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Abstract
Building robust low and mid-level image representa-

tions, beyond edge primitives, is a long-standing goal in
vision. Many existing feature detectors spatially pool edge
information which destroys cues such as edge intersections,
parallelism and symmetry. We present a learning frame-
work where features that capture these mid-level cues spon-
taneously emerge from image data. Our approach is based
on the convolutional decomposition of images under a spar-
sity constraint and is totally unsupervised. By building a
hierarchy of such decompositions we can learn rich feature
sets that are a robust image representation for both the anal-
ysis and synthesis of images.

1. Introduction

In this paper we propose Deconvolutional Networks, a
framework that permits the unsupervised construction of hi-
erarchical image representations. These representations can
be used for both low-level tasks such as denoising, as well
as providing features for object recognition. Each level of
the hierarchy groups information from the level beneath to
form more complex features that exist over a larger scale
in the image. Our grouping mechanism is sparsity: by en-
couraging parsimonious representations at each level of the
hierarchy, features naturally assemble into more complex
structures. However, as we demonstrate, sparsity itself is
not enough – it must be deployed within the correct ar-
chitecture to have the desired effect. We adopt a convo-
lutional approach since it provides stable latent representa-
tions at each level which preserve locality and thus facili-
tate the grouping behavior. Using the same parameters for
learning each layer, our Deconvolutional Network (DN) can
automatically extract rich features that correspond to mid-
level concepts such as edge junctions, parallel lines, curves
and basic geometric elements, such as rectangles. Remark-
ably, some of them look very similar to the mid-level tokens
posited by Marr in his primal sketch theory [18] (see Fig. 1).

Our proposed model is similar in spirit to the Convo-
lutional Networks of LeCun et al. [13], but quite different
in operation. Convolutional networks are a bottom-up
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Figure 1. (a): “Tokens” from Fig. 2-4 of Vision by D. Marr [18].
These idealized local groupings are proposed as an intermediate
level of representation in Marr’s primal sketch theory. (b): Se-
lected filters from the 3rd layer of our Deconvolutional Network,
trained in an unsupervised fashion on real-world images.

approach where the input signal is subjected to multiple
layers of convolutions, non-linearities and sub-sampling.
By contrast, each layer in our Deconvolutional Network
is top-down; it seeks to generate the input signal by a sum
over convolutions of the feature maps (as opposed to the
input) with learned filters. Given an input and a set of
filters, inferring the feature map activations requires solving
a multi-component deconvolution problem that is compu-
tationally challenging. In response, we use a range of tools
from low-level vision, such as sparse image priors and
efficient algorithms for image deblurring. Correspondingly,
our paper is an attempt to link high-level object recognition
with low-level tasks like image deblurring through a unified
architecture.

2. Related Work
Deconvolutional Networks are closely related to a num-

ber of “deep learning” methods [2, 8] from the machine
learning community that attempt to extract feature hierar-
chies from data. Deep Belief Networks (DBNs) [8] and
hierarchies of sparse auto-encoders [22, 9, 26], like our ap-
proach, greedily construct layers from the image upwards
in an unsupervised fashion. In these approaches, each layer
consists of an encoder and decoder1. The encoder provides
a bottom-up mapping from the input to latent feature space
while the decoder maps the latent features back to the input

1Convolutional networks can be regarded as a hierarchy of encoder-
only layers [13].
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space, hopefully giving a reconstruction close to the origi-
nal input. Going from the input directly to the latent rep-
resentation without using the encoder is difficult because it
requires solving an inference problem (multiple elements in
the latent features are competing to explain each part of the
input). As these models have been motivated to improve
high-level tasks like recognition, an encoder is needed to
perform fast, but highly approximate, inference to compute
the latent representation at test time. However, during train-
ing the latent representation produced by performing top-
down inference with the decoder is constrained to be close
to the output of the encoder. Since the encoders are typ-
ically simple non-linear functions, they have the potential
to significantly restrict the latent representation obtainable,
producing sub-optimal features. Restricted Boltzmann Ma-
chines (RBM), the basic module of DBNs, have the addi-
tional constraint that the encoder and decoder must share
weights. In Deconvolutional Networks, there is no encoder:
we directly solve the inference problem by means of effi-
cient optimization techniques. The hope is that by comput-
ing the features exactly (instead of approximately with an
encoder) we can learn superior features.

