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ABSTRACT CCS CONCEPTS

Designers reportedly struggle with design optimization tasks where
they are asked to find a combination of design parameters that max-
imizes a given set of objectives. In HCI, design optimization prob-
lems are often exceedingly complex, involving multiple objectives
and expensive empirical evaluations. Model-based computational
design algorithms assist designers by generating design examples
during design, however they assume a model of the interaction
domain. Black box methods for assistance, on the other hand, can
work with any design problem. However, virtually all empirical
studies of this human-in-the-loop approach have been carried out
by either researchers or end-users. The question stands out if such
methods can help designers in realistic tasks. In this paper, we
study Bayesian optimization as an algorithmic method to guide the
design optimization process. It operates by proposing to a designer
which design candidate to try next, given previous observations.
We report observations from a comparative study with 40 novice
designers who were tasked to optimize a complex 3D touch inter-
action technique. The optimizer helped designers explore larger
proportions of the design space and arrive at a better solution, how-
ever they reported lower agency and expressiveness. Designers
guided by an optimizer reported lower mental effort but also felt
less creative and less in charge of the progress. We conclude that
human-in-the-loop optimization can support novice designers in
cases where agency is not critical.
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1 INTRODUCTION

One central problem in design is that of finding a satisfactory oper-
ating point in a multidimensional design space, one that balances
trade-offs between relevant design objectives (e.g., [7, 13]). Such
an operating point can be obtained using different strategies. A
common strategy is relying on prior experience, intuition, and a
bit of trial and error. Under such a strategy, the designer explores
the space by gradually searching for suitable parameter values and
assessing the observed trade-offs between the objectives. This ap-
proach can be effective when the design space is simple or familiar.
However, as a method, it is not reliable. It is sensitive to the level of
skill and prior-experience of the designer as well as the complexity
of the design problem at hand. Moreover, it scales poorly and offers
no guarantees that all reasonable options have been considered.
An emerging alternative strategy which we study in this paper
is to use an optimization-driven design method in which explo-
ration is guided by a search algorithm [3, 15, 24, 46, 47, 52]. An
optimization-driven design method guides the designer in their
design space exploration and may offer various tools to inform final
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design selection. In this paper we contrast these two approaches in
an empirical study in order to report on the various positive and
negative qualities of human-in-the-loop optimization.

Both the designer-led and optimization-driven strategies have
conceivable advantages and disadvantages, thereby offering a rich
collection of hypotheses worthy of examination. With complete
freedom over the exploration of the design space, the designer is
likely to have a stronger sense of agency which may deliver greater
engagement in the task. A recent study of designers’ expectations
about data-driven design raised the loss of agency as a concern
[22]. On the other hand, a potential drawback of the designer-led
approach is that exploration of the design space is either consciously
or subconsciously constrained by preconceived notions held by
the designer. These preconceptions may be accurate, in which case
constraints applied on exploration yield greater efficiency. Empirical
research has exposed biases that limit the creative capability, such
as confirmation bias [26], as well as a tendency for fixation, or ‘blind
adherence with a solution’ [30, 56], which the literature suggests
is hard to break [1]. Promising regions of the design space can
be missed and outcomes fail to deviate significantly from those
arrived at early in the process by the designer. We hypothesize that
optimization-driven design may help to address problems such as
design fixation but at the cost of designer agency and engagement.
Optimization-driven design also serves to mitigate sensitivity to
the expertise and prior experience of the individual designer which
in turn may deliver more consistent outcomes when engaging a
group of designers of different skill and experience levels.

This paper contributes to empirical research on computational
methods for designers. Our focus is on a HCI-related design task
relevant for the development of interactive systems and interaction
techniques. Our anecdotal evidence is that relatively few papers
presenting interactive systems at CHI, the premier venue of the
HCI field, explore their parameter spaces systematically. We recog-
nized the three following strategies described below. First, potential
design parameters can be assigned or eliminated by extrapolating
from evidence presented in the literature. HiveFive [38], for ex-
ample, is a VR visualization technique that was optimized by first
referencing a biological theory of bee swarming to substantially
narrow down the search range for each parameter, and second,
fixing values in a pilot study (with three people). Second, a divide
and conquer strategy can be employed in which parameters are
tackled one by one. For example, in Body Follows Eye [50], an in-
teraction technique that guides users’ posture change in VR was
optimized over a series of six sub-studies where each determined
the threshold for one of the six motion types. Third, sometimes the
dimensionality of the problem is simplified with a mathematical
model. For example, ErgonomicsTouch [53] exploits the so-called
Hermite curve to amplify the user’s hand movements into a larger
movement for increasing physical comfort while preserving own-
ership. It was optimized by reducing the dimensionality of the
problem by identifying four parameters that determine the map-
ping curve, with respect to the objectives of accuracy, comfort, and
ownership. Lower and upper bounds for amplifications were then
determined empirically with a pilot study with five users.

To better understand the pitfalls and perks of optimization-
driven design in contrast to a designer-led approach, we conducted
a study with 40 novice designers. We hypothesized that novices
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might benefit the most from computational assistance, especially to
achieve a degree of directedness and organization when exploring
designs [11]. To account for learning effects across the two condi-
tions, we used a between-subjects protocol assigning 20 participants
to each condition and examined both the quality of design outcomes
and the designers’ subjective experience of designing. The specific
optimization technique we employed in the optimization-driven
condition was Multi-Objective Bayesian Optimization (MOBO).
Bayesian optimization has shown significant potential in HCI de-
sign problems and offers an efficient method for exploring design
spaces that are poorly understood by the designer at the outset. To
make this investigation concrete, designers are given a non-trivial
design task involving the selection of parameters characterizing
the behavior and haptic feedback of a 3D touch interaction in vir-
tual reality to maximize efficiency and accuracy. This design task
involves two competing objectives for which the relationship to
the controllable design parameters is unclear. It therefore ensures a
degree of challenge for designers and MOBO alike.

In summary, the core contribution in this paper is the empirical
investigation of the positive and negative qualities of designer-led
and optimization-driven design in a study with novice designers.
We found that the optimization-driven design of the 3D touch inter-
action technique delivers a superior outcome in terms of reducing
spatial error but at the cost of the subjective experience of agency
and ownership. Furthermore, optimization-driven design using
MOBO promotes wider exploration of the design space helping to
mitigate detrimental design fixation.

2 RELATED WORK

Designing better interaction techniques is a long-standing topic
within the HCI researcher and practitioner community. This has
motivated the development of various strategies and tools to sup-
port the designer in this process. Papers in this vein in HCI typically
demonstrate their new method or tool by highlighting improve-
ments in the design outcomes but less commonly examine the
secondary impact on the design process and the designer’s expe-
rience. In this paper we seek to understand how the interaction
technique design process is influenced by the tools made avail-
able to the designer. Specifically, we examine the advantages and
disadvantages provided by human-in-the-loop optimization using
Bayesian methods.

