection in an experimental plant population. Genetics, 89, 765–792.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dewey, S E, and Heywood, J S. 1988. Spatial genetic structure in a population of Psychotria nervosa. I. Distribution of genotypes. Evolution, 42, 834–838.

    Article  PubMed  Google Scholar 

  • Ehrlich, P R, and Raven, N H. 1969. Differentiation of populations. Science, 179, 243–250.

    Google Scholar 

  • El-Kassaby, Y A. Meagher, M D. Parkinson, J, and Portlock, F T. 1987. Allozyme inheritance, heterozygosity and outcrossing rate among Pinus monticola near Ladysmith, British Columbia. Heredity, 58, 173–181.

    Article  Google Scholar 

  • Ellstrand, N C, and Foster, K W. 1983. Impact of population structure on the apparent outcrossing rate of grain sorghum (Sorghum bicolor). Theor Appl Genet, 66, 323–327.

    Article  CAS  PubMed  Google Scholar 

  • Ennos, R A. 1985. The mating system and genetic structure in a perennial grass, Cynosurus cristatus L. Heredity, 55, 121–126.

    Article  Google Scholar 

  • Ennos, R A, and Clegg, M T. 1982. Effect of population substructuring on estimates of outcrossing rate in plant populations. Heredity, 48, 283–292.

    Article  Google Scholar 

  • Ford, H A. Paton, D C, and Forde, N. 1979. Birds as pollinators of Australian plants. TV. Z J Bot, 17, 509–519.

    Article  Google Scholar 

  • Fripp, Y J. 1982. Allozyme variation and mating system in two populations of Eucalyptus kitsoniana (Luehm.) Maiden. Aust For Res, 13, 1–10.

    Google Scholar 

  • Fripp, Y J. Griffin, A R, and Moran, G F. 1987. Variation in allele frequencies in the outcross pollen pool of Eucalyptus regnans F. Muell. Throughout a flowering season. Heredity, 59, 161–171.

    Article  Google Scholar 

  • Furnier, G R, and Adams, W T. 1986. Mating system in natural populations of Jeffrey pine. Amer J Bot, 73, 1002–1009.

    Article  Google Scholar 

  • Furnier, G R. Knowles, P. Clyde, M A, and Dancik, B P. 1987. Effects of avian seed dispersal on the genetic structure of whitebark pine populations. Evolution, 41, 607–612.

    Article  PubMed  Google Scholar 

  • Fyfe, J L, and Bailey, N T J. 1951. Plant breeding studies in leguminous forage crops. 1. Natural cross-breeding in winter beans. J Agric Sci, 41, 371–378.

    Article  Google Scholar 

  • Gregorius, H-R. Krauhausen, J, and Muller-Stark, G. 1986. Spatial and temporal differentiation among the seed in a stand of Fagus sylvatica L. Heredity, 57, 255–262.

    Article  Google Scholar 

  • Hedrick, P W. Jain, S, and Holden, L. 1978. Multilocus systems in evolution. Evol Biol, 11, 101–182.

    Google Scholar 

  • Hopper, S D. 1981. Honeyeaters and their winter food plants on granite rocks in the central wheatbelt of Western Australia. Aust Wildl Res, 8, 187–197.

    Article  Google Scholar 

  • Hopper, S D, and Moran, G F. 1981. Bird pollination and the mating system of Eucalyptus stoatei. Aust J Bot, 29, 625–638.

    Article  Google Scholar 

  • James, S H. 1965. Complex hybridity in lsotoma petraea. I. The occurrence of interchange heterozygosity, autogamy and a balanced lethal system. Heredity, 20, 341–353.

    Article  Google Scholar 

  • James, S H. 1970. Complex hybridity in lsotoma petraea. II. Components and operation of a possible evolutionary mechanism. Heredity, 25, 53–78.