Most deep learning architectures are not convolutional,
but recent work by Lee et al. [15] demonstrated a convolu-
tional RBM architecture that learns high-level image fea-
tures for recognition. This is the most similar approach
to our Deconvolutional Network, with the main difference
being that we use a decoder-only model as opposed to the
symmetric encoder-decoder of the RBM.

Our work also has links to recent work in sparse image
decompositions, as well as hierarchical representations. Lee
et al. [14] and Mairal et al. [16, 17] have proposed efficient
schemes for learning sparse over-complete decompositions
of image patches [19], using a convex `1 sparsity term. Our
approach differs in that we perform sparse decomposition
over the whole image at once, not just for small image
patches. As demonstrated by our experiments, this is vi-
tal if rich features are to be learned. The key to making this
work efficiently is to use a convolutional approach.

A range of hierarchical image models have been pro-
posed. Particularly relevant is the work of Zhu and col-
leagues [31, 25], in particular Guo et al. [7]. Here, edges
are composed using a hand-crafted set of image tokens into
large-scale image structures. Grouping is performed via ba-
sis pursuit with intricate splitting and merging operations
on image edges. The stochastic image grammars of Zhu
and Mumford [31] also use fixed image primitives, as well
as a complex Markov Chain Monte-Carlo (MCMC)-based
scheme to parse scenes. Our work differs in two important
ways: first, we learn our image tokens completely automat-
ically. Second, our inference scheme is far simpler than
either of the above frameworks.

Zhu et al. [30] propose a top-down parts-and-structure

model but it only reasons about image edges, as provided
by a standard edge detector, unlike ours which directly op-
erates on pixels. The biologically inspired HMax model of
Serre et al. [24, 23] use exemplar templates in their inter-
mediate representations, rather than learning conjunctions
of edges as we do. Fidler and Leonardis [5, 4] propose a
top-down model for object recognition which has an explicit
notion of parts whose correspondence is explicitly reasoned
about at each level. In contrast, our approach simply per-
forms a low-level deconvolution operation at each level,
rather than attempting to solve a correspondence problem.
Amit and Geman [1] and Jin and Geman [10] apply hierar-
chical models to deformed Latex digits and car license plate
recognition.

3. Model
We first consider a single Deconvolutional Network layer

applied to an image. This layer takes as input an image yi,
composed of K0 color channels yi1, . . . , y

i
K0

. We represent
each channel c of this image as a linear sum of K1 latent
feature maps zik convolved with filters fk,c:

K1∑
k=1

zik ⊕ fk,c = yic (1)

Henceforth, unless otherwise stated, symbols correspond to
matrices. If yic is anNr×Nc image and the filters areH×H ,
then the latent feature maps are (Nr+H−1)×(Nc+H−1)
in size. But Eqn. 1 is an under-determined system, so to
yield a unique solution we introduce a regularization term
on zik that encourages sparsity in the latent feature maps.
This gives us an overall cost function of the form:

C1(yi) =
λ

2

K0∑
c=1

‖
K1∑
k=1

zik ⊕ fk,c − yic‖22 +
K1∑
k=1

|zik|p (2)

where we assume Gaussian noise on the reconstruction term
and some sparse norm p for the regularization. Note that the
sparse norm |w|p is actually the p-norm on the vectorized
version of matrix w, i.e. |w|p =

∑
i,j |w(i, j)|p. Typically,

p = 1, although other values are possible, as described in
Section 3.2. λ is a constant that balances the relative con-
tributions of the reconstruction of yi and the sparsity of the
feature maps zik.

Note that our model is top-down in nature: given the la-
tent feature maps, we can synthesize an image. But unlike
the sparse auto-encoder approach of Ranzato et al. [21], or
DBNs [8], there is no mechanism for generating the fea-
ture maps from the input, apart from minimizing the cost
function C1 in Eqn. 2. Many approaches focus on bottom-
up inference, but we concentrate on obtaining high quality
latent representations.
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Figure 2. A single Deconvolutional Network layer (best viewed
in color). For clarity, only the connectivity for a single input map
is shown. In practice the first layer is fully connected, while the
connectivity of the higher layers is specified by the map gl, which
is sparse.

