

Pay quickly with Google Pay™

• What is Google Pay™?

Google Pay™ is a digital wallet and online payment system developed by Google.

• Advantages

Transactions using Google Pay™ as a payment method are typically fast and require

minimal manual data entry.

Google Pay™ uses multiple layers of security, including tokenization, biometric

authentication, and encryption, to protect your payment information. This makes it a

secure way to pay for shoppers.

Merchants can tap into a network of millions of Google users.

Easily connecting Google Pay to the merchant's website or mobile app.

• How it works

 1 2

 Pressing Google Pay Button Get the payment data

 3

 Receive the payment data

 4

 Send the encrypted payment data

 6 5

 Display the status of payment Receive the status of payment

MERCHANT GOOGLE PAY

CLIENT ACQUIRER

1.

a. The consumer chooses the service or goods at the merchant’s website or application.

b. The consumer chooses Google Pay™ button for pay.

c. After pressing the button, the form for choosing a card will appear on a device with

Google Pay™.

2. Merchant uses Google Pay API to get the payment data.

3. Merchant receives the payment data from Google.

4.
a. Merchant sends the encrypted payment data in the request, specified with acquirer

fields to UNIBANK TXPG acquiring service.

b. UNIBANK TXPG decrypts the data, charges the amount from the client's card.
5. Merchant receives the status of payment from UNIBANK TXPG.

6. Merchant displays the status of payment to consumer.

Direct Integration

Before you can start using the Google Pay API you should meet the following requirements

shown in documentations below:

General

o Google Pay for Payments

o Google Pay Terms of Service

o Google Pay and Wallet Console

o Google Pay Acceptable Use Policy

Web

o Google Pay Documentation for Website

o Google Pay branding guidelines for Website
o Google Pay Tutorial for Website

o Google Pay integration checklist for Website

 Android

o Google Pay Documentation for Android

o Google Pay branding guidelines for Android

o Google Pay Tutorial for Android

o Google Pay integration checklist for Android

https://developers.google.com/pay/api/android/guides/setup
https://developers.google.com/pay/api/
https://developers.google.com/pay/api/
https://payments.developers.google.com/terms/sellertos
https://payments.developers.google.com/terms/sellertos
https://pay.google.com/business/console/
https://payments.developers.google.com/terms/aup
https://developers.google.com/pay/api/web/overview
https://developers.google.com/pay/api/web/overview
https://developers.google.com/pay/api/web/guides/brand-guidelines
https://developers.google.com/pay/api/web/guides/tutorial
https://developers.google.com/pay/api/web/guides/tutorial
https://developers.google.com/pay/api/web/guides/test-and-deploy/integration-checklist
https://developers.google.com/pay/api/web/guides/test-and-deploy/integration-checklist
https://developers.google.com/pay/api/android/overview
https://developers.google.com/pay/api/android/overview
https://developers.google.com/pay/api/android/guides/brand-guidelines
https://developers.google.com/pay/api/android/guides/tutorial
https://developers.google.com/pay/api/android/guides/test-and-deploy/integration-checklist

Perform the following steps to get started with the Google Pay API shown in detail by the link of

Google Pay Overview Documentations

 for Web: Google Pay Documentation for Website

for Android: Google Pay Documentation for Android

1. Review and adhere to Google Pay API Google Pay Terms of Service and Google Pay Acceptable

Use Policy

2. Review and adhere to Google Pay Google Pay branding guidelines for Website or Google Pay

branding guidelines for Android

3. Complete the Google Pay Tutorial for Website or Google Pay Tutorial for Android and Google Pay

integration checklist for Website or Google Pay integration checklist for Android

4. Request production access web or request production access android to the Google Pay API via

the Google Pay and Wallet Console

5. Enter a Business Profile to identify your business with Google. You can enter information

such as a business logo, name, support phone numbers or websites.

6. Add your integration type.

7. Upload screenshots of your payment flow as proof you have followed the brand

guidelines.

8. Once approved Google Pay will assign you a merchantId, which will be displayed under

your account's Public merchant profile setting.

https://developers.google.com/pay/api/web/overview
https://developers.google.com/pay/api/web/overview
https://developers.google.com/pay/api/android/overview
https://payments.developers.google.com/terms/sellertos
https://payments.developers.google.com/terms/aup
https://payments.developers.google.com/terms/aup
https://developers.google.com/pay/api/web/guides/brand-guidelines
https://developers.google.com/pay/api/android/guides/brand-guidelines
https://developers.google.com/pay/api/android/guides/brand-guidelines
https://developers.google.com/pay/api/web/guides/tutorial
https://developers.google.com/pay/api/android/guides/tutorial
https://developers.google.com/pay/api/web/guides/test-and-deploy/integration-checklist
https://developers.google.com/pay/api/web/guides/test-and-deploy/integration-checklist
https://developers.google.com/pay/api/android/guides/test-and-deploy/integration-checklist
https://developers.google.com/pay/api/web/guides/test-and-deploy/request-prod-access
https://developers.google.com/pay/api/android/guides/test-and-deploy/request-prod-access
https://pay.google.com/business/console/

