Rapid progress in machine learning is enabling opportunities for improved clinical decision support. Importantly, however, developing, validating and implementing machine learning models for healthcare entail some particular considerations to increase the chances of eventually improving patient care.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Sex estimation with parameters of the facial canal by computed tomography using machine learning algorithms and artificial neural networks
BMC Medical Imaging Open Access 18 July 2025
-
Application of ChatGPT-based artificial intelligence in the diagnosis and management of polycystic ovary syndrome
BMC Medical Informatics and Decision Making Open Access 18 July 2025
-
Artificial intelligence applications in delirium prediction, diagnosis, and management: a systematic review
Artificial Intelligence Review Open Access 05 June 2025
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$32.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
References
LeCun, Y., Bengio, Y. & Hinton, G. Nature 521, 436–444 (2015).
Gulshan, V. et al. JAMA 316, 2402–2410 (2016).
Esteva, A. et al. Nature 542, 115–118 (2017).
Krause, J. et al. Ophthalmology 125, 1264–1272 (2018).
Ehteshami Bejnordi, B. et al. JAMA 318, 2199–2210 (2017).
Poplin, R. et al. Nat. Biomed. Eng. 2, 158–164 (2018).
Ting, D. S. W. & Wong, T. Y. Nat. Biomed. Eng. 2, 140–141 (2018).
Xu, K. et al. Preprint at https://arxiv.org/abs/1502.03044 (2015).
Moher, D. et al. BMJ 340, c869 (2010).
Japkowicz, N. & Stephen, S. Intell. Data Anal. 6, 429–449 (2002).
Rajkomar, A. et al. npj Digit. Med. 1, 18 (2018).
Ren, S., He, K., Girshick, R. & Sun, J. IEEE Trans. Pattern Anal. Mach. Intell. 39, 1137–1149 (2017).
Liu, Y. et al. Arch. Pathol. Lab. Med. https://doi.org/10.5858/arpa.2018-0147-OA (2018).
Steiner, D. F. et al. Am. J. Surg. Pathol. 42, 1636–1646 (2018).
De Fauw, J. et al. Nat. Med. 24, 1342–1350 (2018).
Sofka, M., Milletari, F., Jia, J. & Rothberg, A. in Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support (eds Cardoso, J. et al.) 258–266 (Springer, 2017).
Zoph, B., Vasudevan, V., Shlens, J. & Le, Q. V. Preprint at https://arxiv.org/abs/1707.07012 (2017).
Sandler, M., Howard, A., Zhu, M., Zhmoginov, A. & Chen, L.-C. in IEEE Conference on Computer Vision and Pattern Recognition 4510–4520 (IEEE, 2018).
Bishop, C. Pattern Recognition and Machine Learning (Springer, 2006).
Zhang, C., Bengio, S., Hardt, M., Recht, B. & Vinyals, O. Preprint at https://arxiv.org/abs/1611.03530 (2016).
Bergstra, J. & Bengio, Y. J. Mach. Learn. Res. 13, 281–305 (2012).
ILSVRC http://www.image-net.org/challenges/LSVRC/announcement-June-2-2015 (2 June 2015).
Alba, A. C. et al. JAMA 318, 1377–1384 (2017).
Niculescu-Mizil, A. & Caruana, R. in Proc. 22nd International Conference on Machine Learning 625–632 (ACM, 2005).
Thabane, L. et al. BMC Med. Res. Methodol. 13, 92 (2013).
Parikh, R., Mathai, A., Parikh, S., Chandra Sekhar, G. & Thomas, R. Indian J. Ophthalmol. 56, 45–50 (2008).
van Smeden, M., Van Calster, B. & Groenwold, R. H. H. JAMA 319, 1725–1726 (2018).
Sayres, R. et al. Ophthalmology 126, 552–564 (2018).
Graham, K. C. & Cvach, M. Am. J. Crit. Care 19, 28–34 (2010).
Abràmoff, M. D., Lavin, P. T., Birch, M., Shah, N. & Folk, J. C. npj Digit. Med. 1, 39 (2018).
Shlens, J. Google AI Blog https://ai.googleblog.com/2016/03/train-your-own-image-classifier-with.html (2016).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chen, PH.C., Liu, Y. & Peng, L. How to develop machine learning models for healthcare. Nat. Mater. 18, 410–414 (2019). https://doi.org/10.1038/s41563-019-0345-0
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41563-019-0345-0
This article is cited by
-
Sex estimation with parameters of the facial canal by computed tomography using machine learning algorithms and artificial neural networks
BMC Medical Imaging (2025)
-
Realizing the promise of machine learning in precision oncology: expert perspectives on opportunities and challenges
BMC Cancer (2025)
-
Artificial intelligence performance in ultrasound-based lymph node diagnosis: a systematic review and meta-analysis
BMC Cancer (2025)
-
Application of ChatGPT-based artificial intelligence in the diagnosis and management of polycystic ovary syndrome
BMC Medical Informatics and Decision Making (2025)
-
TRAF3 as a potential diagnostic biomarker for recurrent pregnancy loss: insights from single-cell transcriptomics and machine learning
BMC Pregnancy and Childbirth (2025)