Below, we briefly review the related work to provide insight into
the design process involving optimization methods within HCI.
We first cover the broader topic of data-driven optimization before
examining interaction design with human-in-the-loop optimization
and multi-objective optimization. Finally we review prior work
utilizing Bayesian optimization specifically to support the design
process.

2.1 Data-Driven Optimization

One viable approach to improving interaction techniques is to
leverage data collected on the whole or sub-tasks involved. An
example of this approach is provided by Feit et al. [18] who collected
eye tracking data from 80 people performing a calibration task. Feit
et al. [18] demonstrated an optimization procedure leveraging this
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data to select optimal filter parameters and inform the design of
gaze interfaces in terms of target sizes.

Captured data may also be combined with relatively simple em-
pirical models such as Fitts’ Law to optimize various interactive
elements such as hierarchical menus [19, 42] and keyboard lay-
outs [4, 17, 58]. SUPPLE [21] takes a related approach in optimizing
interface designs based on specified device constraints and user
activity traces. Deep neural networks modelling user performance
when interacting with vertical menus [39] have also been leveraged
to drive optimization [14]. These various approaches may involve
a degree of designer involvement to determine the feasible design
space and interpret outputs, but the optimization process itself is
largely offloaded to the computer.

Although not necessarily involving explicit optimization, data-
driven methods leveraging deep learning have shown recent promise.
GUIGAN [59] employs a generative adversarial network (GAN) fed
with a large dataset of real Android application graphical user in-
terfaces (GUIs) to construct a generative model for creating novel
application GUIs. The quality of GUIGAN-generated GUISs is evalu-
ated in the paper but there is no investigation of how the generative
model can assist or influence the design process for designers. Also
employing deep learning, Guo et al. [24] introduce Vinci which
applies a variational autoencoder to construct a generative model
for advertising posters. Critically, the Vinci system takes user input
in the form of a product category, product image, and tagline text.
These inputs condition the generative process and are incorporated
into the generated poster. Various features of the Vinci system were
evaluated with both novice and expert designers with generally
favorable outcomes, particularly in terms of the tool’s efficiency
in generating a large number of design alternatives. Nevertheless,
concerns were raised by designers in terms of the “controllability,
comprehensibility, and predictability” of the design process using
Vinci.

2.2 Human-in-the-Loop Optimization and
Multi-objective Optimization

Human-in-the-loop optimization refers to the process in which
the optimization process is steered by human input, for instance
through training feedback and observed human behavior to a set of
input parameters. This process has been extensively applied to HCI
design tasks, for example in MenuOptimizer [3] where the designer
is assisted during the task of combinatorial optimization of menus,
and DesignScape [46] where layout suggestions for position, scale,
and alignment of elements are interactively suggested to the de-
signer. Other design tools that have a human-in-the-loop aspect
include Sketchplore [52] where real-time design optimization is
integrated into a sketching tool; Forte [9], in which designers can
directly iterate on fabrication shape design through topology opti-
mization; in Kapoor et al. [32], where the behavior of classification
systems can be iteratively refined by designers to support more
intuitive behavior; and in Lomas et al. [41], where the arrangement
of game elements is iteratively adjusted for increased user perfor-
mance. Overall, these tools all feature the central aspect of human
interaction where the human actively participates during the op-
timization process to generate better designs. In broad terms, this
human-in-the-loop paradigm of design is an evolution of the line
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of work introduced by [44] which aims to enhance the efficiency of
the interface design process by automatically generating the code
for the interface after demonstration of the interface specifications.

Yannakakis et al. [55] introduce the concept of player modeling
in which a computational model is constructed of the cognitive,
behavioral, and affective states of the player of a game. This con-
structed model may be dynamically updated in-game based on
observations of user inputs and, in turn, used to drive changes in
gameplay and game content. This general approach has been used
to adjust game mechanics to maintain a challenging gaming expe-
rience for players [12, 54]. With a focus on designers as opposed
to players, Guzdial et al. [25] explore co-creation with an agent
for game level design and identify various potential roles for an
agent in this design process, e.g., the agent portrayed as a friend,
collaborator, student or manager. Liapis et al. [40] provide a review
of related mixed-initiative methods applied to procedural content
generation in game design.

Multi-objective optimization for interaction design serves as a
special case for optimization-based design where instead of one
objective to optimize over, there are now multiple objectives. As
there is no longer one defined optimum for multiple objectives,
the concept of Pareto optimality is important, where a design is
considered to be Pareto optimal if no individual objective can be
enhanced by changing the design parameters without resulting in
at least one individual objective worse off. Multi-objective optimiza-
tion aims to search for Pareto optimal designs so that an optimal
trade-off between competing objectives is found. In HCI, multi-
objective optimization has been applied to touchscreen keyboard
design to trade-off speed, familiarity, and improved spell checking
[17], multi-finger input for mid-air text entry [51], and linkage
design for a haptic interface [28]. Many algorithms and computa-
tional methods have been applied for multi-objective optimization,
including aggregating the different objectives into one via a linear
weighted sum [51], grid-based methods [17], evolutionary-based
methods [34], and Bayesian optimization [29]. In this paper, we
seek to assess one specific multi-objective optimization algorithm,
namely Bayesian optimization, in a human-in-the-loop context to
explore the benefits and drawbacks as compared to the designer-led
process, as it shows great potential in HCI design as detailed in
Section 2.3.

2.3 Bayesian Optimization

Bayesian optimization is a machine learning technique for facil-
itating the optimization of unknown and/or difficult-to-evaluate
functions. It works by iteratively refining a surrogate model repre-
senting the function and intelligently selecting new test points to
evaluate by balancing between exploration of the design space and
exploitation of regions where the designs are particularly promis-
ing. A major strength of Bayesian optimization is that the surro-
gate model is leveraged to ensure efficient search of the design
space. Bayesian optimization is therefore well suited to interac-
tion technique design problems where the relationship between
design parameters and user performance and/or subject experience
is unknown or easily modeled.

Bayesian optimization has been employed in HCI to tackle vari-
ous design problems as a human-in-the-loop optimization method.



CHI ’22, April 29-May 5, 2022, New Orleans, LA, USA

Early work by Brochu et al. [6] demonstrated how Bayesian opti-
mization can incorporate direct feedback from users in a preference
gallery to help determine desired parameters governing the appear-
ance of animations. Koyama et al. [36, 37] use a similar approach
to allow users to rapidly adjust the visual appearance of an image
in line with some desired aesthetic. Bayesian optimization has also
been used as a tool to determine game mechanic settings to maxi-
mize engagement [33], adjust font parameters to maximize reading
speed [31] and adjust interface and interaction features to minimize
task completion time [15]. These various studies serve to highlight
how Bayesian optimization provides an effective tool to support
design tasks in HCL. What is lacking, however, is a clear under-
standing of how design driven by this mechanism is experienced
by or impacts the designer.

2.4 Summary

The various research efforts reviewed above offer a range of al-
ternative tools and techniques for optimizing user interfaces and
interactions. Lacking, however, is a clear understanding of how
these various tools and strategies influence the design process and
experience for designers. This paper seeks to address this gap in the
literature by comparing the outcomes and experience of designing
with and without assistance from Bayesian optimization. We focus
on Bayesian optimization as the tool offered to designers given the
significant advantages that have been demonstrated within the HCI
domain in terms of its efficiency and its ability to handle black box
optimization problems.