Use Google Pay API to get payment data. Example code for displaying a button.

const baseRequest = {
 apiVersion: 2,
 apiVersionMinor: 0
};

const allowedCardNetworks = ["MASTERCARD", "VISA"];

const allowedCardAuthMethods = ["PAN_ONLY", "CRYPTOGRAM_3DS"];

const tokenizationSpecification = {
 type: 'PAYMENT_GATEWAY',
 parameters: {
 'gateway': 'unibankcheckout',
 'gatewayMerchantId': your_merchant_id'
 }
};

const baseCardPaymentMethod = {
 type: 'CARD',
 parameters: {
 allowedAuthMethods: allowedCardAuthMethods,
 allowedCardNetworks: allowedCardNetworks
 }
};

const cardPaymentMethod = Object.assign(
 {},
 baseCardPaymentMethod,
 {
 tokenizationSpecification: tokenizationSpecification
 }
);

let paymentsClient = null;

function getGoogleIsReadyToPayRequest() {
 return Object.assign(
 {},
 baseRequest,
 {
 allowedPaymentMethods: [baseCardPaymentMethod]
 }
);
}

function getGooglePaymentDataRequest() {
 const paymentDataRequest = Object.assign({}, baseRequest);
 paymentDataRequest.allowedPaymentMethods = [cardPaymentMethod];
 paymentDataRequest.transactionInfo = getGoogleTransactionInfo();
 paymentDataRequest.merchantInfo = {
 merchantId: '12345678901234567890',
 merchantName: 'Example Merchant'
 };
 return paymentDataRequest;
}

function getGooglePaymentsClient() {
 if (paymentsClient === null) {
 paymentsClient = new google.payments.api.PaymentsClient({environment: 'PRODUCTION'});
 }
 return paymentsClient;
}

function onGooglePayLoaded() {
 const paymentsClient = getGooglePaymentsClient();
 paymentsClient.isReadyToPay(getGoogleIsReadyToPayRequest())
 .then(function(response) {
 if (response.result) {
 addGooglePayButton();
 }
 })
 .catch(function(err) {

https://developers.google.com/pay/api/android/guides/setup

 console.error(err);
 });
}

function addGooglePayButton() {
 const paymentsClient = getGooglePaymentsClient();
 const button = paymentsClient.createButton({onClick: onGooglePaymentButtonClicked});
 document.getElementById('container').appendChild(button);
}

function getGoogleTransactionInfo() {
 return {
 countryCode: 'US',
 currencyCode: 'USD',
 totalPriceStatus: 'FINAL',
 // set to cart total
 totalPrice: '1.00'
 };
}

function prefetchGooglePaymentData() {
 const paymentDataRequest = getGooglePaymentDataRequest();
 paymentDataRequest.transactionInfo = {
 totalPriceStatus: 'NOT_CURRENTLY_KNOWN',
 currencyCode: 'USD'
 };
 const paymentsClient = getGooglePaymentsClient();
 paymentsClient.prefetchPaymentData(paymentDataRequest);
}

function onGooglePaymentButtonClicked() {
 const paymentDataRequest = getGooglePaymentDataRequest();
 paymentDataRequest.transactionInfo = getGoogleTransactionInfo();

 const paymentsClient = getGooglePaymentsClient();
 paymentsClient.loadPaymentData(paymentDataRequest)
 .then(function(paymentData) {
 processPayment(paymentData);
 })
 .catch(function(err) {
 console.error(err);
 });
}

allowedAuthMethods - Unibank can process both PAN_ONLY and CRYPTOGRAM_3DS authentication

methods.

allowedCardNetworks - specify the card networks that you wish to allow. If the customer has cards in

their wallet that are not in the 'allowed' list then those cards will be greyed-out/disabled in their wallet.

merchantId- found in the Google Pay Business Console under your account's Public merchant profile

setting. Please note that this is only required in Google Pay's production environment; while testing, this

field can be set to a dummy value or omitted.

gateway - a unique property that identifies Unibank as the processor; all encryption keys are associated

with this ID. This field must be set to: unibankcheckout

gatewayMerchantId - a property that uniquely identifies the merchant. For Unibank merchants this field

must be set to the specified ID given to you by your Unibank manager.

