+
Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Unisensory processing of interleaving memristive nanowires enabling multimodal sensing at human-scale resolution

Abstract

Numerous attempts have been made to emulate the skin’s multimodal capabilities using different device architectures, but most suffer from slow response due to reactive components and limited scalability from stacking multiple elements, which restricts their practical use. Here we report a multimodal receptor based on a single memristive nanowire network that captures both thermal and mechanical properties of interacting objects through memristive switching. The device switches between thermal and mechanical sensing at 16 Hz, whereas its intrinsic response times reach submicrosecond (mechanical) and millisecond (thermal) levels due to the nanoscale thickness. To demonstrate practicality, we integrated the receptor with a wireless switching board for daily use, combined it with a machine learning model to identify 20 household objects with 83% accuracy using a single fingertip-mounted sensor, and performed multiarray measurements for spatially distributed sensing. This approach highlights the potential of memristive networks for compact and versatile multimodal sensing in wearable and interactive devices.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Artificial multimodal receptor.
Fig. 2: Dynamic switching of sensing mode.
Fig. 3: Characterizations of memristive multimodal receptor.
Fig. 4: Object recognition using interleaved signals.
Fig. 5: Integration with autonomous switching board and human-scale multiarray measurement.

Data availability

The data supporting the findings of this study are available within the Article and its Supplementary Information. Additional data are available from the corresponding author upon request.

Code availability

The code that supports the results within this Article and the other findings of this study are available from the corresponding author upon request.

References

  1. Stein, B. E. & Stanford, T. R. Multisensory integration: current issues from the perspective of the single neuron. Nat. Rev. Neurosci. 9, 255–266 (2008).

    Article  PubMed  CAS  Google Scholar 

  2. Follmann, R., Goldsmith, C. J. & Stein, W. Multimodal sensory information is represented by a combinatorial code in a sensorimotor system. PLoS Biol. 16, e2004527 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Ho, H.-N. & Jones, L. A. Contribution of thermal cues to material discrimination and localization. Percept. Psychophys. 68, 118–128 (2006).

    Article  PubMed  Google Scholar 

  4. Takamuku, S., Iwase, T. & Hosoda, K. Robust material discrimination by a soft anthropomorphic finger with tactile and thermal sense. In 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems 3977–3982 (IEEE, 2008).

  5. Johansson, R. S. & Flanagan, J. R. Coding and use of tactile signals from the fingertips in object manipulation tasks. Nat. Rev. Neurosci. 10, 345–359 (2009).

    Article  PubMed  CAS  Google Scholar 

  6. Bensmaia, S. J. Biological and bionic hands: natural neural coding and artificial perception. Philos. Trans. R. Soc. Lond. B Biol. Sci. 370, 20140209 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  7. Wu, X., Zhu, J., Evans, J. W., Lu, C. & Arias, A. C. A potentiometric electronic skin for thermosensation and mechanosensation. Adv. Funct. Mater. 31, 2010824 (2021).

    Article  CAS  Google Scholar 

  8. Chhetry, A. et al. Black phosphorus@laser-engraved graphene heterostructure-based temperature–strain hybridized sensor for electronic-skin applications. Adv. Funct. Mater. 31, 2007661 (2021).

    Article  CAS  Google Scholar 

  9. Lee, J. H. et al. Rational design of all resistive multifunctional sensors with stimulus discriminability. Adv. Funct. Mater. 32, 2107570 (2022).

    Article  CAS  Google Scholar 

  10. You, I. et al. Artificial multimodal receptors based on ion relaxation dynamics. Science 370, 961–965 (2020).

    Article  PubMed  CAS  Google Scholar 

  11. Zhang, H. et al. Bioinspired chromotropic ionic skin with in-plane strain/temperature/pressure multimodal sensing and ultrahigh stimuli discriminability. Adv. Funct. Mater. 32, 2208362 (2022).

    Article  CAS  Google Scholar 

  12. Shin, Y. E. et al. Ultrasensitive multimodal tactile sensors with skin-inspired microstructures through localized ferroelectric polarization. Adv. Sci. 9, 2105423 (2022).

    Article  CAS  Google Scholar 

  13. Bae, G. Y. et al. Pressure/temperature sensing bimodal electronic skin with stimulus discriminability and linear sensitivity. Adv. Mater. 30, 1803388 (2018).

    Article  Google Scholar 

  14. Khonina, S. N., Kazanskiy, N. L., Butt, M. A. & Karpeev, S. V. Optical multiplexing techniques and their marriage for on-chip and optical fiber communication: a review. Opto-Electron. Adv. 5, 210127 (2022).