3 CASE: 3D TOUCH INTERACTION

Our empirical study focuses on a complex and realistic interaction
technique case — 3D touch interaction — which is ubiquitously
applied in virtual reality. Here, we compare two approaches: the
designer-led and the optimizer-driven approach, and in this section,
we outline the background of the interaction, the design space
parameterization, and the design objective functions. In particular,
we specifically chose this task as 1) target acquisition in 3D is an
important problem in the domain of virtual reality, 2) the resulting
performance of the interaction is easily observable to the user as the
design parameters vary, and 3) it serves as a classic multi-objective
design problem in HCI as we will detail in Section 3.1.

3.1 Background of 3D Touch Interaction

Target selection is a crucial, if not the most important, task for a
virtual reality (VR) or an augmented reality (AR) application [2]. A
great variety of VR and AR selection methods have been proposed
[5] in mind with the challenge of the trade-off between speed and ac-
curacy that was identified in early works [2]. Poupyrev categorized
such selection techniques into the use of a virtual pointer or virtual
hand metaphor [49]. A good 3D selection design should allow selec-
tion to be fast and accurate; however, searching for the good design
candidates while satisfying both objectives is known to be a chal-
lenging design problem. Moreover, previous works showed that the
control-to-display transfer function (including 2D and 3D selection)
requires different numbers of parameters, which can range from
two to ten [2, 20, 35, 43, 48]. Thus, the high-dimensional design
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space makes searching a promising design instance especially time-
consuming and costly. For instance, previous approaches applied for
designing 2D transfer functions are either based on a great amount
of trial-and-error [7], which is a costly process, or by heuristics
[45, 57], which requires prior domain expertise.

The Go-Go technique is a well-known 3D touch interaction design
proposed by Poupyrev, which has been widely applied in VR and AR
interactions [48]. Essentially, a hybrid control-to-display transfer
function determines the virtual hand’s position according to the
physical hand’s movement. Within a certain range, the transfer
function follows a linear mapping, in which the virtual hand moves
linearly based on the physical hand’s position. Beyond this range,
the transfer function follows a non-linear mapping, in which the
virtual hand moves quadratically away according to the physical
hand’s position. This combination enables users to stably touch
the objects that are closer to the body while being able to hit the
targets that are beyond the physical hand’s reach. Two parameters
determine the switch of the mapping methods and the degree of
the nonlinearity in the nonlinear schema.

Despite the number of the design parameters being relatively
low, exhaustively searching the design space for the optimal de-
sign instance is not practical due to the challenges discussed above.
While the 3D touch interaction design is timely and increasingly
important, optimization of its design either based on manual pa-
rameter tuning done by a designer or an optimization algorithm
has not been well documented or explored. For example, the Go-Go
technique as described in the original paper recommends parameter
settings without a proper rigorous justification [48]. In the follow-
ing experiment, we selected the Go-Go technique as a base example
to compare a human designer’s iterative search and the Bayesian
optimization workflow, with some add-on design parameters to
allow greater selection accuracy and speed.

3.2 Parameterizing 3D Touch Interaction and
the Objective Functions

3.2.1 3D Touch Interaction. The 3D touch interaction used in the
later experiment is built on the original Go-Go technique with
some modifications. The original Go-Go technique decided the
chest position as the reference origin point. The arm vector r,was
obtained by subtracting the physical hand position to the chest
then translating to the hand’s coordinate and direction. In our
experiment, we shifted the reference point to the shoulder, which
captures more natural hand movements, as shown in Figure 1.
We further defined 1 unit of the “operation range” as the distance
between the origin (which is shoulder of the operating hand) and
the hand when the arm is fully extended. The Go-Go technique’s
transfer function was then applied to calculate the virtual hand’s
position.

3.2.2  Design Parameters. There are two parameters in the original
Go-Go technique — D and k — which jointly form the hybrid transfer
function. D is the range which divides the linear and non-linear
mapping, and k determines the scale of the nonlinear component.
If the physical hand’s distance is within the range D, the transfer
function linearly maps the user’s physical hand to the virtual hand
along the same direction, where the real arm vector r, is assigned
to the Go-Go cursor r, (Figure 1a). Once the physical hand moves
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Figure 1: Our empirical study focuses on the task of improving the transfer function of the Go-Go technique. The technique
calculates the virtual hand’s position with the parameters D and k. (a) It maps the position linearly when the physical hand’s
distance is within the range D, or (b) non-linearly by a factor controlled by k when it moves beyond the range D. (c) In addition,
the two parameters G and A for the activation-vibration gap and the vibration amplitude determine the vibrotactile feedback

when the target is reached.

beyond the distance D, the nonlinear mapping allows the virtual
hand to move much faster away from the origin (shoulder) along
the direction of the physical hand by a factor controlled by k, with
which the Go-Go cursor r¢ is computed as ry + k(r, — D)? (Figure
1b). We directly took D and k as the design parameters for our 3D
touch interaction, and set the ranges of these two parameters to be
D € [0,1] and k € [0,0.5].

However, there are other parameters that will affect the 3D selec-
tion performance, including a vibration cue. This has been proven
effective for enhancing efficiency and accuracy, and it has been
applied to commercial devices. Following this direction, we look
to add the simplest and most pervasive haptic feedback when the
target is reached to enhance user performance—a vibrotactile cue.
For a balanced design, we selected two parameters for vibrotac-
tile feedback: the activation-vibration point, G, and the vibration
intensity, A, as shown in Figure 1c. The duration of the feedback
was fixed at 300 ms. We set the range of the activation-vibration
point to activate at any point in the range of 15 cm before and 5 cm
after touching a target. We also set the vibration amplitude to be
within the maximum voltage level (3.1V), which led the vibration
amplitude to be within 2.6g. All design parameters are summarized
in Table 1.

3.2.3 Objective Functions. The objective functions refer to the met-
rics we aim to maximize or minimize during the design process.
Following the discussion above, we considered two design metrics
— completion time (speed) and spatial error (accuracy) in target
acquisition — as our objective functions to be minimized. The first
objective function, completion time, refers to the average duration
between the moment a target is shown in the 3D experimental en-
vironment and the moment it is successfully touched by the virtual
hand. The second objective, spatial error, is the maximum overshoot
distance, which is the maximum Euclidean distance between the
virtual hand and the target’s 3D position if the virtual hand moves
beyond the range of the target. If a participant touches the target
without any overshoot occurring (the cursor did not go beyond the
range of the target at all), the spatial error will remain zero.

Because the values of the completion time and spatial error have
their own ranges, normalization is required before the optimization
process. We converted these two metrics into two values which we
refer to as speed and accuracy by linearly transforming the comple-
tion time ranged [1,600 ms, 900 ms] into to speed ranged [-1, 1] ,
and the spatial error ranged [1 cm, 0 cm] into the accuracy ranged
[-1, 1]. Note that after the conversion, both the speed and accuracy
objectives are now functions to be maximized instead (the higher
value indicates better performance). The ranges of completion time
and spatial error were decided from a pilot test conducted with
eight participants.