In learning, described in Section 3.2, we use a
set of images y = {y1, . . . , yI} for which we seek
argminf,z C1(y)2, the latent feature maps for each image
and the filters. Note that each image has its own set of fea-
ture maps while the filters are common to all images.

3.1. Forming a hierarchy

The architecture described above produces sparse feature
maps from a multi-channel input image. It can easily be
stacked to form a hierarchy by treating the feature maps zik,l
of layer l as input for layer l+1. In other words, layer l has
as its input an image with Kl−1 channels being the number
of feature maps at layer l−1. The cost function Cl for layer
l is a generalization of Eqn. 2, being:

Cl(y) =
λ

2

I∑
i=1

Kl−1∑
c=1

‖
Kl∑
k=1

glk,c(z
i
k,l ⊕ f lk,c)− zic,l−1‖22

+
I∑
i=1

Kl∑
k=1

|zik,l|p (3)

where zic,l−1 are the feature maps from the previous layer,
and glk,c are elements of a fixed binary matrix that deter-
mines the connectivity between the feature maps at succes-
sive layers, i.e. whether zik,l is connected to zic,l−1 or not
[13]. In layer-1 we assume that g1

k,c is always 1, but in
higher layers it will be sparse. We train the hierarchy from
the bottom upwards, thus zic,l−1 is given from the results of
learning on Cl−1(y). This structure is illustrated in Fig. 2.

Unlike several other hierarchical models [15, 21, 9] we
do not perform any pooling, sub-sampling or divisive nor-
malization operations between layers, although they could
easily be incorporated.

2We define C1(y) =
P

i C1(yi)

3.2. Learning filters

To learn the filters, we alternately minimize Cl(y) over
the feature maps while keeping the filters fixed (i.e. perform
inference) and then minimize Cl(y) over the filters while
keeping the feature maps fixed. This minimization is done
in a layer-wise manner starting with the first layer where
the inputs are the training images y. Details are given in
Algorithm 1. We now describe how we learn the feature
maps and filters by introducing a framework suited for large
scale problems.

Inferring feature maps: Inferring the optimal feature
maps zik,l, given the filters and inputs is the crux of our ap-
proach. The sparsity constraint on zik,l which prevents the
model from learning trivial solutions such as the identity
function. When p = 1 the minimization problem for the
feature maps is convex and a wide range of techniques have
been proposed [3, 14]. Although in theory the global mini-
mum can always be found, in practice this is difficult as the
problem is very poorly conditioned. This is due to the fact
that elements in the feature maps are coupled to one another
through the filters. One element in the map can be affected
by another distant element, meaning that the minimization
can take a very long time to converge to a good solution.

We tried a range of different minimization approaches
to solve Eqn. 3, including direct gradient descent, Iterative
Reweighted Least Squares (IRLS) and stochastic gradient
descent. We found that direct gradient descent suffers from
the usual problem of flat-lining and thereby gives a poor
solution. IRLS is too slow for large-scale problems with
many input images. Stochastic gradient descent was found
to require many thousands of iterations for convergence.

Instead, we introduce a more general framework that is
suitable for any value of p > 0, including pseudo-norms
where p < 1. The approach is a type of continuation
method, as used by Geman [6] and Wang et al. [27]. Instead
of optimizing Eqn. 3 directly, we minimize an auxiliary cost
function Ĉl(y) which incorporates auxiliary variables xik,l
for each element in the feature maps zik,l:

Ĉl(y) =
λ

2

I∑
i=1

Kl−1∑
c=1

‖
Kl∑
k=1

glk,c(z
i
k,l ⊕ f lk,c)− zic,l−1‖22

+
β

2

I∑
i=1

Kl∑
k=1

‖zik,l − xik,l‖22 +
I∑
i=1

Kl∑
k=1

|xik,l|p (4)

where β is a continuation parameter. Introducing the aux-
iliary variables separates the convolution part of the cost
function from the | · |p term. By doing so, an alternating
form of minimization for zik,l can be used. We first fix xik,l
yielding a quadratic problem in zik,l. Then, we fix zik,l and
solve a separable 1D problem for each element in xik,l. We
call these two stages the z and x sub-problems respectively.