    Article  Google Scholar 

  • James, S H. 1981. Cytoevolutionary patterns, genetic systems and the phytogeography of Australia. In Pate, J. S. and McComb. A. J. (eds.) Ecological Biogeography of Australia, Junk, The Hague, pp. 761–782.

    Chapter  Google Scholar 

  • James, S H, and Hopper, S D. 1981. Speciation in the Australian flora. In Keast, A. (ed.) The Biology of Australian Plants, University of Western Australia Press, Nedlands, pp. 361–381.

    Google Scholar 

  • Knowles, P. 1984. Genetic variability among and within closely spaced populations of lodgepole pine. Can J Genet Cytol, 26, 177–184.

    Article  Google Scholar 

  • Levin, D A. 1981. Dispersal versus gene flow in plants. Ann Mo Bot Gard, 68, 233–253.

    Article  Google Scholar 

  • Levin, D A, and Kerster, H W. 1974. Gene flow in seed plants. In Dobzhansky, T., Hecht, M. K. and Steere, W. D. (eds.) Evolutionary Biology, Plenum Press, New York, pp. 139–220.

    Chapter  Google Scholar 

  • Linhart, Y B. Mitton, J B. Sturgeon, K B, and Davis, M L. 1981. An analysis of genetic architecture in populations of Ponderosa pine. In Conkle, M. T. (ed.) Isozymes of North American Forest Trees and Forest Insects, U.S. Department of Agriculture, Berkeley, pp. 53–59.

    Google Scholar 

  • Loveless, M D, and Hamrick, J L. 1984. Ecological determinants of genetic structure in plant populations. Ann Rev Ecol Svst, 15, 65–95.

    Article  Google Scholar 

  • McNee, S. 1986. Grad. Dip. Nat. Res. Thesis, Curtin University.

  • Moran, G F, and Bell, J C. 1983. Eucalyptus. In Tanksley, S. D. and Orton, T. J. (eds.) Isozymes in Plant Genetics and Breeding, Elsevier, Amsterdam, pp. 423–441.

    Chapter  Google Scholar 

  • Moran, G F, and Brown, A H D. 1980. Temporal heterogeneity of outcrossing rates in alpine ash (Eucalyptus delagatensis R. T. Bak.). Theor Appl Genet, 57, 101–105.

    Article  CAS  PubMed  Google Scholar 

  • Moran, G F, and Hopper, S D. 1983. Genetic diversity and the insular population structure of the rare granite rock species, Eucalyptus caesia Benth. Aust J Bot, 31, 162–172.

    Article  Google Scholar 

  • Moran, G F, and Hopper, S D. 1987. Conservation of the genetic resources of rare and widespread eucalypts in remnant vegetation. In Saunders, D. A., Arnold, G. W., Burbidge, A. A. and Hopkins, A. J. M. (eds.) Nature Conservation: The Role of Remnants of Native Vegetation, Surrey Beatty and Sons, Australia, pp. 151–162.

    Google Scholar 

  • Neale, D B, and Adams, W T. 1985. The mating system in natural and shelterwood stands of Douglas-fir. Theor Appl Genet, 71, 201–207.

    Article  CAS  PubMed  Google Scholar 

  • Nei, M. 1973. Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA, 70, 3321–3323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O'Malley, D M, and Bawa, K S. 1987. Mating system of a tropical rain forest tree species. Amer J Bot, 74, 1143–1149.

    Article  Google Scholar 

  • Paton, D C, and Ford, H A. 1977. Pollination by birds of native plants in South Australia. Emu, 77, 73–85.

    Article  Google Scholar 

  • Phillips, M A, and Brown, A H D. 1977. Mating system and hybridity in Eucalyptus pauciflora. Aust J Biol Sci, 30, 337–344.

    Article  CAS  Google Scholar 

  • Pryor, L D, and Johnson, L A S. 1971. A classification of the Eucalypts. Australian National University Press, Canberra.