3.24 Hyperparameter Setup for Bayesian Optimization. The Bayesian
optimization in our implementation is built upon BoTorch!, a PyTorch-
enabled Bayesian Optimization library. This library is commonly
used in many research projects, and it offers reliable performance
and the flexibility of picking the Gaussian Process models and ac-
quisition functions. The Gaussian Process we applied in the later
experiment is the multi-output Gaussian Process. The acquisition
function we applied is qEHVI, which represents the expected hy-
pervolume increase, where we set g = 1 to ensure that after each
iteration, a batch of size one is selected to be given to the designer
for testing. Other hyperparameter settings include using 10 opti-
mization restarts during the optimization of the acquisition func-
tion, 1024 as the number of restart candidates for the acquisition
function optimization, and 512 as the number of Monte Carlo sam-
ples to approximate the acquisition function. These were selected
to ensure good computational efficiency for each iteration of the
optimization process.

4 EXPERIMENTAL METHOD

The goal of the experiment is to investigate positive and negative
aspects of human-in-the-loop optimization by contrasting it to the
designer-led approach. The metrics we used to analyze the results
cover the design outcomes and a wide range of designer experiences
including the perceived creativity and workload. The optimization

!https://botorch.org/
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Table 1: The four design parameters for the 3D touch interaction design, with the ranges. All four design parameters are

continuous.
Design Parameter Description Range
x1: Distance Threshold, D Division between linear and non-linear mappings. [0,1]
x9: Scale Factor, k Scale of the non-linear component. [0,0.5]
x3: Activation-Vibration Gap, G Cues when the target is reached. [15cm, -5 cm]
x4: Vibration Amplitude, A Vibrotactile feedback intensity. [0g,2.6g]

task consists of four design parameters left undetermined and two
objectives to which the 3D touch interaction is set to be optimized
during the design process.

In the designer-led condition, the search is progressed manually
by actively exploring and refining design candidates. In contrast,
the optimizer-driven condition follows a human-in-the-loop pro-
cess in which a Bayesian optimizer leads the search for the designer;
at the end, the designer determines the optimal designs from a set of
Pareto optimal designs suggested by the optimizer. To avoid learn-
ing effects on the design target across experiment conditions, the
experiment followed a between-subjects design. We measured the
performance of designs produced in the two conditions, quantified
the perceived creativity and workload using the Creativity Support
Index [10] and NASA-TLX [27], and collected user feedback with
a semi-structured interview. With the mixed-methods approach,
we looked to understand the trade-offs for human-in-the-loop opti-
mization as compared to the designer-led process.

4.1 Participants

We recruited 40 novice designers (20 F, 20 M), with a mean age
of 22.2 years (sd: 2.4), via snowball sampling and through a Face-
book group page dedicated to recruiting participants from a local
university. Most participants were enrolled in a master’s program
with their expertise covering engineering, architecture, interac-
tion, and education. Following the between-subjects design, they
were randomly divided into the groups for the designer-led or
optimizer-driven processes. All volunteered under informed con-
sent and agreed to the recording and anonymized publication of
results. They were compensated 20€ for their participation.

4.2 Apparatus

The apparatus mainly consisted of the 3D touch interaction. How-
ever, the interface to support the optimization process was cus-
tomized according to the experimental condition for the designer-
led or optimizer-driven processes.

4.2.1 The 3D Touch Interaction and Prototype. We built the 3D
touch interaction in Unity 3D? with the Oculus Quest 23 and the
companion hand controllers, as shown in Figure 2. Our prototype
implementation matches closely to the original one in [49] with the
minor changes listed in Section 3.2.2. To provide vibrotactile feed-
back on the controllers that can be precisely controlled, we added
a vibration motor, Precision Microdrives 310-117* (rise time 97 ms),
on the controller such that users can easily rest their thumb on the

Zhttps://unity.com/

Shttps://www.oculus.com
4https://www.precisionmicrodrives.com/product/310-117-10mm-vibration-motor-
3mm-type

motor. The vibrotactile feedback was controlled via a DRV2605L
driver and an Arduino Uno microprocessor. During the optimiza-
tion task, participants were asked to sit on a legged chair so that
a polar coordinate system can be easily maintained. We followed
task arrangements used in [8] for 3D target acquisition. The three
variables that determined target locations are: the inclination angle
(30°, 45°, and 60°); the azimuth angle (0°, 45°, 90°, 135°, 180°, 225°,
270°, and 315°); and the radial distance to the target (0.5 units, 1
unit, 1.5 units, 2 units of the operation range). The fourth variable
determines target widths (3 cm, 4 cm, and 5 cm). In total, there were
288 (3 inclination angles X 8 azimuth angles X 4 distances X 3 target
widths) variations of movement trials, as illustrated in Figure 2d.

4.2.2 The Parameter Sliders and Evaluation Button. We offer pa-
rameter sliders and an evaluation button as shown in Figure 3a,
which participants in the designer-led group use to adjust param-
eters for a new design and to initiate a formal evaluation of the
design, respectively. Four parameter sliders are located at the lower
right-hand side of the participant in VR, whose values correspond
to the four parameters of the interaction. Any adjustment of the
slider values directly applies the design parameters to the interac-
tion. Since there is always a random target presented in the virtual
space, participants can test the current design by simply selecting
the target; subsequently, the next target appears for further testing.
To initiate a formal evaluation of the current design, the participant
presses the evaluation button below the parameter sliders. This
enters a dedicated mode where these widgets disappear and the
participant starts to follow a series of 36 trials randomly selected
from the 288 variations while keeping an equal sampling across
target distance and target width. The evaluation was completed
when 36 trials were finished. Then, the averaged completion time
and spatial error of the trials were computed and indicated on the
objectives chart (detailed in subsection 4.2.3).

4.2.3 The Parameters and Objectives Charts. The parameters chart
and objectives chart allow designers to keep track of all the designs
that have gone through formal evaluation. The parameters chart
contains a parallel coordinate plot of the designs evaluated, and
the objectives chart contains 2D scatter plots of the corresponding
objectives calculated from their formal evaluations. Once a formal
evaluation is completed, the two charts are brought up for the par-
ticipant to visualize the performance of the design under evaluation
(Figure 3b). The data point in dark blue in the objectives chart in-
dicates the most recent evaluation. Pressing the controller’s menu
button dismisses or invokes the charts. These charts also support
interactive functions. For example, the two charts are interlinked:
on selection of a data point, indicated in red in the objectives chart,
the corresponding design in the parameters chart is highlighted in
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Figure 2: (a) The experiment setup for the 3D touch interaction adapted from the original Go-Go technique, and (b) the inter-
action enhanced with vibrotactile feedback via the vibrator added to the controller. (c) Participants acquire the target using a
cursor (e.g., the virtual hand) with dwell-based selection. (d) All possible locations of targets.

red, and vice versa. Two floating text fields appear beside the selec-
tion to show detailed data of the evaluation. In addition, the charts
also directly apply the selected design to the parameter sliders and
thus the interaction, allowing designers to easily revisit previously
evaluated designs.

