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Sparse autoencoders (SAEs) are an unsupervised method for learning a sparse decomposition of a
neural network’s latent representations into seemingly interpretable features. Despite recent excitement
about their potential, research applications outside of industry are limited by the high cost of training a
comprehensive suite of SAEs. In this work, we introduce Gemma Scope, an open suite of JumpReLU
SAEs trained on all layers and sub-layers of Gemma 2 2B and 9B and select layers of Gemma 2 27B
base models. We primarily train SAEs on the Gemma 2 pre-trained models, but additionally release
SAEs trained on instruction-tuned Gemma 2 9B for comparison. We evaluate the quality of each SAE
on standard metrics and release these results. We hope that by releasing these SAE weights, we can
help make more ambitious safety and interpretability research easier for the community. Weights and
a tutorial can be found at https://huggingface.co/google/gemma-scope and an interactive demo
can be found at https://neuronpedia.org/gemma-scope.

1. Introduction

These are several lines of evidence that suggest
that a significant fraction of the internal acti-
vations of language models are sparse, linear
combination of vectors, each corresponding to
meaningful features (Elhage et al., 2022; Gurnee
et al., 2023; Mikolov et al., 2013; Nanda et al.,
2023a; Olah et al., 2020; Park et al., 2023). But
by default, it is difficult to identify which vec-
tors are meaningful, or which meaningful vectors
are present. Sparse autoencoders are a promis-
ing unsupervised approach to do this, and have
been shown to often find causally relevant, in-
terpretable directions (Bricken et al., 2023; Cun-
ningham et al., 2023; Gao et al., 2024; Marks
et al., 2024; Templeton et al., 2024). If this ap-
proach succeeds it could help unlock many of the
hoped for applications of interpretability (Hub-
inger, 2022; Nanda, 2022; Olah, 2021), such as
detecting and fixing hallucinations, being able
to reliably explain and debug unexpected model
behaviour and preventing deception or manipu-
lation from autonomous AI agents.

However, sparse autoencoders are still an im-
mature technique, and there are many open prob-
lems to be resolved (Templeton et al., 2024) be-
fore these downstream uses can be unlocked –

especially validating or red-teaming SAEs as an
approach, learning how to measure their perfor-
mance, learning how to train SAEs at scale effi-
ciently and well, and exploring how SAEs can be
productively applied to real-world tasks.

As a result, there is an urgent need for further
research, both in industry and in the broader com-
munity. However, unlike previous interpretability
techniques like steering vectors (Li et al., 2023;
Turner et al., 2024) or probing (Belinkov, 2022),
sparse autoencoders can be highly expensive and
difficult to train, limiting the ambition of inter-
pretability research. Though there has been a lot
of excellent work with sparse autoencoders on
smaller models (Bricken et al., 2023; Cunning-
ham et al., 2023; Dunefsky et al., 2024; Marks
et al., 2024), the works that use SAEs on more
modernmodels have normally focused on residual
stream SAEs at a single layer (Engels et al., 2024;
Gao et al., 2024; Templeton et al., 2024). In addi-
tion, many of these (Gao et al., 2024; Templeton
et al., 2024) have been trained on proprietary
models which makes it more challenging for the
community at large to build on this work.

To address this we have trained and released
the weights of Gemma Scope: a comprehensive,
open suite of JumpReLU SAEs (Rajamanoharan
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et al., 2024b) on every layer and sublayer of
Gemma 2 9B and 2B (Gemma Team, 2024b),1 as
well select layers of the larger 27B model in this
series. We release these weights under a permis-
sive CC-BY-4.0 license2 on HuggingFace to enable
and accelerate research by other members of the
research community.

Gemma Scope was a significant engineering
challenge to train. It contains more than 400
sparse autoencoders in the main release3, with
more than 30 million learned features in total
(though many features likely overlap), trained
on 4-16B tokens of text each. We used over 20%
of the training compute of GPT-3 (Brown et al.,
2020), saved about 20 Pebibytes (PiB) of activa-
tions to disk, and produced hundreds of billions of
sparse autoencoder parameters in total. This was
made more challenging by our decision to make
a comprehensive suite of SAEs, on every layer and
sublayer. We believe that a comprehensive suite
is essential for enabling more ambitious applica-
tions of interpretability, such as circuit analysis
(Conmy et al., 2023; Hanna et al., 2023; Wang
et al., 2022), essentially scaling up Marks et al.
(2024) to larger models, which may be necessary
to answer mysteries about larger models like what
happens during chain of thought or in-context
learning.

In Section 2 we provide background on SAEs
in general and JumpReLU SAEs in particular. Sec-
tion 3 contains details of our training procedure,
hyperparameters and computational infrastruc-
ture. We run extensive evaluations on the trained
SAEs in Section 4 and a list of open problems that
Gemma Scope could help tackle in Section 5.

1We also release one suite of transcoders (Dunefsky et al.
(2024); Appendix B), a ‘feature-splitting’ suite of SAEs with
multiple widths trained on the same site (Section 4.3), and
some SAEs trained on the Gemma 2 9B IT model (Kissane
et al. (2024b); Section 4.5).

2Note that the Gemma 2 models are released under a
different, custom license.

3For each model, layer and site we in fact release mul-
tiple SAEs with differing levels of sparsity; taking this into
account, we release the weights of over 2,000 SAEs in total.