    Google Scholar 

  • Rao, C R. 1973. Linear Statistical Inference and its Applications. Wiley, New York.

    Book  Google Scholar 

  • Ritland, K, and Ganders, F R. 1985. Variation in the mating system of Bidens menzeiesii (Asteraceae) in relation to population substructure. Heredity, 55, 235–244.

    Article  Google Scholar 

  • Ritland, K, and Jain, N. 1981. A model for the estimation of outcrossing rate and gene frequencies using n independent loci. Heredity, 47, 35–52.

    Article  Google Scholar 

  • Sampson, J F. 1988. Ph.D. Thesis, The University of Western Australia.

  • Sampson, J F. Hopper, R D, and James, S H. 1988. Genetic diversity and the conservation of Eucalyptus crucis Maiden. Aust J Bot, 36, 447–460.

    Article  Google Scholar 

  • Schaal, B A. 1975. Population structure and local differentiation in Liatris cylindracea. Am Nat, 109, 511–528.

    Article  Google Scholar 

  • Schemske, D W, and Lande, R. 1985. The evolution of self-fertilization and inbreeding depression in plants. II. Empirical observations. Evolution, 39, 41–52.

    Article  PubMed  Google Scholar 

  • Schoen, D S, and Clegg, M T. 1984. Estimation of mating system parameters when outcrossing events are correlated. Proc Natl Acad Sci USA, 81, 5258–5262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shaw, D V, and Allard, R W. 1981. Analysis of mating system parameters and population structure in Douglas-fir using single-locus and multilocus methods. In Conkle, M. T. (ed.) Isozymes of North American Forest Trees and Forest Insects, U.S. Department of Agriculture, Berkeley, pp. 18–22.

    Google Scholar 

  • Shaw, D V, and Allard, R W. 1982. Estimation of outcrossing rates in Douglas-fir using isozyme markers. Theor Appl Genet, 62, 113–120.

    Article  CAS  PubMed  Google Scholar 

  • Shea, K L. 1987. Effects of population structure and cone production on outcrossing rates in Engelmann spruce and subalpine fir. Evolution, 41, 124–136.

    Article  PubMed  Google Scholar 

  • Turner, M E. Claibourne Stephens, J, and Anderson, N W. 1982. Homozygosity and patch structure in plant populations as a result of nearest-neighbour pollination. Proc Natl Acad Sa USA, 79, 203–207.

    Article  CAS  Google Scholar 

  • Waser, N M. 1987. Spatial genetic heterogeneity in a population of the montane perrenial plant Delphinium nelsonii. Heredity, 58, 249–256.

    Article  Google Scholar 

  • Weir, B S. 1979. Inferences about linkage disequilibrium. Biometrics, 35, 235–254.

    Article  CAS  PubMed  Google Scholar 

  • Weir, B S, and Cockerham, M C. 1979. Estimation of linkage disequilibrium in randomly mating populations. Heredity, 42, 205–222.

    Article  Google Scholar 

  • Wellington, A B. Polach, H A, and Noble, I R. 1979. Radiocarbon dating of lignotubers from mallee forms of Eucalyptus. Search, 10, 7–8.

    Google Scholar 

  • Workman, P L, and Niswander, J D. 1970. Population studies on southwestern Indian tribes. II. Local genetic differentiation in the Papago. Am J Hum Genet, 22, 24–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wright, S. 1969. Evolution and the Genetics of Populations Vol 2, The Theory of Gene Frequencies. University of Chicago Press, Chicago.

    Google Scholar 

  • Yeh, F C. Brune, A. Cheliak, W M, and Chipman, D C. 1983. Mating system of Eucalyptus citriodora in a seed production area. Can J For Res, 13, 1051–1055.