4.24 The Bayesian Optimizer. In the optimizer-driven group, par-
ticipants worked with the optimizer to determine optimal designs.
The Bayesian optimizer was configured for optimizing the 3D touch
interaction as described in Section 3.2.4.

4.3 Task

We created a realistic brief for proposing 3D touch interaction
designs in the form of a one-page description with background and
goals. Participants were prescribed as designers and were tasked
to propose three optimal designs as the outcome of the design
optimization.

In the designer-led group, participants led the design process by
actively testing and evaluating designs using the parameter sliders,
evaluation button, and the charts. They were instructed to conclude
the designs within a time limit of 60 minutes. However, they could
propose to end early when they were satisfied with the design
outcome.

In the optimizer-driven group, participants worked with the op-
timizer in two stages — the design and decision stages — to conclude
three optimal designs. In the design stage, the optimizer would
propose in total forty designs; each required the participant to
complete a formal evaluation by selecting 36 trials in sequence.
After completing each evaluation, the design parameters and the
design performance were displayed to the participant on the charts.
The initial ten designs were randomly sampled by the Bayesian
optimizer for optimization seeding. Completing the forty design
evaluations entered the decision stage, where the participant was
presented with the Pareto optimal designs (e.g., the designs con-
nected by the red line on the objectives chart in Figure 4). They

could test each of the Pareto optimal designs by selecting it. Then,
they concluded the optimization process by selecting three designs
from the Pareto optimal designs. As a result, the number of Pareto
optimal designs could be fewer than three instances, in which case
re-selection was allowed. In other words, if there was only one
Pareto optimal design proposed, the three selected designs would
be the same Pareto optimal design. From our study, the average
number of Pareto optimal designs proposed is 3.3 (sd = 1.5) by the
optimizer across participants.

4.4 Procedure

Figure 5 illustrates the study procedure. After briefing the study,
the experimenter helped the participants wear the VR device, ex-
plained the parameters of the interaction, and allowed them to
adjust the design parameters to observe the interaction behavior so
as to familiarize the participants with the setup. According to the
participant’s experimental condition, the experimenter introduced
the interface and the overall procedure. In design optimization,
the designer-led group was tasked to propose three optimal de-
signs within 60 minutes. The optimizer-driven group was told they
would be working with an optimizer, which could take 60 minutes
or longer depending on the situation.

Once participants concluded their three designs, we again col-
lected the performance data from them on those three designs in
a separate session. Since the participants’ skill on the interaction
may grow over time, this separate session was intended to ensure
equal influence on the three designs’ evaluation. In this session, the
three designs were presented in random order to the participant,
each with a formal evaluation containing 36 trials to acquire their
averaged performance. Participants did not know which design
among the three designs was under evaluation.

4.4.1 Questionnaires. We collected their subjective experience re-
garding the design process with three question sets. The overall
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Figure 3: (a) In the designer-led condition, the designers can adjust the 3D touch interaction’s parameters using parameter
sliders, and initiate a formal evaluation containing 36 trials on the current design with the evaluation button. (b) On comple-
tion of a formal evaluation, the parameters and objectives charts are brought up to show the evaluation results. The latest
evaluation is indicated in dark blue, and the selected evaluation in red.

experience set contained four 7-point Likert scale questions regard-
ing (1) Satisfaction: how much they were satisfied with the final
design, (2) Confidence: how confident they felt the final designs pro-
posed were optimal designs, (3) Agency: how much they felt they
were conducting the design, and (4) Ownership: how much they
felt they owned the final designs. We used the Creativity Support
Index (CSI) [10], a standardized psychometric tool for assessing
the perceived creativity support of a tool. It takes into account
aspects of perceived creativity including exploration, expressive-
ness, results worth effort, enjoyment, immersion, and collaboration.
We also used NASA-TLX [27], a widely used assessment tool that
rates the perceived workload of a task by looking at Mental De-
mand, Physical Demand, Temporal Demand, Performance, Effort,
and Frustration.
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Figure 4: In the optimizer-driven condition, after the 40 for-
mal evaluations, participants were allowed to test the Pareto
optimal designs in the Pareto frontier, indicated in red.

Briefing I:_>e§|gnl Measuring Questionnaires Interview
Optimization performance

Figure 5: Diagram showing the study procedure: Briefing;
Design Optimization where designers conclude three opti-
mal designs; Measuring Performance where design perfor-
mance on the three designs is re-collected on designers;
Questionnaires; and Interview

4.4.2  Semi-structured Interviews. At the end of each experiment,
we conducted a semi-structured interview focusing on experience,
perceived issues, and how the participant values the design pro-
cess and learns about the design space. The interview was audio-
recorded. The procedure took about 2 hours in total per participant.

5 RESULTS
5.1 Quantitative Results

5.1.1 Design Performance. Figure 6a shows the averaged comple-
tion time and spatial error of the three designs concluded by partic-
ipant designers in each group. The average completion times were
1120 ms (sd = 119.4) and 1185 ms (sd = 97.2), and the averaged
spatial errors were 2.2 cm (sd = 1.2) and 1.5 cm (sd = 0.7), in the
designer-led and optimizer-driven groups, respectively. For statisti-
cal analysis, we initially log-transformed the completion time data,
and confirmed the homogeneity of variances was not violated us-
ing Levene’s Test for both transformed completion time and spatial
error data. Then, unpaired t-tests were run on completion time and
spatial error data to investigate if any significant differences exist
between the groups. The analysis reported significant differences
on spatial error (¢(38) = 2.237,p < 0.05) but not on completion
time. This indicates the optimizer-driven method outperformed
the designer-led approach in terms of the accuracy of the designs
generated.

5.1.2  Designer Performance. Notably, designers in the designer-
led group spent 0.6 times less time in design optimization, but
visited 6.7 times more design instances than those in the optimizer-
driven group. The designer-led group participants spent on average
51.8 minutes (sd = 10.0) on the design, compared to 78.0 minutes
(sd = 6.3) in the optimizer-driven group, comprising on average
75.8 and 2.2 minutes respectively in the design and decision stages.

5.1.3 Experience and Workload. Figure 6b displays user ratings
on Satisfaction, Confidence, Agency, and Ownership as well as
the statistical analyses between the two groups. We ran Mann-
Whitney U Test on each scale to investigate if significant differences
exist. The analysis reported differences existed on Agency (¢(38) =
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Figure 6: (a) The averaged completion time and spatial error
of the designs concluded in the designer-led and optimizer-
driven groups. (b) The ratings of general experience on Satis-
faction, Confidence, Agency, and Ownership. The error bars
denote 1 standard deviation. The one-star (x) and two-star
(x*) symbols indicate p < 0.05 and p < 0.001 significant dif-
ferences, respectively.

~5.523, p < 0.001) and Ownership (£(38) = —3.892, p < 0.001), but
not on Satisfaction and Confidence.