    Article  CAS  Google Scholar 

  15. Li, K. et al. Neurons in primate visual cortex alternate between responses to multiple stimuli in their receptive field. Front. Comput. Neurosci. 10, 141 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  16. Akam, T. & Kullmann, D. M. Oscillatory multiplexing of population codes for selective communication in the mammalian brain. Nat. Rev. Neurosci. 15, 111–122 (2014).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Tallon-Baudry, C. The roles of gamma-band oscillatory synchrony in human visual cognition. Front. Biosci. 14, 321–332 (2009).

    Article  Google Scholar 

  18. Panzeri, S., Brunel, N., Logothetis, N. K. & Kayser, C. Sensory neural codes using multiplexed temporal scales. Trends Neurosci. 33, 111–120 (2010).

    Article  PubMed  CAS  Google Scholar 

  19. Hoppensteadt, F. C. & Izhikevich, E. M. Thalamo-cortical interactions modeled by weakly connected oscillators: could the brain use FM radio principles?. BioSystems 48, 85–94 (1998).

    Article  PubMed  CAS  Google Scholar 

  20. Caruso, V. C. et al. Single neurons may encode simultaneous stimuli by switching between activity patterns. Nat. Commun. 9, 2715 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  21. Kuzubasoglu, B. A. & Bahadir, S. K. Flexible temperature sensors: a review. Sens. Actuators A Phys. 315, 112282 (2020).

    Article  Google Scholar 

  22. Amjadi, M., Pichitpajongkit, A., Lee, S., Ryu, S. & Park, I. Highly stretchable and sensitive strain sensor based on silver nanowire–elastomer nanocomposite. ACS Nano 8, 5154–5163 (2014).

    Article  PubMed  CAS  Google Scholar 

  23. Warkusz, F. The size effect and the temperature coefficient of resistance in thin films. J. Phys. D: Appl. Phys. 11, 689 (1978).

    Article  CAS  Google Scholar 

  24. Mohammad, B. et al. State of the art of metal oxide memristor devices. Nanotechnol. Rev. 5, 311–329 (2016).

    Article  CAS  Google Scholar 

  25. Shin, J. et al. Sensitive wearable temperature sensor with seamless monolithic integration. Adv. Mater. 32, 1905527 (2020).

    Article  CAS  Google Scholar 

  26. Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008).

    Google Scholar 

  27. Tong, J., Mao, O. & Goldreich, D. Two-point orientation discrimination versus the traditional two-point test for tactile spatial acuity assessment. Front. Hum. Neurosci. 7, 579 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Cho, S. et al. Wireless, multimodal sensors for continuous measurement of pressure, temperature, and hydration of patients in wheelchair. npj Flex. Electron. 7, 8 (2023).

    Article  Google Scholar 

  29. Mao, Q., Liao, Z., Yuan, J. & Zhu, R. Multimodal tactile sensing fused with vision for dexterous robotic housekeeping. Nat. Commun. 15, 6871 (2024).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Won, S. M. et al. Multimodal sensing with a three-dimensional piezoresistive structure. ACS Nano 13, 10972–10979 (2019).

    Article  PubMed  CAS  Google Scholar 

  31. Lee, D. & Bae, J. Soft multimodal sensors with decoupled multimodality and minimal wiring for wearable systems. Adv. Funct. Mater. 34, 2409841 (2024).

  32. Lyu, X. et al. Multi-modal sensing ionogels with tunable mechanical properties and environmental stability for aquatic and atmospheric environments. Adv. Mater. 36, 2410572 (2024).

    Article  CAS  Google Scholar 

  33. Tian, S., Wang, L. & Zhu, R. A flexible multimodal pulse sensor for wearable continuous blood pressure monitoring. Mater. Horiz. 11, 2428–2437 (2024).

    Article  PubMed  CAS  Google Scholar 

  34. Chen, C. et al. Biomimetic multimodal receptors for comprehensive artificial human somatosensory system. Adv. Mater. 36, 2313228 (2024).

  35. Zhou, Y. et al. A multimodal magnetoelastic artificial skin for underwater haptic sensing. Sci. Adv. 10, eadj8567 (2024).

    Article  PubMed  PubMed Central  Google Scholar 

  36. Wang, S. et al. Flexible optoelectronic multimodal proximity/pressure/temperature sensors with low signal interference. Adv. Mater. 35, 2304701 (2023).

    Article  CAS  Google Scholar 

  37. Lee, B.-Y. et al. Human-inspired tactile perception system for real-time and multimodal detection of tactile stimuli. Soft Robot. 11, 270–281 (2024).

    Article  PubMed  CAS  Google Scholar 

  38. Wang, Y. et al. Hierarchically patterned self-powered sensors for multifunctional tactile sensing. Sci. Adv. 6, eabb9083 (2020).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Ma, M. et al. Self-powered flexible antibacterial tactile sensor based on triboelectric-piezoelectric-pyroelectric multi-effect coupling mechanism. Nano Energy 66, 104105 (2019).

