+
Skip to main content
Log in

A simple differential evolution with time-varying strategy for continuous optimization

  • Focus
  • Published:
Soft Computing Aims and scope Submit manuscript

Abstract

We propose a novel simple variant of differential evolution (DE) algorithm and call it TVDE because it is a time-varying strategy-based DE algorithm. In our TVDE, three functions with time-varying characteristics are applied to create a new mutation operator and automatically tune the values of two key control parameters (scaling factor and crossover rate) during the evolutionary process. To verify its availability, the proposed TVDE has been tested on the CEC 2014 benchmark sets and four real-life problems and compared to seven state-of-the-art DE variants. The experimental results indicate that the proposed TVDE algorithm obtains the best overall performance among the eight DE algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Al-Dabbagh RD, Neri F, Idris N, Baba MS (2018) Algorithmic design issues in adaptive differential evolution schemes: review and taxonomy. Swarm Evol Comput 43:284–311

    Article  Google Scholar 

  • Arce F, Zamora E, Sossa H, Barróna R (2018) Differential evolution training algorithm for dendrite morphological neural networks. Appl Soft Comput 68:303–313

    Article  Google Scholar 

  • Črepinšek M, Liu SH, Mernik M (2013) Exploration and exploitation in evolutionary algorithms: a survey. ACM Comput Surv 45(3):1–33

    Article  Google Scholar 

  • Das S, Suganthan PN (2011) Differential evolution: a survey of the state-of-the-art. IEEE Trans Evol Comput 15:4–31

    Article  Google Scholar 

  • Das S, Suganthan PN (2011b) Problem definitions and evaluation criteria for CEC 2011 competition on testing evolutionary algorithms on real world optimization problems. Jadavpur University, Kolkata, India, and Nanyang Technological University, Singapore, Dec. 2010

  • Das S, Mullick SS, Suganthan PN (2016) Recent advances in differential evolution-an updated survey. Swarm Evol Comput 27:1–30

    Article  Google Scholar 

  • Draa A, Bouzoubia S, Boukhalfa I (2015) A sinusoidal differential evolution algorithm for numerical optimisation. Appl Soft Comput 27:99sC126

    Article  Google Scholar 

  • Draa A, Chettah K, Talbi H (2018) Compound sinusoidal differential evolution algorithm for continuous optimization. Comput Swarm Evol. https://doi.org/10.1016/j.swevo.2018.10.001

    Article  Google Scholar 

  • Fan Q, Yan X (2016) Self-adaptive differential evolution algorithm with zoning evolution of control parameters and adaptive mutation strategies. IEEE Trans Cybern 46:219–232

    Article  Google Scholar 

  • García-Martínez C, Lozano M, Herrera F, Molina D, Sánchez A (2008) Global and local real-coded genetic algorithms based on parent-centric crossover operators. Eur J Oper Res 185(3):1088–1113

    Article  Google Scholar 

  • Gong W, Cai Z (2013) Differential evolution with ranking-based mutation operators. IEEE Trans Cybern 43(6):2066C2081

    Article  Google Scholar 

  • Gong W, Cai Z, Liang D (2015) Adaptive ranking mutation operator based differential evolution for constrained optimization. IEEE Trans Cybern 45:716–727

    Article  Google Scholar 

  • Han MF, Liao SH, Chang JY, Lin CT (2013) Dynamic group-based differential evolution using a self-adaptive strategy for global optimization problems. Appl Intell 39(1):41C56

    Article  Google Scholar 

  • Herrera F, Lozano M (2000) Gradual distributed real-coded genetic algorithms. IEEE Trans Evol Comput 4(1):43–63

    Article  Google Scholar 

  • Hu J, Guo P, Poh KL (2018) Flexible capacity planning for engineering systems based on decision rules and differential evolution. Comput Ind Eng 123:254–262

    Article  Google Scholar 

  • Islam SM, Das S, Ghosh S, Roy S, Suganthan PN (2012) An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization. IEEE Trans Syst Man Cybern Part B Cybern 42(2):482C500

    Article  Google Scholar 

  • Liang JJ, Qu BY, Suganthan PN (2013) Problem definitions and evaluation criteria for the CEC 2014 special session and competition on single objective real-parameter numerical optimization. Zhengzhou University, China, and Nanyang Technological University, Singapore

  • Liang J, Xu W, Yue C, Yu K, Song H, Crisalle OD, Qu B (2019) Multimodal multiobjective optimization with differential evolution. Swarm Evol Comput 44:1028–1059