Table 2 summarizes the CSI scores and the statistics analysis
between the groups. The Mann-Whitney U Test was applied on the
overall CSI score and each factor comprising the CSL. The analysis
shows a significant difference on the overall CSI score (t(38) =
—2.503, p < 0.05), suggesting that perceived creativity support was
higher in the designer-led group than that in the optimizer-driven
group. Comparing each of the factors, significant differences were
only found on the Expressiveness factor (£(38) = —3.222, p < 0.001).
No differences were found on Exploration, Result Worth Effort,
Immersion, and Collaboration.

The NASA-TLX scores and the statistical analysis between the
groups are summarized in Table 3. The Mann-Whitney U Test was
applied on the overall NASA-TLX score and each factor of the
NASA-TLX. The analysis shows no difference in the overall score.
Looking into each factor, significant differences were found only
on the Mental Demand and Effort (both p < 0.05). No differences
were found for the Physical Demands, Temporal Demands, Per-
formance, and Frustration. We found rationales that suggest the
factor ratings in each group are distinct and worth discussion. In
the following subsection, we will discuss the results and rationales
between groups by factor.
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Figure 7: (a) The number of hypercubes covered for both
optimizer-driven and designer-led methods for m = 2 and
m = 3. (b) The total successive distance for both optimizer-
driven and designer-led processes for the unnormalized case
and the normalized case. The error bars denote 1 standard
deviation. The one-star (x) and two-star () symbols indi-
cate p < 0.001 and p < 0.0001 significant differences, respec-

tively.

5.14  Exploration and Exploitation during Design. In terms of de-
sign exploration, the designer-led group on average visited 271
different designs (sd = 192.4), in which testing contributed on av-
erage 259 designs (sd = 194.5) and formal evaluations contributed
on average 12.5 designs (sd = 5.5). In comparison, the optimizer-
driven group visited only 40 designs selected by the optimizer. We
further assessed how designers explored the design space in both
conditions. To this end, we came up with the metric of finding how
many hypercubes are covered. For our specific application, the total
design space is [0, 1]* and for a given division parameter m, we
divide up the space into m* hypercubes. We assign a hypercube
as being covered if there exists a design parameter set obtained
that lies within the hypercube bounds, lower bounds inclusive and
upper bounds exclusive. We have the upper bound being inclusive
for the special case if the design parameter includes a parameter
having the value of 1. We assessed the hypercube coverage of both
design methods with m = 2 and m = 3, each having 16 and 81
hypercubes respectively in Figure 7a. We see that for both values of
m, the number of hypercubes covered is greater for the optimizer-
driven process as compared to the designer-led method. Figure 8
shows the hypercube coverage for the worst and best performances
from the participants for both optimizer-driven and designer-led
processes for m = 2. The figure illustrates that the worst-case and
best-case coverage for the designer-led process covers less of the

Designer-led | Optimizer-driven | Sig. Designer-led | Optimizer-driven | Sig.
Factor Score | sd Score | sd P Factor Score | sd Score | sd P
Exploration 53.5 | 16.9 | 493 | 125 .149 Mental. 149 | 83 8.4 9.8 .011
Expressiveness | 449 | 23.2 | 23.0 | 18.9 .001 Physical. 31.8 | 215 | 385 | 322 242
Worth Effort. 55.7 229 | 48.6 26.2 .301 Temporal. 12.2 20.6 | 12.6 19.9 242
Enjoyment 44.0 28.1 | 40.8 35.6 678 Performance | 25.1 19.8 | 15.7 12.7 .398
Immersion 21.4 21.0 | 28.2 18.5 .183 Effort 24.9 153 | 13.7 11.7 .040
Collaboration 6.4 102 | 9.3 15.8 718 Frustration | 8.5 12.7 | 10.0 15.8 1.00
CSI 75.3 13.0 | 65.4 12.7 011 NASA-TLX 57.6 244 | 49.6 28.3 758

Table 2: User ratings on Creativity Support Index (CSI).

Table 3: User ratings on workloads (NASA-TLX).
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design space than that of the optimizer-driven process. Further-
more, we conducted an unpaired t-test to assess whether the means
of the two independent conditions are different, and we achieve
a p-value of 0.0001 for m = 2 and 0.0019 for m = 3, both indicat-
ing very statistically significant results. Therefore, this shows that
optimizer-driven process is able to explore more of the design space
consistently as opposed to the designer-led process and hence able
to come up with more diverse design candidates. This helps the
designer in exploring more different candidates which can alleviate
the problems of over-exploitation of a region in the design space.

We also extended the hypercube coverage analysis for various
levels of m for the Pareto-optimal designs achieved by each partici-
pant. For m = 2, the mean hypercube coverage for the designer-led
method is 1.4 (sd = 0.6) and for the optimizer-driven method is 1.5
(sd = 0.5). There is no statistical significance in the difference of
the means through an unpaired t-test through these two groups
(p = 0.3950). For m = 3, the mean hypercube coverage for the
designer-led method is 1.7 (sd = 0.8) and for the optimizer-driven
method is 2.0 (sd = 0.9), with no statistical significance in the differ-
ence of means (p = 0.1766). However, as m increases, the difference
in the means becomes statistically significant as for m = 4, the
mean for the designer-led method is 1.7 (sd = 0.6) whereas it is 2.3
(sd = 0.9) for the optimizer-driven method with p-value of 0.0214,
and for m = 5, the means for the designer-led and optimizer-driven
method are 1.7 (sd = 0.7) and 2.4 (sd = 1.2) respectively with a
p-value of 0.0380. This shows the advantage of changing m as a
coarseness parameter in determining the level of exploration for
different methods of interaction design, as m increases, the hyper-
cubes we considered to be covered become smaller in volume. The
above analysis suggests that the optimizer-driven design may be
better in determining a wider variety of Pareto-optimal designs
with a statistically significant greater coverage of hypercubes as
m increases. However, the region of the Pareto-optimal designs
can also largely depend on the nature of the problem itself. For
instance in our application, certain parameters lead in general to
better accuracy and speed trade-offs, and also variation between
individual performances of different users.

Figure 8: Figure showing the best and worst performance of
hypercube coverage for both the designer-led and optimizer-
driven conditions from the 40 participants. A hypercube is
colored green if it is explored during the optimizer-driven or
designer-led process. (a) and (b) show the worst and best cov-
erage for the designer-led processes and (c) and (d) show the
worst and best coverage for the optimizer-driven processes.