As we alternate between these two steps, we slowly increase
β from a small initial value until it strongly clamps zik,l to
xik,l. This has the effect of gradually introducing the spar-
sity constraint and gives good numerical stability in practice
[11, 27]. We now consider each sub-problem.
z sub-problem: From Eqn. 4, we see that we can solve

for each zik,l independently of the others. Here we take
derivatives of Ĉl(y) w.r.t. zik,l, assuming a fixed xik,l:

∂Ĉl(y)
∂zik,l

= λ

Kl−1∑
c=1

F l
T

k,c(
K∑
k̃=1

F l
k̃,c
zik,l−zic,l−1)+β(zik,l−xik,l)

(5)
where if glk,c = 1, F lk,c is a sparse convolution matrix3

equivalent to convolving with f lk,c, and is zero if glk,c = 0.
Although a variety of other sparse decomposition tech-
niques [16, 21] use stochastic gradient descent methods to
update zik,l for each i, k separately, this is not viable in a
convolutional setting. Here, the various feature maps com-
pete with each other to explain local structure in the most
compact way. This requires us to simultaneously optimize
over all zik,l’s for a fixed i and varying k. For a fixed i, set-

ting ∂Ĉ(y)
∂zi

k,l

= 0 ∀ k, the optimal zik,l are the solution to the

following Kl(Nr +H − 1)(Nc +H − 1)linear system:

A

 zi1,l
·

ziKl,l

 =


∑Kl−1
c=1 F l

T

1,cz
i
c,l−1 + β

λx
i
1,l

·∑Kl−1
c=1 F l

T

K,cz
i
c,l−1 + β

λx
i
Kl,l

 (6)

where

A =


∑Kl−1
c=1 F l

T

1,cF
l
1,c + β

λI ·
∑Kl−1
c=1 F l1,cF

lT

Kl,c

· · ·∑Kl−1
c=1 F l

T

Kl,c
F l1,c ·

∑Kl−1
c=1 F l

T

Kl,c
F lKl,c

+ β
λI


(7)

In the above equation, xi1,l, . . . , x
i
Kl,l

, zic,l−1 and
zi1,l, . . . , z

i
Kl,l

are in vectorized form. Eqn. 6 can be effec-
tively minimized by conjugate gradient (CG) descent. Note
that A never needs to be formed since the Az product can
be directly computed using convolution operations inside
the CG iteration. Each Az product requires 2cKl convolu-
tions of filters with the (Nr + H − 1)(Nc + H − 1) filter
maps and can easily be parallelized.

Although some speed-up might be gained by using FFTs
in place of spatial convolutions, particularly if the filter size
H is large, this can introduce boundary effects in the feature
maps – therefore solving in the spatial domain is preferred.
x sub-problem: Given fixed zik,l, finding the optimal

xik,l requires solving a 1D optimization problem for each

3F l
k,cz

i
k,l ≡ zi

k,l ⊕ f
l
k,c and F lT

k,cz
i
k,l ≡ zi

k,l⊕ flipud(fliplr(

f l
k,c )) using Matlab notation.

element in the feature map. If p = 1 then, following Wang
et al. [27], xik,l has a closed-form solution given by:

xik,l = max(|zik,l| −
1
β
, 0)

zik,l
|zik,l|

(8)

where all operations are element-wise. Alternatively for ar-
bitrary values of p > 0, the optimal solution can be com-
puted via a lookup-table [11]. This permits us to impose
more aggressive forms of sparsity than p = 1.

Filter updates : With x fixed and zik,l computed for a
fixed i, we use the following for gradient updates of f lk,c:

∂Ĉl(y)
∂f lk,c

= λ

I∑
i=1

Kl−1∑
c̃=1

Zi
T

k,l(
Kl∑
k̃=1

gl
k̃,c
Zi
k̃,l
f l
k̃,c̃
− zic̃,l−1) (9)

where Z is a convolution matrix similar to F . The overall
learning procedure is summarized in Algorithm 1.

