
On-Device Augmented Reality with Mobile GPUs

Juhyun Lee, Nikolay Chirkov, Ekaterina Ignasheva, Yury Pisarchyk, Mogan Shieh,
Fabio Riccardi, Raman Sarokin, Andrei Kulik, and Matthias Grundmann

Google Research
1600 Amphitheatre Pkwy, Mountain View, CA 94043, USA

{impjdi,chirkov,eignasheva,ypisarchyk,moganshieh,fricc,sorokin,akulik,grundman}@google.com

Abstract

Reliable computer vision is a prerequisite for augmented
reality (AR) applications; in particular when applied to
mobile devices. Many state-of-the-art vision techniques
employ deep neural networks. However, inference is a
compute-intensive task and solely using mobile CPU can
be difficult due to limited computing power, thermal con-
straints, and energy consumption. App developers and re-
searchers have begun exploiting hardware accelerators to
overcome these challenges. Recently, device manufacturers
are adding neural processing units into high-end phones for
on-device inference, but these account for only a small frac-
tion of hand-held devices. In this paper, we present how we
leverage the mobile GPU, a ubiquitous hardware accelera-
tor on virtually every phone, to achieve real-time AR effects
for both Android and iOS devices.

1. Introduction
Augmented reality (AR) heavily relies on the computer’s

ability to understand the environment, so that meaningful
overlays and annotations can be autonomously applied. Re-
cent computer vision research largely built on the success of
deep convolutional neural networks which in turn are em-
ployed by many AR applications. AR apps on hand-held
devices desire to run aforementioned neural net inference
on the device, primarily for latency reasons.

On-device inference, however, is a non-trivial task. De-
spite recent advances in mobile hardware technology and
efforts to efficiently run deep networks on mobile de-
vices [3, 11, 4, 6, 7], mobile CPUs continue to be less
powerful than those found in servers. Running deep net
inference on a mobile device means adding a significant
compute-intensive task to the CPU. Fully utilizing mobile
CPUs comes with unwanted costs, e.g. increased energy
consumption leading to shorter battery life and thermal
throttling resulting in slower computation.

Our primary goal is a fast inference engine for typical

AR applications with wide coverage of supported devices.
By leveraging the mobile GPU, a ubiquitous hardware ac-
celerator on virtually every phone, we can achieve real-time
performance for various AR effects that employ deep nets.
Major hardware manufacturers are publishing software de-
velopment kits for inference on their devices [1, 5, 8, 10].
Also, popular machine learning frameworks have limited
mobile support, e.g. Caffe2 [2] and MACE [12] only work
on vendor-specific GPU architectures. TensorFlow Lite
(TFLite) leverages the mobile GPU with OpenGL ES 3.1+
for Android devices and Metal for iOS 9+ devices.

This paper presents the techniques we adopt for TFLite
GPU and how we achieve an average acceleration of 2–9×
for various deep networks on GPU compared to CPU infer-
ence. We first describe the general mobile GPU architecture
and GPU programming, and then present how TFLite GPU
allows real-time on-device AR effects.

2. Mobile GPU Inference
Initialization In contrast to CPU inference, GPU infer-
ence engines require initialization involving shader compi-
lation and optimization by the driver. The cost of this pro-
cess depends on network size and may take from few mil-
liseconds to seconds, but is incurred once and not again for
subsequent runs until the cache memory is invalidated for
various reasons (application update,, device reboot, etc.)

Data Layout Most modern GPUs use a homogeneous co-
ordinate [9] system which represents points in space with
coordinates (x, y, z, w). For any w 6= 0, homogeneous co-
ordinates (x, y, z, w) represent a point (x/w, y/w, z/w, 1)
in a 3D space. This allows transformations to be repre-
sented in the form of 4D matrix multiplications. In this way,
GPUs are ideally suited for efficient computation and mem-
ory load/store of 4-element vectors.

In TFLite GPU, a [H,W,C] tensor is split into 4-channel
slices which are then stored sequentially in memory. If the
number of channels is not divisible by 4, it is padded with
zeroes. This memory layout, called PHWC4 (Figure 1), op-

1



Figure 1. Example of PHWC4 memory layout (best viewed in
color). A tensor of shape (H=8,W=6, C=12) is split into 4-
element slices of size (H,W, 4) which are stored sequentially as a
continuous 2D array of size (HC/4=24, 4W=24).

timally reduces cache misses in the graphics architecture.
This is tightly coupled with how compute threads are exe-
cuted on the GPU, which defines the order of computation,
and, more importantly, the order of memory reads.

Shader Program Optimization In the GPU inference
engine, operators exist in the form of shader programs. The
shader programs eventually get compiled and inserted into
the command queue and the GPU executes programs from
this queue without synchronization with the CPU.