2. Preliminaries

2.1. Sparse autoencoders

Given activations x ∈ ℝ𝑛 from a language model,
a sparse autoencoder (SAE) decomposes and re-
constructs the activations using a pair of encoder
and decoder functions (f, x̂) defined by:

f (x) := 𝜎 (Wencx + benc) , (1)
x̂(f) := Wdecf + bdec. (2)

These functions are trained tomap x̂(f (x)) back to
x, making them an autoencoder. Thus, f (x) ∈ ℝ𝑀

is a set of linear weights that specify how to com-
bine the 𝑀 ≫ 𝑛 columns of Wdec to reproduce
x. The columns of Wdec, which we denote by d𝑖

for 𝑖 = 1 . . . 𝑀, represent the dictionary of direc-
tions into which the SAE decomposes x. We will
refer to to these learned directions as latents to
disambiguate between learnt ‘features’ and the
conceptual features which are hypothesized to
comprise the language model’s representation
vectors.4

The decomposition f (x) is made non-negative
and sparse through the choice of activation func-
tion 𝜎 and appropriate regularization, such that
f (x) typically has much fewer than 𝑛 non-zero
entries. Initial work (Bricken et al., 2023; Cun-
ningham et al., 2023) used a ReLU activation
function to enforce non-negativity, and an L1
penalty on the decomposition f (x) to encourage
sparsity. TopK SAEs (Gao et al., 2024) enforce
sparsity by zeroing all but the top K entries of
f (x), whereas the JumpReLU SAEs (Rajamanoha-
ran et al., 2024b) enforce sparsity by zeroing out
all entries of f (x) below a positive threshold. Both
TopK and JumpReLU SAEs allow for greater sep-
aration between the tasks of determining which
latents are active, and estimating their magni-
tudes.

2.2. JumpReLU SAEs

In this work we focus on JumpReLU SAEs as they
have been shown to be a slight Pareto improve-

4This is different terminology from earlier work (Bricken
et al., 2023; Rajamanoharan et al., 2024a,b), where feature
is normally used interchangeably for both SAE latents and
the language models features
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ment over other approaches, and allow for a vari-
able number of active latents at different tokens
(unlike TopK SAEs).

JumpReLU activation The JumpReLU activa-
tion is a shifted Heaviside step function as a gating
mechanism together with a conventional ReLU:

𝜎(z) = JumpReLU𝜽(z) := z ⊙ 𝐻 (z − 𝜽). (3)

Here, 𝜽 > 0 is the JumpReLU’s vector-valued
learnable threshold parameter, ⊙ denotes elemen-
twise multiplication, and 𝐻 is the Heaviside step
function, which is 1 if its input is positive and 0
otherwise. Intuitively, the JumpReLU leaves the
pre-activations unchanged above the threshold,
but sets them to zero below the threshold, with a
different learned threshold per latent.

Loss function As loss function we use a squared
error reconstruction loss, and directly regularize
the number of active (non-zero) latents using the
L0 penalty:

L := ∥x − x̂(f (x))∥22 + 𝜆∥f (x)∥0, (4)

where 𝜆 is the sparsity penalty coefficient. Since
the L0 penalty and JumpReLU activation function
are piecewise constant with respect to threshold
parameters 𝜽, we use straight-through estimators
(STEs) to train 𝜽, using the approach described in
Rajamanoharan et al. (2024b). This introduces
an additional hyperparameter, the kernel den-
sity estimator bandwidth 𝜀, which controls the
quality of the gradient estimates use to train the
threshold parameters 𝜽.5

3. Training details

3.1. Data

We train SAEs on the activations of Gemma 2mod-
els generated using text data from the same distri-

5A large value of 𝜀 results in biased but low variance es-
timates, leading to SAEs with good sparsity but sub-optimal
fidelity, whereas a low value of 𝜀 results in high variance
estimates that cause the threshold to fail to train at all,
resulting in SAEs that fail to be sparse. We find through
hyperparameter sweeps across multiple layers and sites that
𝜀 = 0.001 provides a good trade-off (when SAE inputs are
normalized to have a unit mean squared norm) and use this
to train the SAEs released as part of Gemma Scope.

bution as the pretraining text data for Gemma 1
(Gemma Team, 2024a), except for the one suite of
SAEs trained on the instruction-tuned (IT) model
(Section 4.5).

For a given sequence we only collect activa-
tions from tokens which are neither BOS, EOS,
nor padding. After activations have been gener-
ated, they are shuffled in buckets of about 106
activations. We speculate that a perfect shuffle
would not significantly improve results, but this
was not systematically checked. We would wel-
come further investigation into this topic in future
work.

During training, activation vectors are normal-
ized by a fixed scalar to have unit mean squared
norm.6 This allows more reliable transfer of hy-
perparameters (in particular the sparsity coeffi-
cient 𝜆 and bandwidth 𝜀) between layers and
sites, as the raw activation norms can vary over
multiple orders of magnitude, changing the scale
of the reconstruction loss in Eq. (4). Once training
is complete, we rescale the trained SAE param-
eters so that no input normalization is required
for inference (see Appendix A for details).

As shown in Table 1, SAEs with 16.4K latents
are trained for 4B tokens, while 1M-width SAEs
are trained for 16B tokens. All other SAEs are
trained for 8B tokens.

Location We train SAEs on three locations per
layer, as indicated by Fig. 1. We train on the at-
tention head outputs before the final linear trans-
formation 𝑊𝑂 and RMSNorm has been applied
(Kissane et al., 2024a), on the MLP outputs after
the RMSNorm has been applied and on the post
MLP residual stream. For the attention output
SAEs, we concatenate the outputs of the individ-
ual attention heads and learn a joint SAE for the
full set of heads. We zero-index the layers, so
layer 0 refers to the first transformer block after
the embedding layer. In Appendix B we define
transcoders (Dunefsky et al., 2024) and train one
suite of these.

6This is similar in spirit to Conerly et al. (2024), who
normalize the dataset to have mean norm of

√︁
𝑑model.

3



Gemma Scope: Open Sparse Autoencoders Everywhere All At Once on Gemma 2
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Figure 1 | Locations of sparse autoencoders in-
side a transformer block of Gemma 2. Note that
Gemma 2 has RMS Norm at the start and end of
each attention and MLP block.