Algorithm 1 : Learning a single layer, l, of the Deconvolu-
tional Network.
Require: Training images y, # feature maps K, connectivity g
Require: Regularization weight λ, # epochs E
Require: Continuation parameters: β0, βInc, βMax

1: Initialize feature maps and filters z ∼ N (0, ε), f ∼ N (0, ε)
2: for epoch = 1 : E do
3: for i = 1 : I do
4: β = β0

5: while β < βMax do
6: Given zi

k,l, solve for xi
k,l using Eqn. 8, ∀k.

7: Given xi
k,l, solve for zi

k,l using Eqn. 6, ∀k.
8: β = β · βInc

9: end while
10: end for
11: Update f l

k,c using gradient descent on Eqn. 9, ∀k, c.
12: end for
13: Output: Filters f

3.3. Image representation/reconstruction

To use the model for image reconstruction, we first de-
compose an input image by using the learned filters f to
find the latent representation z. We explain the procedure
for a 2 layer model. We first infer the feature maps zk,1 for
layer 1 using the input y′ and the filters f1

k,c by minimizing
C1(y′). Next we update the feature maps for layer 2, zk,2 in
an alternating fashion. In step 1, we first minimize the re-
construction error w.r.t. y′, projecting zk,2 through f2

k,c and
f1
k,c to the image:

λ2

2

K0∑
c=1

‖
K1∑
k=1

g1
k,c(

K2∑
b=1

g2
b,k(zb,2⊕f2

b,k))⊕f1
k,c)−y′c‖22+

K2∑
k=1

|zk,2|

(10)



In step 2, we minimize the error w.r.t. zk,2:

λ2

2

K1∑
c=1

‖
K2∑
k=1

g2
k,c(zk,2 ⊕ f2

k,c)− zc,1‖22 +
K2∑
k=1

|zk,2| (11)

We alternate between steps 1 and 2, using conjugate gra-
dient descent in both. Once zk,2 has converged, we recon-
struct y′ by projecting back to the image via f2

k,c and f1
k,c:

ỹ′ =
K1∑
k=1

g1
k,c(

K2∑
b=1

g2
b,k(zb,2 ⊕ f2

b,k))⊕ f1
k,c (12)

An important detail is the addition of an extra feature
map z0 per input map of layer 1 that connects to the image
via a constant uniform filter f0. Unlike the sparsity priors on
the other feature maps, z0 has an `2 prior on the gradients of
z0, i.e. the prior is of the form ‖∇z0‖2. These maps capture
the low-frequency components, leaving the high-frequency
edge structure to be modeled by the learned filters. Given
that the filters were learned on high-pass filtered images, the
z0 maps assist in reconstructing raw images.

4. Experiments

In our experiments, we train on two datasets of 100×100
images, one containing natural scenes of fruits and veg-
etables and the other consisting of scenes of urban envi-
ronments. In all our experiments, unless otherwise stated,
the same learning settings were used for all layers, namely:
H=7, λ=1, p=1, β0 =1, βInc =6, βMax =105, E=3.

4.1. Learning multi-layer deconvolutional filters

With the settings described above we trained a separate 3
layer model for each dataset, using an identical architecture.
The first layer had 9 feature maps fully-connected to the
input. The second layer had 45 maps: 36 were connected
to pairs of maps in the first layer, and the remainder were
singly-connected. The third layer had 150 feature maps,
each of which was connected to a random pair of second
layer feature maps. In Fig. 7 and Fig. 8 we show the filters
that spontaneously emerge, projected back into pixel space.

The first layer in each model learns Gabor-style filters,
although for the city images they are not evenly distributed
in orientation, preferring vertical and horizontal structures.
The second layer filters comprise an assorted set of V2-like
elements, with center-surround, corners, T-junctions, angle-
junctions and curves. The third layer filters are highly di-
verse. Those from the model trained on food images (Fig. 7)
comprise several types: oriented gratings (rows 1–4); blobs
(D8, E7, H9); box-like structures (B10, F12) and others that
capture parallel and converging lines (C12, J11). The fil-
ters trained on city images (Fig. 8) capture line groupings in

horizontal and vertical configurations. These include: con-
junctions of T-junctions (C15, G11); boxes (D14, E4) and
various parallel lines (B15, D8, I3). Some of the filters are
representative of the tokens shown in Fig. 2-4 of Marr [18]
(see Fig. 1).
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Figure 3. Samples from the layers of two deconvolutional network
models, trained on fruit (top) or city (bottom) images.