    Article  Google Scholar 

  • Mohamed AW, Sabry HZ (2012) Constrained optimization based on modified differential evolution algorithm. Inf Sci 194:171–208

    Article  Google Scholar 

  • Mohamed AW, Hadi AA, Jambi KM (2018) Novel mutation strategy for enhancing SHADE and LSHADE algorithms for global numerical optimization. Comput Swarm Evol. https://doi.org/10.1016/j.swevo.2018.10.006

    Article  Google Scholar 

  • Mukherjee R, Debchoudhury S, Das S (2016) Modified differential evolution with locality induced genetic operators for dynamic optimization. Eur J Oper Res 253:337–355

    Article  Google Scholar 

  • Opara K, Arabas J (2018) Comparison of mutation strategies in differential evolution-a probabilistic perspective. Swarm Evol Comput 39:53–69

    Article  Google Scholar 

  • Qin AK, Huang VL, Suganthan PN (2009) Differential evolution algorithm with strategy adaptation for global numerical optimization. IEEE Trans Evol Comput 13(2):398C417

    Article  Google Scholar 

  • Qiu X, Xu JX, Tan KC, Abbass HA (2016) Adaptive cross-generation differential evolution operators for multiobjective optimization. IEEE Trans Evol Comput 20:232–244

    Article  Google Scholar 

  • Sarker RA, Elsayed SM, Ray T (2014) Differential evolution with dynamic parameters selection for optimization problems. IEEE Trans Evol Comput 18(5):689C707

    Article  Google Scholar 

  • Storn R, Price K (1997) Differential evolution-A simple and efficient heuristic for global optimization over continuous spaces. J Global Optim 11(4):341–359

    Article  MathSciNet  Google Scholar 

  • Sun G, Peng J, Zhao R (2018) Differential evolution with individual-dependent and dynamic parameter adjustment. Soft Comput 22:5747–5773

    Article  Google Scholar 

  • Sun G, Lan Y, Zhao R (2019) Differential evolution with Gaussian mutation and dynamic parameter adjustment. Soft Comput 23:1615–1642

    Article  Google Scholar 

  • Sun G, Yang B, Yang Z, Xu G (2019) An adaptive differential evolution with combined strategy for global numerical optimization. Soft Comput. https://doi.org/10.1007/s00500-019-03934-3

    Article  Google Scholar 

  • Tang L, Dong Y, Liu J (2015) Differential evolution with an individual-dependent mechanism. IEEE Trans Evol Comput 19(4):560C574

    Google Scholar 

  • Wang H, Rahnamayan S, Sun H, Omran MGH (2013) Gaussian bare-bones differential evolution. IEEE Trans Cybern 43(2):634C647

    Google Scholar 

  • Yi W, Zhou Y, Gao L, Li X, Zhang C (2018) Engineering design optimization using an improved local search based epsilon differential evolution algorithm. J Intell Manuf 29:1559–1580

    Article  Google Scholar 

  • Yu WJ, Shen M, Chen WN, Zhan ZH, Gong YJ, Lin Y (2014) Differential evolution with two-level parameter adaption. IEEE Trans Cybern 44(7):1080C1099

    Article  Google Scholar 

  • Zhang J, Sanderson AC (2009) JADE: adaptive differential evolution with optional external archive. IEEE Trans Evol Comput 13(5):945–958

    Article  Google Scholar 

  • Zhou XG, Zhang GJ (2019) Differential evolution with underestimation-based multimutation strategy. IEEE Trans Cybern 49:1353–1364

    Article  Google Scholar 

  • Zhu T, Hao Y, Luo W, Ning H (2018) Learning enhanced differential evolution for tracking optimal decisions in dynamic power systems. Appl Soft Comput 67:812–821

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos.71701187, 61702389 and Research Project of Zhejiang Education Department under Grant No. Y201738184.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geni Xu.

Ethics declarations

Conflict of interest

All authors have no conflict of interest.

Human and animal rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Communicated by Y. Ni.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, G., Xu, G. & Jiang, N. A simple differential evolution with time-varying strategy for continuous optimization. Soft Comput 24, 2727–2747 (2020). https://doi.org/10.1007/s00500-019-04159-0

Download citation

  • Published:

  • Version of record:

  • Issue date:

  • DOI: https://doi.org/10.1007/s00500-019-04159-0

Keywords

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载