3.2. Hyperparameters

Optimization We use the same bandwidth 𝜀 =

0.001 and learning rate 𝜂 = 7 × 10−5 across
all training runs. We use a cosine learning rate
warmup from 0.1𝜂 to 𝜂 over the first 1,000 train-
ing steps. We train with the Adam optimizer
(Kingma and Ba, 2017) with (𝛽1, 𝛽2) = (0, 0.999),
𝜖 = 10−8 and a batch size of 4,096. We use a lin-
ear warmup for the sparsity coefficient from 0 to
𝜆 over the first 10,000 training steps.

During training, we parameterise the SAE us-
ing a pre-encoder bias Bricken et al. (2023), sub-
tracting bdec from activations before the encoder.
However, after training is complete, we fold in
this bias into the encoder parameters, so that
no pre-encoder bias needs to be applied during

inference. See Appendix A for details.

Throughout training, we restrict the columns
of Wdec to have unit norm by renormalizing after
every update. We also project out the part of the
gradients parallel to these columns before com-
puting the Adam update, as described in Bricken
et al. (2023).

Initialization We initialize the JumpReLU
threshold as the vector 𝜽 = {0.001}𝑀 . We ini-
tialize Wdec using He-uniform (He et al., 2015)
initialization and rescale each latent vector to be
unit norm. Wenc is initalized as the transpose of
Wdec, but they are not tied afterwards (Conerly
et al., 2024; Gao et al., 2024). The biases bdec
and benc are initialized to zero vectors.

3.3. Infrastructure

3.3.1. Accelerators

Topology We train most of our SAEs using
TPUv3 in a 4x2 configuration. Some SAEs, es-
pecially the most wide ones, were trained using
TPUv5p in either a 2x2x1 or 2x2x4 configuration.

Sharding We train SAEs with 16.4K latents with
maximum amount of data parallelism, while us-
ing maximal amounts of tensor parallelism us-
ing Megatron sharding (Shoeybi et al., 2020)
for all other configurations. We find that as one
goes to small SAEs and correspondingly small up-
date step time, the time spent on host-to-device
(H2D) transfers outgrows the time spent on the
update step, favoring data sharding. For larger
SAEs on the other hand, larger batch sizes enable
higher arithmetic intensity by reducing transfers
between HBM and VMEM of the TPU. Further-
more, the specific architecture of SAEs means
that when using Megatron sharding, device-to-
device (D2D) communication is minimal, while
data parallelism causes a costly all-reduce of the
full gradients. Thus we recommend choosing the
smallest degree of data sharding such that the
H2D transfer takes slightly less time than the up-
date step.

As an example, with proper step time optimiza-
tion this enables us to process one batch for a
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Gemma 2 Model SAE Width Attention MLP Residual # Tokens
2.6B PT 214 ≈ 16.4K All All All+ 4B

(26 layers) 215 ✗ ✗ {12} 8B
216 All All All 8B
217 ✗ ✗ {12} 8B
218 ✗ ✗ {12} 8B
219 ✗ ✗ {12} 8B

220 ≈ 1M ✗ ✗ {5, 12, 19} 16B
9B PT 214 All All All 4B

(42 layers) 215 ✗ ✗ {20} 8B
216 ✗ ✗ {20} 8B
217 All All All 8B
218 ✗ ✗ {20} 8B
219 ✗ ✗ {20} 8B
220 ✗ ✗ {9, 20, 31} 16B

27B PT (46 layers) 217 ✗ ✗ {10, 22, 34} 8B
9B IT 214 ✗ ✗ {9, 20, 31} 4B

(42 layers) 217 ✗ ✗ {9, 20, 31} 8B

Table 1 | Overview of the SAEs that were trained for which sites and layers. For each model, width,
site and layer, we release multiple SAEs with differing levels of sparsity (L0).
All+: We also train one suite of transcoders on the MLP sublayers on Gemma 2.6B PT (Appendix B).

131K-width SAE in 45ms on 8 TPUv3 chips, i.e. a
model FLOP utilization (MFU) of about 50.8%.

3.3.2. Data Pipeline

Disk storage We store all collected activations
on hard drives as raw bytes in shards of 10-20GiB.
We use 32-bit precision in all our experiments.
This means that storing 8B worth of activations
for a single site and layer takes about 100TiB for
Gemma 2 9B, or about 17PiB for all sites and
layers of both Gemma 2 2B and 9B. The total
amount is somewhat higher still, as we train some
SAEs for 16B tokens and also train some SAEs
on Gemma 2 27B, as well as having a generous
buffer of additional tokens. While this is a signifi-
cant amount of disk space, it is still cheaper than
regenerating the data every time one wishes to
train an SAE on it.

Disk reads Since SAEs are very shallow mod-
els with short training step times and we train
them on activation vectors rather than integer-
valued tokens, training them requires high data
throughput. For instance, to train a single SAE on

Gemma 2 9B without being bottlenecked by data
loading requires more than 1 GiB/s of disk read
speed. This demand is further amplified when
training multiple SAEs on the same site and layer,
e.g. with different sparsity coefficients, or while
conducting hyperparameter tuning.

To overcome this bottleneck we implement a
shared server system, enabling us to amortize
disk reads for a single site and layer combination:

• Shared data buffer: Multiple training jobs
share access to a single server. The server
maintains a buffer containing a predefined
number of data batches. Trainers request
these batches from the servers as needed.

• Distributed disk reads: To enable parallel
disk reads, we deploy multiple servers for
each site and layer, with each server exclu-
sively responsible for a contiguous slice of
the data.

• Dynamic data fetching: As trainers request
batches, the server continually fetches new
data from the dataset, replacing the oldest
data within their buffer.