Since our model is generative, we can sample from it.
In Fig. 3 we show samples from the two different models
from each level projected down into pixel space. The sam-
ples were drawn using the relative firing frequencies of each
feature from the training set.

4.2. Comparison to patch-based decomposition

To demonstrate the benefits of imposing sparsity within
a convolutional architecture, we compare our model to
the patch-based sparse decomposition approach of Mairal
et al. [16]. Using the SPAMS code accompanying [16] we
performed a patch-based decomposition of the two image
sets, using 100 dictionary elements. The resulting filters are
shown in Fig. 4(left). We then attempted to build a hier-
archical 2 layer model by taking the sparse output vectors
from each image patch and arranging them into a map over
the image. Applying the SPAMS code to this map produces
the 2nd layer filters shown in Fig. 4(right). While larger in
scale than the 1st layer filters, they are generally Gabor-like
and do not show the diverse edge conjunctions present in
our 2nd layer filters. To probe this result, we visualize the
latent feature maps of our convolutional decomposition and
Mairal et. al.’s patch-based decomposition in Fig. 5.

1st layer  -- Mairal et al.  -- 2nd layer

Figure 4. Examples of 1st and 2nd layer filters learned using the
patch-based sparse deconvolution approach of Mairal et al. [16],
applied to the food dataset. While the first layer filters look similar
to ours, the 2nd layer filters are merely larger versions of the 1st

layer filters, lacking the edge compositions found in our 2nd layer
(see Fig. 7 and Fig. 8).
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Figure 5. A comparison of convolutional and patch-based sparse representations for a crop from a natural image (a). (b): Sparse con-
volutional decomposition of (a). Note the smoothly varying feature maps that preserve spatial locality. (c): Patch-based convolutional
decomposition of (a) using a sliding window (green). Each column in the feature map corresponds to the sparse vector over the filters for a
given x-location of the sliding window. As the sliding window moves the latent representation is highly unstable, changing rapidly across
edges. Without a stable representation, stacking the layers will not yield higher-order filters, as demonstrated in Fig. 4.

Table 1. Recognition performance on Caltech-101.
# training examples 15 30
DN-1 (KM) 57.7± 1.0% 65.8± 1.3%
DN-2 (KM) 57.0± 0.8% 65.5± 1.0%
DN-(1+2) (KM) 58.6± 0.7% 66.9± 1.1%
Lazebnik et al. [12] 56.4% 64.6± 0.7%
Jarret et al. [9] – 65.6± 1.0%
Lee et al. [15] layer-1 53.2± 1.2% 60.5± 1.1%
Lee et al. [15] layer-1+2 57.7± 1.5% 65.4± 0.5%
Zhang et al. [29] 59.1± 0.6% 66.2± 0.5%

4.3. Caltech-101 object recognition

We now demonstrate how Deconvolutional Networks
can be used in an object recognition setting. As we are pri-
marily interested in image representation, we compare to
other methods using a common framework of one or more
layers of feature extraction, followed by Spatial Pyramid
Matching [12]. We use the standard Caltech-101 dataset for
evaluating classification performance, but we would like to
emphasize that the filters of our DN have been learned us-
ing a generic, disparate training set: a concatenation of the
natural and city images. The Caltech-101 images are only
used for supervised training4 of the classifier.

Our baseline is the method of Lazebnik et al. [12] where
SIFT descriptors are computed densely over the image, fol-
lowed by Spatial Pyramid Matching. To compare our latent
representation with this approach, we densely constructed
descriptors5 from layer 1 (DN-1) and layer 2 (DN-2) fea-

4The 150x150 pixel contrast normalized gray images used for classi-
fication were connected to 8 feature maps in layer 2. Second layer maps
were connected singly and in every possible pair to the layer 1 maps, for a
total of 36 layer 2 feature maps. p=0.8, λ1=10, and λ2=1 were used to
maintain more discriminative information in the feature maps.