    Article  Google Scholar 

Download references

Author information

Author notes
  1. Jane F Sampson

    Present address: Department of Conservation and Land Management, Western Australian Wildlife Research Centre, P.O. Box 51, Wanneroo, Western Australia, 6065

Authors and Affiliations

  1. Department of Botany, The University of Western Australia, Nedlands, 6009, Western Australia

    Jane F Sampson & Sidney H James

  2. Department of Conservation and Land Management, Western Australian Wildlife Research Centre, Wanneroo, P.O. Box 51, 6065, Western Australia

    Stephen D Hopper

Authors
  1. Jane F Sampson
    View author publications

    Search author on:PubMed Google Scholar

  2. Stephen D Hopper
    View author publications

    Search author on:PubMed Google Scholar

  3. Sidney H James
    View author publications

    Search author on:PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sampson, J., Hopper, S. & James, S. The mating system and population genetic structure in a bird-pollinated mallee, Eucalyptus rhodantha. Heredity 63, 383–393 (1989). https://doi.org/10.1038/hdy.1989.112

Download citation

  • Received: 02 June 1989

  • Issue date: 01 December 1989

  • DOI: https://doi.org/10.1038/hdy.1989.112

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

This article is cited by

  • Mating system and early viability resistance to habitat fragmentation in a bird-pollinated eucalypt

    • M F Breed
    • K M Ottewell
    • A J Lowe

    Heredity (2015)

  • Composition of the pollinator community, pollination and the mating system for a shrub in fragments of species rich kwongan in south-west Western Australia

    • Colin J. Yates
    • David J. Coates
    • Margaret Byrne

    Biodiversity and Conservation (2007)

  • Pollen flow in Eucalyptus grandis determined by paternity analysis using microsatellite markers

    • Megan E. Jones
    • Mervyn Shepherd
    • Angela Delves

    Tree Genetics & Genomes (2007)

  • Maintenance of Inbreeding Depression in a Highly Self-Fertilizing Tree, Magnolia obovata Thunb

    • Kiyoshi Ishida

    Evolutionary Ecology (2006)

  • Allozyme diversity in relation to geographic distribution and population size inLathyrus vernus (L.) Bernh. (Fabaceae)

    • K. Schiemann
    • T. Tyler
    • B. Wid�n

    Plant Systematics and Evolution (2000)

Download PDF

Advertisement

Explore content

  • Research articles
  • Reviews & Analysis
  • News & Comment
  • Podcasts
  • Current issue
  • Collections
  • Follow us on Twitter
  • Sign up for alerts
  • RSS feed

About the journal

  • Journal Information
  • Open access publishing
  • About the Editors
  • Contact
  • About the Partner
  • For Advertisers
  • Subscribe

Publish with us

  • For Authors & Referees
  • Language editing services
  • Open access funding
  • Submit manuscript

Search

Advanced search

Quick links

  • Explore articles by subject
  • Find a job
  • Guide to authors
  • Editorial policies

Heredity (Heredity)

ISSN 1365-2540 (online)

ISSN 0018-067X (print)

nature.com sitemap

About Nature Portfolio

  • About us
  • Press releases
  • Press office
  • Contact us

Discover content

  • Journals A-Z
  • Articles by subject
  • protocols.io
  • Nature Index

Publishing policies

  • Nature portfolio policies
  • Open access

Author & Researcher services

  • Reprints & permissions
  • Research data
  • Language editing
  • Scientific editing
  • Nature Masterclasses
  • Research Solutions

Libraries & institutions

  • Librarian service & tools
  • Librarian portal
  • Open research
  • Recommend to library

Advertising & partnerships

  • Advertising
  • Partnerships & Services
  • Media kits
  • Branded content

Professional development

  • Nature Awards
  • Nature Careers
  • Nature Conferences

Regional websites

  • Nature Africa
  • Nature China
  • Nature India
  • Nature Japan
  • Nature Middle East
  • Privacy Policy
  • Use of cookies
  • Legal notice
  • Accessibility statement
  • Terms & Conditions
  • Your US state privacy rights
Springer Nature

© 2025 Springer Nature Limited

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载