• Handling speed differences: To accommo-
date variations in trainer speeds caused by
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factors like preemption, crashes and differ-
ent SAE widths, trainers keep track of the
batches they have already processed. If a
trainer lags behind, the servers can loop
through the dataset again, providing the
missed batches. Note that different training
speeds result in different trainers not seeing
the same data or necessarily in the same or-
der. In practice we found this trade-off well
worth the efficiency gains.

4. Evaluation

In this section we evaluate the trained SAEs from
various different angles. We note however that
as of now there is no consensus on what consti-
tutes a reliable metric for the quality of a sparse
autoencoder or its learned latents and that this
is an ongoing area of research and debate (Gao
et al., 2024; Karvonen et al., 2024; Makelov et al.,
2024).

Unless otherwise noted all evaluations are on
sequences from the same distribution as the SAE
training data, i.e. the pretraining distribution of
Gemma 1.

4.1. Evaluating the sparsity-fidelity trade-off

Methodology For a fixed dictionary size, we
trained SAEs of varying levels of sparsity by
sweeping the sparsity coefficient 𝜆. We then plot
curves showing the level of reconstruction fidelity
attainable at a given level of sparsity.

Metrics We use the mean L0-norm of latent
activations, 𝔼x∥f (x)∥0, as a measure of sparsity.
To measure reconstruction fidelity, we use two
metrics:

• Our primary metric is delta LM loss, the in-
crease in the cross-entropy loss experienced
by the LM when we splice the SAE into the
LM’s forward pass.

• As a secondary metric, we also use fraction
of variance unexplained (FVU) – also called
the normalized loss (Gao et al., 2024) – as
a measure of reconstruction fidelity. This is
the mean reconstruction loss Lreconstruct of a

SAE normalized by the reconstruction loss
obtained by always predicting the dataset
mean. Note that FVU is purely a measure
of the SAE’s ability to reconstruction the in-
put activations, not taking into account the
causal effect of any error on the downstream
loss.

All metrics were computed on 2,048 sequences
of length 1,024, after masking out special tokens
(pad, start and end of sequence) when aggregat-
ing the results.

Results Fig. 2 compares the sparsity-fidelity
trade-off for SAEs in the middle of each Gemma
model. For the full results see Appendix C. Delta
loss is consistently higher for residual stream SAEs
compared to MLP and attention SAEs, whereas
FVU (Fig. 13) is roughly comparable across sites.
We conjecture this is because even small errors
in reconstructing the residual stream can have a
significant impact on LM loss, whereas relatively
large errors in reconstructing a single MLP or at-
tention sub-layer’s output have a limited impact
on the LM loss.7

4.2. Impact of sequence position

Methodology Prior research has shown that
language models tend to have lower loss on later
token positions (Olsson et al., 2022). It is thus
natural to ask how an SAE’s performance changes
over the length of a sequence. Similar to Sec-
tion 4.1, we track reconstruction loss and delta
loss for various sparsity settings, however this
time we do not aggregate over the sequence posi-
tion. Again, we mask out special tokens.

Result Fig. 3 shows how reconstruction loss
varies by position for 131K-width SAEs trained

7The residual stream is the bottleneck by which the pre-
vious layers communicate with all later layers. Any given
MLP or attention layer adds to the residual stream, and is
typically only a small fraction of the residual, so even a large
error in the layer is a small error to the residual stream and
so to the rest of the network’s processing. On the other hand,
a large error to the residual stream itself will significantly
harm loss. For the same reason, mean ablating the residual
stream has far higher impact on the loss than mean ablating
a single layer.

6



Gemma Scope: Open Sparse Autoencoders Everywhere All At Once on Gemma 2

10 2 5 100 2 5 1000

0.001

2

5

0.01

2

5

0.1

2

5

1

10 2 5 100 2 5 1000 10 2 5 100 2 5 1000

0.001

2

5

0.01

2

5

0.1

2

5

1

Width

16.4K

65.5K

131K

1M

L0 L0 L0

D
e
lt
a
 L

o
s
s

D
e
lt
a
 L

o
s
s

Site=attn_output_pre_linear Site=mlp_output Site=post_mlp_residual

M
o
d
e
l=

9
B
-
P
T

M
o
d
e
l=

2
B
-
P
T

Figure 2 | Sparsity-fidelity trade-off for layer 12 Gemma 2 2B and layer 20 Gemma 2 9B SAEs. An
ideal SAE should have low delta loss and low L0, i.e. correspond to a point towards the bottom-left
corner of each plot. For an analogous plot using FVU as the measure of fidelity see Fig. 13.

on the middle-layer of Gemma 2 9B. Reconstruc-
tion loss increases rapidly from close to zero over
the first few tokens. The loss monotonically in-
creases by position for attention SAEs, although
it is essentially flat after 100 tokens. For MLP
SAEs, the loss peaks at around the tenth token
before gradually declining slightly. We speculate
that this is because attention is most useful when
tracking long-range dependencies in text, which
matters most when there is significant prior con-
text to draw from, while MLP layers do a lot of
local processing, like detecting n-grams (Gurnee
et al., 2023), that does not need much context.
Like attention SAEs, residual stream SAEs’ loss
monotonically increases, plateauing more gradu-
ally. Curves for other models, layers, widths and
sparsity coefficients were found to be qualitatively
similar.

Fig. 15 shows how delta LM loss varies by se-
quence position. The high level of noise in the
delta loss measurements makes it difficult to ro-
bustly measure the effect of position, however
there are signs that this too is slightly lower for the
first few tokens, particularly for residual stream
SAEs.