5Activations from each layer were split into overlapping 16x16 patches
at a stride of 2 pixels. The absolute value of activations in each patch were
pooled by a factor of 4 then grouped in 4x4 regions on each of 8 layer
1 feature maps giving a 128-D descriptor per patch and grouped in 2x2
regions on each of 36 layer 2 maps leading to 144-D layer 2 descriptors.

ture activations. These were then vector quantized using K-
means (KM) into 1000 clusters and grouped into a spatial
pyramid from which an SVM histogram intersection kernel
was computed for classification. Results for 10-fold cross
validation with 15 and 30 images training per category are
reported in Table 1.

Our method slightly outperforms the SIFT-based ap-
proach [12] as well as other multi-stage convolutional
feature-learning methods such as convolutional DBNs [15]
and feed-forward convolutional networks [9]. We achieved
the best performance when we concatenated the spatial
pyramids of both layers before computing the SVM his-
togram intersection kernels: denoted DN-(1+2).

4.4. Denoising images
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Figure 6. Exploring the trade-off between sparsity and denois-
ing performance for our 1st and 2nd layer representations (red and
green respectively), as well as the patch-based approach of Mairal
et al. [16] (blue). Our 2nd layer representation simultaneously
achieves a lower reconstruction error and sparser feature maps.

Given that our learned representation can be used for
synthesis as well as analysis, we explore the ability of a two



layer model to denoise images. Applying Gaussian noise
to an image with a SNR of 13.84dB, the first layer of our
model was able to reduce the noise to 16.31dB. Further, us-
ing the latent features of our second layer to reconstruct the
image, the noise was reduced to a SNR of 18.01dB.

We also explore the relative sparsity of the feature maps
in the 1st and 2nd layers of our model as we vary λ. In Fig. 6
we plot the average sparsity of each feature map against
RMS reconstruction error, we see that the feature maps at
layer 2 are sparser and give a lower reconstruction error,
than those of layer 1. We also plot the same curve for the
patch-based sparse decomposition of Mairal et al. [16]. In
this framework, inference is performed separately for each
image patch and since patches overlap, a much larger num-
ber of latent features are needed to represent the image. The
curve was produced by varying the number of active dictio-
nary atoms per patch in reconstruction.

4.5. Inference timings

Our efficient optimization scheme makes it feasible to
perform exact inference in a convolutional setting. Alter-
nate approaches [15] rely on simple non-linear encoders
to perform approximate inference. Our scheme is linear
in the number of filters and pixels in the image (5.8 ±
1.0secs/filter/megapixel) Thus for 150× 150 images used
in the Caltech 101 experiments, using the architecture de-
scribed in Section 4.1, inferences takes 2.5s, 10s, 55s layers-
1,2,3 respectively. Due to the small filter sizes, learning in-
curs only a 10% overhead relative to inference. While our
algorithm is slow compared to approaches that use bottom-
up encoders, heavy use of the convolution operator makes
it amenable to parallelization and GPU-based implementa-
tions which we expect would give between 1 and 2 orders of
magnitude speed-up. Additional performance gains could
result from introducing pooling between layers.

5. Conclusion
We have introduced Deconvolutional Networks: a con-

ceptually simple framework for learning sparse, over-
complete feature hierarchies. Applying this framework
to natural images produces a highly diverse set of filters
that capture high-order image structure beyond edge prim-
itives. These arise without the need for hyper-parameter
tuning or additional modules, such as local contrast normal-
ization, max-pooling and rectification [9]. Our approach
relies on robust optimization techniques to minimize the
poorly conditioned cost functions that arise in the convolu-
tional setting. Supplemental images, video, and code can
be found at: http://www.cs.nyu.edu/˜zeiler/
pubs/cvpr2010/.
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Figure 7. Filters from each layer in our model, trained on food
scenes. Note the rich diversity of filters and their increasing com-
plexity with each layer. In contrast to the filters shown in Fig. 8,
the filters are evenly distributed over orientation.
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Figure 8. Filters from each layer in our model, trained on the city
dataset. Note the predominance of horizontal and vertical struc-
tures.