Next, we assessed explicitly how much designers exploit narrow
regions of the design space. We used the metric of the total succes-
sive distance—the sum of the Euclidean distances between succes-
sive design parameters tried for consecutive design iterations—to
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measure this. If a designer is over-exploiting or fixated, the suc-
cessive distance between designs would be small as opposed to a
designer who is exploring many very different design candidates.
More specifically, a designer that would be fixated would focus
on a smaller region of the design space, yielding design instances
that are clustered to each other. This results in a smaller succes-
sive distance between consecutive iterations and hence a smaller
total successive distance. If there was more exploration done on
the design space, then the design instances would be in more dis-
parate regions of the design space, yielding a greater successive
distance between consecutive iterations and hence a greater total
successive distance. In addition, for the designer-led group, there
are cases where the total number of design parameters attempted
is very large (up to 830 iterations for both exploring and testing),
whereas for the optimizer-driven group, the total number is set to
be 40 iterations. To account for the variation in the total number of
design iterations, we also normalized the total successive distance
over the total number of design iterations. This metric would help
eliminate the increase in the total successive distance due to simply
more design iterations attempted.

The results for the successive distances are shown in Figure 7b.
We see that for both normalized and unnormalized successive dis-
tances, the optimizer-driven process has a higher value than the
designer-led method. It is also worth noting that for the designer-
led method, the variance in total unnormalized successive distance
is similar to that of the optimizer-driven method, suggesting that
both methods yield a similar level of exploration with respect to its
mean successive distance. Furthermore, we conducted an unpaired
t-test to assess whether the means of the two independent condi-
tions are different, and we achieve a p-value of < 0.0001 for both
the unnormalized and normalized total successive distances, both
indicating statistical significance. This shows that the optimizer-
driven process leads to less fixation on a specific design region and
with greater variation in terms of design exploration due to the
greater discrepancy in the designs generated in consecutive itera-
tions. Therefore, this indicates that the optimizer-driven process
is a useful tool for designers in order to cover more diverse design
instances.

5.2 Qualitative Results

5.2.1 Exploration. 18 out of 20 participants in the designer-led
group stated the tool as intuitive, calling it “straightforward” (P3,
P7, P14) and “easy to learn” (P2, P5, P17). Six designers stated the
tool allowed them to be efficient at exploration (P3: “testing a design
allowed me to gain some idea about the design before going into full
evaluation”) especially “when you want to quickly test alternatives
around a design” (P7). However, six participants reported some sort
of anchoring bias, stating “I invested most of the time in fine-tuning.”
(P3, P5), and that they were aware that “many [alternatives] were
left unvisited”. P12 stated being stuck: “I think I can push further the
[completion] time, but I can’t find how”. P14 expressed dissatisfac-
tion but was also resistant to re-initiate the search, saying “I may
start over with any different design, but that would be another long
investment”. Designers in the optimizer-driven group perceived the
exploration differently. Four participants stated it was interesting
to watch “what designs the AI will bring up to me” (P22, P24, P34,
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P38). P21 mentioned “it was obvious to me there were many different
designs” and stated he got to know the design space and estab-
lished what constituted smooth interactions in the process. These
comments were echoed by P27 who commented: “experiencing bad
and good designs is helpful in gauging how parameters gave good
interaction.”

5.2.2  Explainability and Reflection. Most participants stated the
optimizer generally led them to better designs over time. However,
there were those moments they would become confused when “the
new proposal suddenly appeared to be worse” (P30). P24 mentioned
“I thought I was doing good with the AL but then it seemed to steer
into a very different design direction”. Some blamed the confusion
on the Al side, thinking it was “broken”, and “got lost”. Others
attributed the confusion to themselves, saying “I wondered if it
was my [bad] performance that caused the Al to bring the design”
(P22). Ten participants stated they looked to have some form of
explanation from the AL In most cases, participants realized the
optimizer steered them back on good-performance designs and
could regain their satisfaction with the AL Otherwise, two designers
who ranked low satisfaction and confidence, commented “the AI
was limited” (P22, P34).

5.2.3 Agency and Expressiveness . In contrast to the designer-led
group, the designers in the optimizer-driven group generally ex-
pressed low agency and low expressiveness. Six designers stated
they wanted to have some form of agency and express their ideas
to the optimizer, especially when they disagreed with designs of-
fered by it. For instance, P24 mentioned, “I knew what I wanted. I
wanted the gap [value] to be reduced, but the Al didn’t give me that
design”. He suggested a feature of recommending the direction of
adjustment, taking the gap as an example. Also, P32 suggested a
feature for inputting preference on the design to Al, saying: “I wish
I can just tell the AII don’t like it [the design]”. P33 wanted to skip
evaluations where he thought “trying out [in an evaluation] on a
design that I knew wouldn’t work is a waste of time.”

5.2.4  Ownership and Adaptability . The optimizer-driven group
received on average low ownership about the design outcome. How-
ever, participants reported mixed opinions, reflecting the relatively
high variance in the ratings. Six participants attributed low own-
ership to low enjoyment, calling it “felt like working for the Al on
those trials.” (P22), “bored”, and “not intellectual work”. In addition,
P28 commented on no sense of adaptation, stating “the outcome
seemed not to reflect who I am”, thinking others would also get the
same design. Since the optimization algorithm leads the design, P30
stated, “the Al takes the responsibility of the design outcome”. Four
designers who gave high ratings commented about the concept of
relatedness. For instance, P24 stated “I realized the Al was adapting
design for me when I found the design is getting useful with increasing
performance, that I felt I am part of the design”. P35 mentioned the
sense of relatedness saying “the Al was watching closely on those
designs I performed well, and providing designs related, and it felt
related to me”. P38 attributed the ownership to the effort invested,
“the Al cannot go on designing without me working out those trials”.

5.2.5 Enjoyment and Engagement. The rationales that suggest en-
joyment are distinct between groups. In the designer-led group,
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participants enjoyed advancing the design outcome with their ac-
tive exploration, saying “it resembles gaming” (P12), and in par-
ticular, “seeing my adjustment result in progress is stimulating and
helping me engage” (P11). P4 said “although it’s simple and repet-
itive, I don’t get bored on iterating.” By contrast, designers in the
optimizer-driven group attributed their enjoyment to curiosity and
unexpectedness. Three participants stated, “an interesting way to
learn design possibilities” (P29) and, “fun to feel like working with the
AI” (P26). Four participants stated being suspicious, for instance
saying “I was doubting it would work out” (P22) but then felt ex-
citement when seeing progress. Three said “you don’t know what’s
coming up next until you get to try it” (P23, P28), so “each time got
me something to expect” (P38). P33 stated “adapting myself to a new
design is the fun part and sometimes challenging”. However, the
enjoyment seemed to not last long; most participants mentioned
the enjoyment reduced in later half rounds owing to long design
time.

5.2.6  Effort and Responsibility. The designer-led group perceived
higher mental demands and effort invested than the optimizer-
driven group. Four designers attributed the effort to “the need to
figure out how each parameter works” (P3), and “trying to further
increase the performance” (P14). Three participants stated it is chal-
lenging to handle two objectives, such that P18 commented “in
fine-tuning, I tended to work on reducing completion time more than
spatial errors.” In the optimizer-driven group, participants reported
mental effort was little. P22 stated “I feel relaxed as the Al is doing
the design part”. 18 out of 20 participants ran overtime (more than
60 minutes). However, most reported little pressure of time. P24
mentioned “it was overtime but I didn’t feel it took that long”. Two
participants stated they did not feel responsible for the design out-
come, saying “the Al took the lead and should take the responsibility”
(P32, P34).