To reduce the number of shader programs in the com-
mand queue, we consolidate them into meaningful aggre-
gates while maximizing parallelism and well-defined data
dependencies. We apply optimization techniques such as
operator fusion, inlining parameters and/or objects, and spe-
cialization by kernel size/hardware type/driver version.

The source code for each program is generated and then
compiled. This compilation step can take a while, from sev-
eral milliseconds to seconds. Typically, app developers can
hide this latency with displaying a splash screen while load-
ing the model. Once all shader programs are compiled, the
engine is ready for inference.

GPU Inference The input tensors are reshaped to the
PHWC4 format, if their tensor does not have exactly 4
channels. Shader programs for each operator are linked by
binding resources such the its input/output tensors, weights,
etc. and dispatched, i.e. inserted into the command queue.
The GPU driver then takes care of scheduling and execut-
ing all shader programs in the queue, and makes the result
available to the CPU via synchronization. For maximum
performance, it is best to avoid this synchronization, and
preferably, stay on the GPU context if real-time processing
is needed. The most ideal scenario is a camera provides
an RGBA texture directly to TFLite GPU with the resulting
output of the network being directly rendered to the screen.

Work Groups: GPU Threading Units A compute task
consists of a shader program and a grid pair. A shader pro-

H

W

C

Figure 2. Compute shader execution grid (X=12, Y=12, Z=8)
built upon the tensor shape (H=10,W=10, C=6) shown in blue
(best viewed in color). Work group size (x=4, y=4, z=4) high-
lighted as cubes with bold lines. Each cell represents a FP32 value.

gram is a piece of code re-used by every thread, and a grid is
an abstraction of a 3D mesh of physically executed threads.
The global grid is made up of repeated work groups of con-
stant shape (x, y, z) and has a total dimension (X,Y, Z),
that is a multiple of these work groups.

When calculating the compute grid size of an operation,
we use the shape of one of the output tensors as a basis. The
grid may be larger than the actual output tensor, because we
expand it to sizes in multiples of 4 due to GPUs working
efficiently for those sizes. This may cause the creation of
threads without real workload, but this is faster than work-
ing with misaligned grid sizes. This is depicted in Figure 2.
Blue grids show threads with real workload, and red grids
show stub threads without real workload.

Optimizations are focused on neighboring threads within
a work group. Our PHWC4 layout allows neighboring
threads to hit the same cache line when requesting data for
input tensors. Our investigation revealed the following ex-
ecution order for threads inside a work group: For each
work group channel, each row is sequentially picked in or-
der from the first to last, starting across W , then H , and
finally C. Ordering of work group execution is likewise se-
quential and follows the same pattern.

Work Group Size Selection The work group size for ex-
ecuting shader programs defines the group of threads which
share data inside the work group. Picking the right work
group size can result in increased performance, whereas
the opposite can lead to unexpected slowdowns. Unfortu-
nately, tuning the work group size is difficult because GPU
internals, e.g. thread execution group (“wave”) size, are not
available to the user. Selecting the optimal work group size
thus becomes an exhaustive search.

We focused on optimizing the work group size for
CONV 2D and DEPTHWISE CONV, as these make up
roughly 90% of the workload for convolutional networks.
We use a gradient descent approach to converge on a stable
optimum work group size. Work groups from the Table 1
are currently used in TFLite GPU.



Figure 3. Real-time AR effects using TFLite GPU (best viewed in color). Upper row: (a) Left: Fast Face Detection; 200Hz on Pixel 1. (b)
Center: 2D Contour; 50Hz on Pixel 2. (c) Right: 3D Face Mesh; 280Hz on iPhone 7. Lower row: (d) Left: Normal Map Prediction; 10Hz
on Pixel 2. (e) Center: Background Segmentation; 40Hz on Pixel 2. (f) Right: Multi Segmentation; 40Hz on Pixel 2.

Adreno GPU Model CONV 2D DEPTHWISE CONV

630 (4, 8, 4) (4, 4, 8)

540 (8, 2, 2) (8, 8, 2)

510 (8, 4, 4) (8, 4, 4)

Table 1. Optimal work group sizes for some Adreno GPUs.

3. On-Device AR with Mobile GPU

TFLite GPU is used by a set of major AR applications
and AR developer APIs on mobile phones. Figure 3 lists
a variety of AR use cases running in or near real-time on
various phones. Figure 3 (d) demonstrates the preprocess-
ing of surface finding for an AR app at 10Hz which would
not have been possible on the CPU, because inference is
too slow (3.5Hz) for real-time AR. TFLite GPU supports
arbitrary neutral network architectures as long as the shader
code exists for each op in the network. TFLite GPU is a nat-
ural fit for many AR applications, since they involve regis-
tering and overlaying virtual objects on a live camera feed,
all of which can be performed on the GPU without incurring
the penalties of memory copies to the CPU.