    Article  CAS  Google Scholar 

  40. Shin, Y.-E. et al. Self-powered triboelectric/pyroelectric multimodal sensors with enhanced performances and decoupled multiple stimuli. Nano Energy 72, 104671 (2020).

    Article  CAS  Google Scholar 

  41. Wang, Y. et al. Cephalopod-inspired chromotropic ionic skin with rapid visual sensing capabilities to multiple stimuli. ACS Nano 15, 3509–3521 (2021).

    Article  PubMed  CAS  Google Scholar 

  42. Shin, S.-H. et al. Ion-conductive self-healing hydrogels based on an interpenetrating polymer network for a multimodal sensor. Chem. Eng J. 371, 452–460 (2019).

    Article  CAS  Google Scholar 

  43. Guo, H. et al. Pro-healing zwitterionic skin sensor enables multi-indicator distinction and continuous real-time monitoring. Adv. Funct. Mater. 31, 2106406 (2021).

    Article  CAS  Google Scholar 

  44. Lei, Z. & Wu, P. A supramolecular biomimetic skin combining a wide spectrum of mechanical properties and multiple sensory capabilities. Nat. Commun. 9, 1134 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  45. Chen, L., Chang, X., Wang, H., Chen, J. & Zhu, Y. Stretchable and transparent multimodal electronic-skin sensors in detecting strain, temperature, and humidity. Nano Energy 96, 107077 (2022).

    Article  CAS  Google Scholar 

  46. Lo, L.-W. et al. A soft sponge sensor for multimodal sensing and distinguishing of pressure, strain, and temperature. ACS Appl. Mater. Interfaces 14, 9570–9578 (2022).

    Article  PubMed  CAS  Google Scholar 

  47. Zhang, F., Zang, Y., Huang, D., Di, C.-A. & Zhu, D. Flexible and self-powered temperature–pressure dual-parameter sensors using microstructure-frame-supported organic thermoelectric materials. Nat. Commun. 6, 8356 (2015).

    Article  PubMed  CAS  Google Scholar 

  48. Han, S. et al. Thermoelectric polymer aerogels for pressure–temperature sensing applications. Adv. Funct. Mater. 27, 1703549 (2017).

    Article  Google Scholar 

  49. Zhang, X. et al. High-performance multimodal smart textile for artificial sensation and health monitoring. Nano Energy 103, 107778 (2022).

    Article  CAS  Google Scholar 

  50. Park, J., Kim, M., Lee, Y., Lee, H. S. & Ko, H. Fingertip skin–inspired microstructured ferroelectric skins discriminate static/dynamic pressure and temperature stimuli. Sci. Adv. 1, e1500661 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  51. Rao, J. et al. Tactile electronic skin to simultaneously detect and distinguish between temperature and pressure based on a triboelectric nanogenerator. Nano Energy 75, 105073 (2020).

    Article  CAS  Google Scholar 

  52. Zhu, P. et al. A flexible active dual-parameter sensor for sensitive temperature and physiological signal monitoring via integrating thermoelectric and piezoelectric conversion. J. Mater. Chem. A 7, 8258–8267 (2019).

    Article  CAS  Google Scholar 

  53. Zhu, S. et al. Synthesis of Au@Cu2O core–shell nanoparticles with tunable shell thickness and their degradation mechanism in aqueous solutions. Langmuir 36, 3386–3392 (2020).

    Article  PubMed  CAS  Google Scholar 

  54. Manning, H. G. et al. Emergence of winner-takes-all connectivity paths in random nanowire networks. Nat. Commun. 9, 3219 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  55. Hochstetter, J. et al. Avalanches and edge-of-chaos learning in neuromorphic nanowire networks. Nat. Commun. 12, 4008 (2021).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (RS-2025-11092968) and the Air Force Office of Scientific Research (FA2386-24-1-4089).

Author information

Authors and Affiliations

Authors

Contributions

K.K.K., J.B., M.K., I.H. and S.H.K. conceived and designed the study. K.K.K. and J.B. designed and performed the experiments. K.K.K. and J.B. developed the algorithms and analysed the data. J.B., K.K.K. and J.J. carried out the nanowire synthesis. K.K.K., J.B., M.K. and S.H.K. wrote the paper and incorporated comments and edits from all authors.

Corresponding author

Correspondence to Seung Hwan Ko.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Xinyu Liu, Peiyi Wu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–25, Tables 1 and 2 and Note 1.

Supplementary Video 1

Real-time measurement of interleaving signals.

Supplementary Video 2

Real-time measurement of multi-array sensor.

Supplementary Video 3

Conductance switching simulation on memristive network.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, K.K., Bang, J., Kim, M. et al. Unisensory processing of interleaving memristive nanowires enabling multimodal sensing at human-scale resolution. Nat. Mater. (2025). https://doi.org/10.1038/s41563-025-02373-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Version of record:

  • DOI: https://doi.org/10.1038/s41563-025-02373-w

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing
点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载