6 DISCUSSION

Our experimental results expose previously unreported trade-offs
when using human-in-the-loop optimization to design interac-
tion techniques. Differences found between the designer-led and
optimizer-driven conditions are summarized in Table 4. The results
demonstrate that Bayesian optimization enables designers to ex-
plore the design space more broadly. In our study, optimizer-driven
designers had around 1.5 times more extensive coverage when mea-
sured as hypercube coverage than when designers explore on their
own. The optimizer-driven group also ended up with somewhat
better designs. Their final designs better accounted for the balance
of the two objectives with less effort, while designers without opti-
mization assistance focused more on selection speed at the expense
of accuracy. However, on the negative side, optimizer-driven de-
signers reported lower expressiveness and agency as well as lower
ownership of the design outcomes. The low expressiveness and low
agency are likely attributed to the fact that designers are ‘dictated
to’ by the optimizer resulting in a reduced sense of creativity. How-
ever, an observed benefit of this "hand-holding’ is that designers
felt less effort: some attributed this to being more relaxed, while
others felt less time pressure and less stress related to the design
outcomes.
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Table 4: Summary of differences found between designer-led
and optimizer-driven conditions.

Factor Designer-led Optimizer-driven

Completion Time Equal Equal
Spatial Error Worse Better
Agency Better Worse
Ownership Better Worse
Exploration Equal Equal
Expressiveness Better Worse
Creativity Support Better Worse

Mental Demands ~ Worse (High) Better (Low)

Effort Worse (High) Better (Low)

6.1 Four Challenges to Improve
Human-in-the-loop Optimization

The results inform the development of better methods for human-

in-the-loop optimization, which in our view must converge proper

interaction techniques with commensurate developments on the
algorithmic side.

Challenge 1: Steering the optimizer with partial ideas. Our results
suggest that Bayesian optimization is effective when exploring a
vast design space. A previous study on a system called Vinci, which
used generative models to propose design suggestions interactively
[24], reported that designers felt a lack of diversity in important de-
sign dimensions. However, our participants felt that loss of agency
and expressiveness when being led by the Bayesian optimizer. We
see this as an opportunity to develop interaction techniques that
allow steering Bayesian optimization.

A key aspect of this challenge is to enable designers to express
partial (vague) ideas that the optimizer could explore for them. In
our study, designers commented that once they had constructed an
internal model of the requirements for a ‘good’ interaction design,
they wanted to be able to express these ideas to the optimizer. This
was mostly strongly felt when they found themselves disagreeing
with subsequent designs offered by optimizer. Reflecting on this
feedback, interaction techniques are needed that allow users to
express priorities in design dimensions, or directions where to
look at next. However, such developments need commensurate
developments in how the Bayesian optimization works, especially
in the acquisition function.

Challenge 2: Mixed-initiative interaction. Another direction to
improve interactivity is to push the optimizer to the background,
making its suggestions recommendations and not dictations as in
our study. In a mixed-initiative fashion, it could make suggestions
when it sees a significant opportunity. For instance, the Bayesian
optimizer could patiently construct a surrogate model of the design
space in the background using only the evaluations the designers
have encountered in the design process. If the optimizer observes
that the designer is spending excess time examining a well-explored
region of the design space, the optimizer can suggest alternative
design candidates in less well-explored regions. This assistance
could also be initiated by designers, for example by pressing a
button to request a recommendation from the optimizer when they
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are stuck for ideas on how to improve the current design. Further,
distinct support for exploitation and exploration could be offered
for triggering recommendations that respectively aim for local
improvements in regions of design space known to be promising or
that aim to obtain new insight about unvisited or uncertain regions
of the design space.

Challenge 3: Improving transparency. Our designers expressed
wanting the optimizer to be more transparent about the proposals.
This finding is consistent with general observations within related
research areas such as Interactive Machine Learning [16] and Ex-
plainable AI [23]. User feedback indicated that designers expect
monotonicity during the design process, meaning that designers
expect that each new design proposed by the optimizer yields some
improvement over the previous iteration. Confusion occurs when
they experience the optimizer presenting designs that are then
found to perform worse than preceding designs. This confusion
in part stems from the users’ lack of knowledge about the inner
workings of Bayesian optimization. It iteratively refines a surrogate
model and leverages an acquisition function to drive the proposition
of new points to test, in an exploration and exploitation trade-off.
Exploitation seeks to sample where the surrogate model predicts a
good objective while exploration samples where the uncertainty
is high. Transparency of the method could be improved simply by
communicating in which mode it is currently operating so that
designers then know they are assisting the optimizer in evaluating
uncertain territory where high risk or opportunity is presumed.

Challenge 4: Supporting exploration/exploitation decisions. Our
data suggests that user engagement comes from two sources: first,
in exploitation where incremental improvement in performance
can be expected, and second, in exploration where a fresh unfamil-
iar design attracts user attention. Human-in-the-loop optimization
should help designers take these perspectives when needed. A re-
cent study [60] has explored this concept by allowing users to
control sampling behavior in Bayesian optimization determined
by acquisition functions so as to adjust the balance between explo-
ration and exploitation. Furthermore, the participants commented
that the exploitation process resembled computer games. In the
optimizer-driven condition users linked unexpectedness to enjoy-
ment. This observation suggests that it may be fruitful to encourage
periodic switching between exploitation and exploration in order
to improve engagement under both designer-led and optimization-
driven strategies. Such a control may be optionally applied to the
Bayesian optimizer by simply assigning a minimum and maximum
number of iterations spent in each of the exploitation or exploration
modes before mode switching occurs.

6.2 Limitations and Future Work

Our findings are drawn from an empirical study on 3D touch in-
teraction, of which the two objectives for optimization are clearly
observable for human designers. Other types of interaction tech-
niques that are not as perceivable to human designers may lead to
different techniques to improve the optimization process, which
calls for more experimentation. In addition, the results of the empir-
ical study are potentially subject to interpersonal differences due



Investigating Human-in-the-Loop Optimization for Designing Interaction Techniques

to the between-subjects protocol used. More experimentation is
needed to validate reliability of the differences reported.

7 CONCLUSION

This paper has reported novel observations from a comparative
study where two groups of novice designers, one optimized-led and
the other self-led, completed a realistic interaction design optimiza-
tion task. Our main finding is that optimization-led design can help
novices identify better designs, but at the expense of agency and
expressiveness. When led by an optimizer, designers report lower
mental effort but also feel less creative and less in charge of what
happens. The results have a practical implication: designers who
know a design domain poorly can benefit from Bayesian optimiza-
tion when optimizing a design. However, more effort is needed to
make optimization methods truly interactive, in particular in such
ways that can help designers without compromising their agency
over the process. We have proposed several ideas to this end in the
previous discussion section.

8 OPEN SCIENCE

The Bayesian optimizer and the collected (anonymized) data are
released on our project page: https://userinterfaces.aalto.fi/dit. In-
structions for the prototype studied in the empirical part will be
released, including the installation instructions and the computer
program.
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