 Merchant and Acquirer connection details

 1

 Create Order Request

 3 2

 Pressing Google Pay Button Send Response for Order

 4

 Send the empty GooglePayBlock

 5, 6 7

 Agree and Select the card Send the order data

 8

 Pass the payment

 9

 Send Set Source token with the filled GooglePayBlock and receive response

 10

 Send Execute Transaction Action

 12 11

 Display the status of payment Receive the status of Payment

MERCHANT GOOGLE PAY

ACQUIRER CLIENT

1. The merchant creates an order by sending a request for the Create Order action to

TXPG.

Method: POST

URL: https://uni-gw-txpg-tst.unibank.lan:8000/order

Header Authorization Basic:

-JSON-

'auth': {

 userName: 'TerminalSys/vendorpay’,

 password: '1234',

 }

Content-Type: application/json

Body:

-JSON-

 "order": {

 "typeRid": "vendorPay",

 "amount": "10.00",

 "currency": "AZN",

 "description": "vendorPay»",

 "language": "az"

 }

Take into: In production environment will be the different credentials and different

value for URL.

URL: https://uni-gw-txpg.unibank.lan:8000/order

2. TXPG creates an order and sends a response to the merchant containing the order ID

and other data.

-JSON-

{

 "order": {

 "id": 1234,

 "hppUrl": "https://checkout.tst.unibank.az/flex",

 "password": "p2smxvblf5rl",

 "accessToken": "val-k4pfBYJj0nE1ZOfgDifY7ER77xLrKLcBKMelGZkCnLA",

 "status": "Preparing",

 "cvv2AuthStatus": "Required",

 "secret": "747409"

 }

}

Take into: In production environment will be the different value for hppUrl.

 "hppUrl": "https://checkout.unibank.az/flex"

3. The consumer decides to pay for the order using the Google Pay service by selecting the

respective payment method.

4. The merchant sends a request for the Set Source Token action with the empty

GooglePayBlock parameter to TXPG.

5. Once the response from TXPG is received, the order data is displayed in the consumer

browser, on the web site of the online store and the consumer is requested to confirm

the financial order parameters. The consumer agrees to pay.

6. The dialog box of the Google Pay service is displayed to the consumer to sign into the

Google account and select the card and shipping address.

Please take into account that billing address is not available for our merchants.

7. The merchant sends a request with the order data and selected card to Google Pay.

8. When interacting in the Gateway mode, the Google Pay server encrypts the payment

token with the public key and passes it to the merchant. In the Direct mode Google Pay

encrypts the payment token with the public key received from the merchant and then

passes the payment token to the merchant.

9. The merchant sends the payment data to TXPG in the request for the Set Source Token

action, in the GooglePayBlock parameter. TXPG decrypts the payment data using a

private key. The authentication policy analyzes the available order data, and, as a result,

it may be required to perform 3-D Secure authentication by the 3DS v2.x protocol.

a. In the Direct mode the payment token is decrypted on the merchant server using

the private key stored at the merchant. The decrypted payment data is passed

from the merchant to TXPG BES in the request for the Set Source Token action,

in the PanBlock parameter.

b. When working with Google Pay in the Direct mode, the merchant server should

be in compliance with the PCI DSS requirements.

10. After the response from TXPG is received, the merchant sends a request for the Execute

Order Transaction action to TXPG to authorize the financial transaction via the

transaction interface to the PMO.

11. Depending on the financial transaction result, TXPG assigns the respective status to the

order - Fully paid / Transaction declined.

12. The order information is displayed to the consumer on the web site of the online store

or in the mobile application.

Abbreviations

TXPG - TranzWare/TranzAxis e-Commerce Payment Gateway (Acquirer Service)

3DS - 3-D Secure

API - Application Programming

MCC - Merchant Category Code

typeRid - transaction order by type (static)

amount - amount value

currency - currency short name

language - order language

description - order description

rid - unique transaction id on merchant side (optional)

allowedAuthMethods - Unibank can process both PAN_ONLY and CRYPTOGRAM_3DS authentication

methods.

allowedCardNetworks - specify the card networks that you wish to allow. If the customer has cards in

their wallet that are not in the 'allowed' list then those cards will be greyed-out/disabled in their wallet.

merchantId- found in the Google Pay Business Console under your account's Public merchant profile

setting. Please note that this is only required in Google Pay's production environment; while testing, this

field can be set to a dummy value or omitted.

gateway - a unique property that identifies Unibank as the processor; all encryption keys are associated

with this ID. This field must be set to: unibankcheckout

gatewayMerchantId - a property that uniquely identifies the merchant. For Unibank merchants this field

must be set to the specified ID given to you by your Unibank manager.

2023