4.3. Studying the effect of SAE width

Holding all else equal, wide SAEs learn more la-
tent directions and provide better reconstruction
fidelity at a given level of sparsity than narrow
SAEs. Intuitively, this suggests that we should
use the widest SAEs practicable for downstream
tasks. However, there are also signs that this intu-
ition may come with caveats. The phenomenon of
‘feature-splitting’ (Bricken et al., 2023) – where
latents in a narrow SAE seem to split into mul-
tiple specialized latents within wider SAEs – is
one sign that wide SAEs do not always use their
extra capacity to learn a greater breadth of fea-
tures (Bussmann et al., 2024). It is plausible that
the sparsity penalty used to train SAEs encour-
ages wide SAEs to learn frequent compositions of
existing features over (or at least in competition
with) using their increased capacity to learn new
features (Anders et al., 2024). If this is the case,
it is currently unclear whether this is good or bad
for the usefulness of SAEs on downstream tasks.

In order to facilitate research into how SAEs’
properties vary with width, and in particular how
SAEs with different widths trained on the same
data relate to one another, we train and release
a ‘feature-splitting‘ suite of mid-network resid-
ual stream SAEs for Gemma 2 2B and 9B PT
with matching sparsity coefficients and widths

7
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Figure 3 | Reconstruction loss by sequence posi-
tion for Gemma 2 9B middle-layer 131K-width
SAEs with 𝜆 = 10−3.

between 214 ≈ 16.4K and 219 ≈ 524K in steps
of powers of two.8 The SAEs are trained with
different sparsity settings after layers 12 and 20
of Gemma 2 2B and 9B respectively.

Sparsity-fidelity trade-off Similar to Sec-
tion 4.1, Fig. 4 compares fidelity-versus-sparsity
curves for SAEs of differing width in this ladder.

Latent firing frequency Fig. 5 shows frequency
histograms for 𝜆 = 6× 10−4 SAEs in the same lad-
der of widths from 214 to 219 latents. To compute
these, we calculate the firing frequency of each la-
tent over 20,000 sequences of length 1,024, mask-
ing out special tokens. Note that the mode and
most of the mass shifts towards lower frequencies
with increased number of latents. However there
remains a cluster of ultra-high frequency latents,

8Note the 1M-width SAEs included in Fig. 2 do not form
part of this suite as they were trained using a different range
of values for the sparsity coefficient 𝜆.
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Figure 4 | Delta loss versus sparsity curves for a
series of SAEs of differing width (keeping 𝜆 and
other hyperparameters constant), trained on the
residual stream after layer 20 of Gemma 2 9B.

which has also been observed for TopK SAEs but
not for Gated SAEs (Cunningham and Conerly,
2024; Gao et al., 2024; Rajamanoharan et al.,
2024b).

4.4. Interpretability of latents

The interpretability of latents for a subset of the
SAEs included in Gemma Scope was investigated
in Rajamanoharan et al. (2024b); latents were
evaluated using human raters and via LM gen-
erated explanations. For completeness, we in-
clude the key findings of those studies here and
refer readers to section 5.3 of that work for a de-
tailed discussion of the methodology. Both the
human rater and LM explanations studies evalu-
ated JumpReLU, TopK and Gated SAEs of width
131K trained on all sites at layers 9, 20, and 31
of Gemma 2 9B. Fig. 6 shows human raters’ judg-
ment of latent interpretability for each investi-
gated SAE architecture. Fig. 7 shows the Pearson
correlation between the language model (LM)
simulated activations based on LM-generated ex-
planations and the ground truth activation values.
On both metrics, there is little discernible differ-
ence between JumpReLU, TopK and Gated SAEs.

4.5. SAEs trained on base models transfer to
IT models

Additional IT SAE training Prior research has
shown that SAEs trained on base model activa-
tions also faithfully reconstruct the activations
of IT models derived from these base models
(Kissane et al., 2024b). We find further evidence
for these results by comparing the Gemma Scope

8
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Figure 5 | Frequency histogram of SAEs trained
on Gemma 2 9B, layer 20, post MLP residual
with sparsity coefficient 𝜆 = 6 × 10−4. (These
correspond to the SAEs with L0 ≈ 50 in Fig. 4.)

SAEs with several SAEs we train on the activa-
tions from Gemma 2B 9B IT. Specifically, we train
these IT SAEs by taking the same pretraining doc-
uments used for all other SAEs (Section 3.1) and
prepend them with Gemma’s IT prefix for the
user’s query, and append Gemma’s IT prefix for
the model’s response.9 We then train each SAE
to reconstruct activations at all token positions
besides the user prefix (since these tokens have
much larger norm (Kissane et al., 2024b), and
are the same for every document). We also re-
lease the weights for these SAEs to enable further
research into the differences between training
SAEs on base and IT models. 10

9See e.g. https://huggingface.co/google/
gemma-2-2b-it for the user and model prefixes.

10https://huggingface.co/google/
gemma-scope-9b-it-res
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Figure 6 | Human rater scores of latent inter-
pretability. Latents from all SAE architectures
are rated as similarly interpretable by human
raters. (Reproduced from Rajamanoharan et al.
(2024b).)

Methodology To evaluate the SAEs trained on
the IT model’s activations, we generate 1,024
rollouts of the Gemma 2 9B IT model on a random
sample of the SFT data used to train Gemini 1.0
Ultra (Gemini Team, 2024), with temperature
1.0. We then use SAEs trained on the residual
stream of the base model and the IT model to
reconstruct these activations, and measured the
FVU.

Results In Fig. 8 we show that using PT model
SAEs results in increases in cross-entropy loss
almost as small as the increase from the SAEs di-
rectly trained on the IT model’s activation. We
show further evaluations such as on Gemma 2
2B, measuring FVU rather than loss, and using
activations from the user query (not just the roll-
out) in Appendix C.4. In Fig. 21 we find that the
FVU for the PT SAEs is somewhat faithful, but
does not paint as strong a picture as Fig. 8. We
speculate that these results could be explained by
the following hypothesis: finetuning consists of
‘re-weighting’ old features from the base model,
in addition to learning some new, chat-specific
features that do not have as big an impact on
next-token prediction. This would mean the FVU
looks worse than the increase in loss since the
FVU would be impacted by low impact chat fea-
tures, but change in loss would not be.

