Communication Dans Un Congrès Année : 2000

Genetic Programming and Domain Knowledge: Beyond the limitations of grammar-guided Machine Discovery

Alain Ratle
  • Fonction : Auteur
  • PersonId : 832234
Michèle Sebag

Résumé

Application of Genetic Programming to the discovery of empirical laws is often impaired by the huge size of the domains involved. In physical applications, dimensional analysis is a powerful way to trim out the size of these spaces This paper presents a way of enforcing dimensional constraints through formal grammars in the GP framework. As one major limitation for grammar-guided GP comes from the initialization procedure (how to find admissible and sufficiently diverse trees with a limited depth), an initialization procedure based on dynamic grammar pruning is proposed. The approach is validated on the problem of identification of a materials response to a mechanical test.

Fichier principal
Vignette du fichier
Ratle-Sebag2000.pdf (275.45 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-00116116 , version 1 (20-08-2021)

Licence

Identifiants

Citer

Alain Ratle, Michèle Sebag. Genetic Programming and Domain Knowledge: Beyond the limitations of grammar-guided Machine Discovery. International Conference on Parallel Problem Solving from Nature, 2000, Paris, France. pp.211-220, ⟨10.1007/3-540-45356-3_21⟩. ⟨hal-00116116⟩
118 Consultations
244 Téléchargements

Altmetric

Partager

  • More