4. Discussion

We presented the architectural design of our mobile GPU
neural network inference engine TFLite GPU. In this sec-
tion, we outline a couple of architectural considerations that
can make neural networks more GPU-friendly.

First, RESHAPEs are significantly more expensive on the
GPU than on the CPU. The network itself will learn the
weights regardless of the RESHAPE op, thus it is best to skip
the operator entirely if a RESHAPE operation was inserted
just for convenience of the architect.

Second, if the camera of the mobile device can produce
RGBA data rather than RGB, it should be now apparent
that using the former can avoid a conversion, i.e. memory
copy, from RGBA to RGB. Similarly, if the mobile device
can render a 4-channel tensor, i.e. RGBA, directly, that can
be a better choice than the RGB counterpart. This choice
benefits not just the graph input/output, but also its inter-
mediate tensors. Finally, since we know that a tensor of
shape [B,H,W, 5], for instance, is twice as expensive as
[B,H,W, 4], but about the same as [B,H,W, 8], then the
architect can tune around those 4-channel boundaries rather
than trying to optimize on other boundaries.



References
[1] Arm Ltd. Compute Library. https://developer.

arm.com/ip-products/processors/
machine-learning/compute-library. [On-
line; accessed 8-April-2019]. 1

[2] Facebook Inc. Caffe2. https://caffe2.ai. [Online;
accessed 8-April-2019]. 1

[3] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry
Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-
dreetto, and Hartwig Adam. MobileNets: Efficient Con-
volutional Neural Networks for Mobile Vision Applications.
arXiv preprint arXiv:1704.04861, 2017. 1

[4] Jonathan Huang, Vivek Rathod, Chen Sun, Menglong Zhu,
Anoop Korattikara, Alireza Fathi, Ian Fischer, Zbigniew Wo-
jna, Yang Song, Sergio Guadarrama, et al. Speed/Accuracy
Trade-offs for Modern Convolutional Object Detectors. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, pages 7310–7311, 2017. 1

[5] Huawei Technologies Co., Ltd. HiAI Engine.
https://developer.huawei.com/consumer/
en/devservice/doc/2020315. [Online; accessed
8-April-2019]. 1

[6] Andrey Ignatov, Nikolay Kobyshev, Radu Timofte, Kenneth
Vanhoey, and Luc Van Gool. DSLR-Quality Photos on Mo-
bile Devices with Deep Convolutional Networks. In Pro-
ceedings of the IEEE International Conference on Computer
Vision, pages 3277–3285, 2017. 1

[7] Andrey Ignatov, Radu Timofte, Thang Van Vu, Tung Minh
Luu, Trung X Pham, Cao Van Nguyen, Yongwoo Kim, Jae-
Seok Choi, Munchurl Kim, Jie Huang, et al. PIRM Chal-
lenge on Perceptual Image Enhancement on Smartphones:
Report. In European Conference on Computer Vision, pages
315–333. Springer, 2018. 1

[8] MediaTek Inc. What is MediaTek NeuroPi-
lot? https://www.mediatek.com/blog/
what-is-mediatek-neuropilot. [Online; ac-
cessed 8-April-2019]. 1

[9] August F. Möbius. Der baryzentrische Calcül. 1827. 1
[10] Qualcomm Inc. Snapdragon Neural Processing Engine

SDK. https://developer.qualcomm.com/docs/
snpe. [Online; accessed 8-April-2019]. 1

[11] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-
moginov, and Liang-Chieh Chen. MobileNetV2: Inverted
Residuals and Linear Bottlenecks. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recog-
nition, pages 4510–4520, 2018. 1

[12] Xiaomi. MACE. https://github.com/XiaoMi/
mace. [Online; accessed 8-April-2019]. 1

https://developer.arm.com/ip-products/processors/machine-learning/compute-library
https://developer.arm.com/ip-products/processors/machine-learning/compute-library
https://developer.arm.com/ip-products/processors/machine-learning/compute-library
https://caffe2.ai
https://developer.huawei.com/consumer/en/devservice/doc/2020315
https://developer.huawei.com/consumer/en/devservice/doc/2020315
https://www.mediatek.com/blog/what-is-mediatek-neuropilot
https://www.mediatek.com/blog/what-is-mediatek-neuropilot
https://developer.qualcomm.com/docs/snpe
https://developer.qualcomm.com/docs/snpe
https://github.com/XiaoMi/mace
https://github.com/XiaoMi/mace