Future work could look into finetuning these

9

https://huggingface.co/google/gemma-2-2b-it
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Figure 7 | Pearson correlation between LM-
simulated and ground truth activations. The
dashed lines denote the mean per SAE type. Val-
ues above 1 are an artifact of the kernel density
estimation used to produce the plot. (Reproduced
from Rajamanoharan et al. (2024b).)

SAEs on chat interactions if even lower recon-
struction error is desired (Kissane et al., 2024b),
or evaluating on multi-turn and targeted rollouts.

4.6. Pile subsets

Methodology We perform the sparsity-fidelity
evaluation from Section 4.1 on different valida-
tion subsets of The Pile (Gao et al., 2020), to
gauge whether SAEs struggle with a particular
type of data.11

Results In Fig. 9 we show delta loss by sub-
set. Of the studied subsets, SAEs perform best
on DeepMind mathematics (Saxton et al., 2019).
Possibly this is due to the especially formulaic
nature of the data. SAEs perform worst on Eu-
roparl (Koehn, 2005), a multilingual dataset. We
conjecture that this is due to the Gemma 1 pre-
training data, which was used to train the SAEs,
containing predominantly English text.

4.7. Impact of low precision inference

We train all SAEs in 32-bit floating point preci-
sion. It is common to make model inference less
memory and compute intensive by reducing the

11Note that this is a different dataset to the dataset used
to train the Gemma Scope SAEs.

precision at inference time. This is particularly
important for applications like circuit analysis,
where users may wish to splice several SAEs into
a language model simultaneously. Fig. 10 com-
parse fidelity-versus-sparsity curves computed
using float32 SAE and LM weights versus the
same curves computed using bfloat16 SAE and
LM weights, suggesting there is negligible impact
in switching to bfloat16 for inference.

5. Open problems that Gemma Scope
may help tackle

Our main goal in releasing Gemma Scope is to
help the broader safety and interpretability com-
munities advance our understanding of inter-
pretability, and how it can be used to make mod-
els safer. As a starting point, we provide a list
of open problems we would be particularly ex-
cited to see progress on, where we believe Gemma
Scope may be able to help. Where possible we cite
work that may be a helpful starting point, even if
it is not tackling exactly the same question.

Deepening our understanding of SAEs

1. Exploring the structure and relationships be-
tween SAE features, as suggested in Watten-
berg and Viégas (2024).

2. Comparisons of residual stream SAE features
across layers, e.g. are there persistent fea-
tures that one can “match up” across adja-
cent layers?

3. Better understanding the phenomenon of
“feature splitting” (Bricken et al., 2023)
where high-level features in a small SAE
break apart into several finer-grained fea-
tures in a wider SAE.

4. We know that SAEs introduce error, and com-
pletely miss out on some features that are
captured by wider SAEs (Bussmann et al.,
2024; Templeton et al., 2024). Can we quan-
tify and easily measure “how much” they
miss and how much this matters in practice?

5. How are circuits connecting up superposed
features represented in the weights? How do
models deal with the interference between
features (Nanda et al., 2023b)?
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Using SAEs to improve performance on real–
world tasks (compared to fair baselines)

1. Detecting or fixing jailbreaks.
2. Helping find new jailbreaks/red-teaming

models (Ziegler et al., 2022).
3. Comparing steering vectors (Turner et al.,

2024) to SAE feature steering (Conmy and
Nanda, 2024) or clamping (Templeton et al.,
2024).

4. Can SAEs be used to improve interpretabil-
ity techniques, like steering vectors, such as
by removing irrelevant features (Conmy and
Nanda, 2024)?

Red-teaming SAEs

1. Do SAEs really find the “true” concepts in a
model?

2. How robust are claims about the inter-
pretability of SAE features (Huang et al.,
2023)?

3. Can we find computable, quantitative mea-
sures that are a useful proxy for how “inter-
pretable” humans think a feature vector is
(Bills et al., 2023)?

4. Can we find the “dark matter” of truly non-
linear features?12

5. Do SAEs learn spurious compositions of inde-
pendent features to improve sparsity as has
been shown to happen in toy models (Anders
et al., 2024), and can we fix this?

Scalable circuit analysis: What interesting cir-
cuits can we find in these models?

1. What’s the learned algorithm for addition
(Stolfo et al., 2023) in Gemma 2 2B?

2. How can we practically extend the SAE fea-
ture circuit finding algorithm in Marks et al.
(2024) to larger models?

3. Can we use SAE-like techniques such as MLP
transcoders (Dunefsky et al., 2024) to find
input independent, weights-based circuits?

Using SAEs as a tool to answer existing ques-
tions in interpretability

12We distinguish truly non-linear features from low-rank
subspaces of linear features as found in Engels et al. (2024).

1. What does finetuning do to a model’s inter-
nals (Jain et al., 2024)?

2. What is actually going on when a model uses
chain of thought?

3. Is in-context learning true learning, or just
promoting existing circuits (Hendel et al.,
2023; Todd et al., 2024)?

4. Can we find any “macroscopic structure” in
language models, e.g. families of features
that work together to perform specialised
roles, like organs in biological organisms?13

5. Does attention head superposition (Jermyn
et al., 2023) occur in practice? E.g. are
many attention features spread across sev-
eral heads (Kissane et al., 2024b)?

Improvements to SAEs

1. How can SAEs efficiently capture the circular
features of Engels et al. (2024)?

2. How can they deal efficiently with cross-layer
superposition, i.e. features produced in su-
perposition by neurons spread across multi-
ple layers?

3. How much can SAEs be quantized without
significant performance degradation, both
for inference and training?
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A. Standardizing SAE parameters for
inference

As described in Section 3, during training,
we normalize LM activations and subtract bdec
from them before passing them to the encoder.
However, after training, we reparameterize the
Gemma Scope SAEs so that neither of these steps
are required during inference.

Let xraw be the raw LM activations that we
rescale by a scalar constant 𝐶, i.e. x := xraw/𝐶,
such that E

[
∥x∥22

]
= 1. Then, as parameterized

during training, the SAE forward pass is defined
by

f (xraw) := JumpReLU𝜽

(
Wenc

(xraw
𝐶

− bdec
)
+ benc

)
,

(5)
x̂raw(f) := 𝐶 · (Wdecf + bdec) . (6)

It is straightforward to show that by defining the

following rescaled and shifted parameters:

b′
enc := 𝐶 benc − 𝐶Wencbdec (7)

b′
dec := 𝐶 bdec (8)
𝜽′ := 𝐶 𝜽 (9)

we can simplify the SAE forward pass (operating
on the raw activations xraw) as follows:

f (xraw) = JumpReLU𝜽′
(
Wencxraw + b′

enc
)
, (10)

x̂raw(f) = Wdecf + b′
dec. (11)

B. Transcoders

MLP SAEs are trained on the output of MLPs,
but we can also replace the whole MLP with
a transcoder (Dunefsky et al., 2024) for easier
circuit analysis. Transcoders are not autoen-
coders: while SAEs are trained to reconstruct
their input, transcoders are trained to approx-
imate the output of MLP layers from the in-
put of the MLP layer. We train one suite of
transcoders on Gemma 2B PT, and release these at
the link https://huggingface.co/google/
gemma-scope-2b-pt-transcoders.

Evaluation We find that transcoders cause a
greater increase in loss to the base model rela-
tive to the MLP output SAEs (Fig. 11), at a fixed
sparsity (L0). This reverses the trend from GPT-2
Small found by Dunefsky et al. (2024). This could
be due to a number of factors, such as:

1. Transcoders do not scale to larger models
or modern transformer architectures (e.g.
Gemma 2 has Gated MLPs unlike GPT-2
Small) as well as SAEs.

2. JumpReLU provides a bigger performance
boost to SAEs than to transcoders.

3. Errors in the implementation of transcoders
in this work, or in the SAE implementation
from Dunefsky et al. (2024).

4. Other training details (not just the
JumpReLU architecture) that improve SAEs
more than transcoders. Dunefsky et al.
(2024) use training methods such as using
a low learning rate, differing from SAE
research that came out at a similar time to
Bricken et al. (2023) such as Rajamanoha-
ran et al. (2024a) and Cunningham et al.
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(2023). However, Dunefsky et al. (2024)
also do not use resampling (Bricken et al.,
2023) or an architecture which prevents
dead features like more recent SAE research
(Conerly et al., 2024; Gao et al., 2024;
Rajamanoharan et al., 2024a), which means
their results are in a fairly different setting
to other SAE research.

Language model technical details We fold the
pre-MLP RMS norm gain parameters (Zhang and
Sennrich (2019), Section 3) into the MLP input
matrices, as described in (Gurnee et al. (2024),
Appendix A.1) and then train the transcoder
on input activations just after the pre-MLP RM-
SNorm, to reconstruct the MLP sublayer’s out-
put as the target activations. To make it easier
for Gemma Scope users to apply this change, in
Fig. 12 we provide TransformerLens code for load-
ing Gemma 2 2B with this weight folding applied.
Fig. 12 also includes an explanation of why only a
subset of the weight folding techniques described
in Appendix A.1 of Gurnee et al. (2024) can be
applied to Gemma 2, due to its architecture.

Technical details of transcoder training We
train transcoders identically to MLP SAEs except
for the following two differences:

1. We do not initialize the encoder kernel Wenc
to the transpose of the decoder kernel Wdec;

2. We do not use a pre-encoder bias, i.e. we
do not subtract bdec from the input to the
transcoder (although we still add bdec at the
transcoder output).

These two training changes were motivated by
the fact that, unlike SAEs, the input and outputs
spaces for transcoders are not identical. To spell
out how we apply normalization: we divide the
input and target activations by the root mean
square of the input activations. Since the input ac-
tivations all have norm

√
𝑑model due to RMSNorm,

this means we divide input and output activations
by

√
𝑑model.

C. Additional evaluation results

C.1. Sparsity-fidelity tradeoff

Fig. 13 illustrates the trade off between fidelity
as measured by fraction of variance unexplained
(FVU) against sparsity for layer 12 Gemma 2 2B
and layer 20 Gemma 2 9B SAEs.

Fig. 14 shows the sparsity-fidelity trade off for
the 131K-width residual stream SAEs trained on
Gemma 2 27B after layers 10, 22 and 34 that we
include as part of this release.

Fig. 17 and Fig. 18 show fidelity versus spar-
sity curves for more layers (approximately evenly
spaced) and all sites of Gemma 2 2B and Gemma
2 9B, demonstrating consistent and smoothly vari-
ance performance throughout these models.

C.2. Impact of sequence position

Fig. 15 shows how delta loss varies by position.

C.3. Uniformity of active latent importance

Methodology Conventionally, sparsity of SAE
latent activations is measured as the L0 norm of
the latent activations. Olah et al. (2024) sug-
gest to train SAEs to have low L1 activation of
attribution-weighted latent activations, taking
into account that some latents may be more im-
portant than others. We repurpose their loss
function as a metric for our SAEs, which were
trained penalising activation sparsity as normal.
As in Rajamanoharan et al. (2024b), we define
the attribution-weighted latent activation vector
y as

y := f (x) ⊙ W𝑇
dec∇xL, (12)

where we choose the mean-centered logit of the
correct next token as the loss function L.

We then normalize the magnitudes of the en-
tries of y to obtain a probability distribution
𝑝 ≡ 𝑝(y). We can measure how far this distribu-
tion diverges from a uniform distribution 𝑢 over
active latents via the KL divergence

DKL(𝑝∥𝑢) = log ∥y∥0 − S(𝑝), (13)
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Figure 11 | Transcoders trained to reconstruct MLP output from the MLP input cause a greater increase
in loss compared to the vanilla model when compared with an MLP output SAE. The sites are (the
MLP sub-) layers throughout Gemma 2B PT.

import transformer_lens # pip install transformer-lens

model = transformer_lens.HookedTransformer.from_pretrained(
"google/gemma-2-2b",
# In Gemma 2, only the pre-MLP, pre-attention and final RMSNorms can
# be folded in (post-attention and post-MLP RMSNorms cannot be folded in):
fold_ln=True,
# Only valid for models with LayerNorm, not RMSNorm:
center_writing_weights=False,
# These model use logits soft-capping, meaning we can’t center unembed:
center_unembed=False,

)

Figure 12 | Code for loading Gemma 2B in TransformerLens (Nanda and Bloom, 2022) to use this
with our Transcoders.

with the entropy S(𝑝). Note that 0 ≤ DKL(𝑝∥𝑢) ≤
log ∥y∥0. Exponentiating the negative KL diver-
gence gives a new measure 𝑟𝐿0

𝑟𝐿0 := 𝑒−DKL (𝑝∥𝑢) =
𝑒S(𝑝)

∥y∥0
, (14)

with 1
∥y ∥0 ≤ 𝑟𝐿0 ≤ 1. Note that since 𝑒S can be

interpreted as the effective number of active el-
ements, 𝑟𝐿0 is the ratio of the effective number
of active latents (after re-weighting) to the to-
tal number of active latents, which we call the
‘Uniformity of Active Latent Importance’.

Results In Fig. 16 we show 𝑟𝐿0 on middle layer
SAEs. In line with Rajamanoharan et al. (2024b),
we find that the attributed effect becomes more
diffuse as more latents are active. This effect is
most pronounced for residual stream SAEs, and
seems to be independent of language model size
and number of SAE latents.

C.4. Additional Gemma 2 IT evaluation results

In this sub-appendix, we provide further evalu-
ations of SAEs on the activations of IT models,
continuing Section 4.5.

As mentioned in Section 4.5, we find in Fig. 21
that PT SAEs achieve reasonable FVU on rollouts,
but the gap between PT and IT SAEs is larger than
in the change in loss in the main text (Fig. 8).

In Fig. 19 we evaluate the FVU on the user
prompt and model prefix (not the rollout). In
Fig. 20 we evaluate the change in loss (delta loss)
on the user prompts, and surprisingly find that
splicing in the base model SAE can reduce the
loss in expectation in some cases. Our explana-
tion for this result is that post-training does not
train models to predict user queries (only predict
high-preference model rollouts) and therefore the
model is not incentivised to have good predictive
loss by default on the user prompt.
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Gemma Scope: Open Sparse Autoencoders Everywhere All At Once on Gemma 2

While we do not train IT SAEs on Gemma 2
2B, we find that the base SAEs transfer well as
measured by FVU in Fig. 22.

Finally, we do not find evidence that rescaling
IT activations to have same norm in expectation to
the pretraining activations is beneficial (Fig. 23).
The trend for individual SAEs in this plot is that
their L0 decreases but the Pareto frontier is very
slightly worse. This is consistent with prior ob-
servations that SAEs are surprisingly adaptable
to different L0s (Gao et al., 2024; Smith, 2024).
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Figure 13 | Sparsity-fidelity trade-off for middle-layer Gemma 2 2B and 9B SAEs using fraction of
variance unexplained (FVU) as the measure of reconstruction fidelity.

2 5 100 2 5

5

0.001

2

5

0.01

2

5

0.1

2

5

1

2 5 100 2 5 2 5 100 2 5

Width

131K

L0 L0 L0

D
e
lt
a
 L

o
s
s

Layer=10 Layer=22 Layer=34

(a)

2 5 100 2 5

2

5

0.1

2

5

2 5 100 2 5 2 5 100 2 5

Width

131K

L0 L0 L0

F
V
U

Layer=10 Layer=22 Layer=34

(b)

Figure 14 | Sparsity-fidelity trade-off for Gemma 2 27B SAEs using (a) delta LM loss and (b) as
measures of reconstruction fidelity.
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Figure 16 | Uniformity of active latent importance for the middle layer SAEs.
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Figure 17 | Sparsity-fidelity trade-off across multiple layers of Gemma 2 2B, approximately evenly
spaced. (Note Gemma 2 2B has 26 layers.)
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Figure 18 | Sparsity-fidelity trade-off across multiple layers of Gemma 2 9B, approximately evenly
spaced. (Note Gemma 2 2B has 42 layers.)
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Figure 19 | Fraction of variance unexplained when using SAEs trained on Gemma 2 9B (base and IT)
to reconstruct the activations generated with Gemma 2 9B IT on user prompts.
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Figure 20 | Change in loss when splicing in SAEs trained on Gemma 2 9B (base and IT) to reconstruct
the activations generated with Gemma 2 9B IT on user prompts.
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Figure 21 | Fraction of variance unexplained when using SAEs trained on Gemma 2 9B (base and IT)
to reconstruct the activations generated with Gemma 2 9B IT on rollouts.
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Figure 22 | Fraction of variance unexplained when using SAEs trained on Gemma 2 2B PT to reconstruct
the activations generated with Gemma 2 2B IT on user prompts.
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Figure 23 | Fraction of variance unexplained when using SAEs trained on Gemma 2 9B PT to reconstruct
the activations generated with Gemma 2 9B IT on rollouts, including when rescaling the IT activations
to have the same norm (in expectation) as the pretraining activations.
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