
ScaNN for
AlloyDB

April 2024

Authors
Yannis Papakonstantinou
Distinguished Engineer, Databases

Alan Li
Software Engineer, Databases

Ruiqi Guo
Software Engineer, Google Research

Sanjiv Kumar
Google Fellow

Phil Sun
Software Engineer, Google Research

Next gen vector search by bringing
12 years of Google research to databases

Google Cloud supports pgvector in both Cloud SQL
PostgreSQL and AlloyDB for PostgreSQL, and many
of our customers have adopted the HNSW index to
accelerate their vector search. However, the HNSW
index doesn’t always work for customers’
real-world workloads, which may include large
datasets or require faster index creation, faster
vector search, faster real-time writes and/or
updates, or a low memory footprint.

AlloyDB’s launch of the pgvector-compatible
ScaNN for AlloyDB index addresses these needs. In
particular, when compared to the HNSW index in
standard PostgreSQL, ScaNN for AlloyDB:

 2Google Cloud

Vector embeddings are widely used to represent
the semantics of unstructured data such as text,
audio, images, and video. Nowadays, relational
database users employ embedding models to
generate embeddings for each piece of
unstructured data and then store these
embeddings in the database. Consequently, finding
data that are semantically related to a user request
turns into a vector proximity operation: find the
database embeddings that are the nearest
neighbors of the query embedding that
represents the user’s request.

Many developers want support for storing and
indexing vector embeddings in their operational
databases to more easily integrate these new
capabilities into existing applications and
development workflows. They also expect:

● transactional semantics and strong
consistency between the original data, their
vector representations and the vector indices

● SQL-based vector search that includes
unified SQL access to both conventional
structured data and vector data/indices, so
that they can combine filters, joins and other
SQL operations with vector search

PostgreSQL has long been one of the most popular
operational databases, and the recent introduction
of the pgvector extension for SQL-based vector
capabilities has made it one of the most popular
vector databases as well. The pgvector extension
introduced a new vector data type, vector distance
operations using SQL, and two types of indexes to
PostgreSQL. Among the two, the most popular has
been the Hierarchical Navigable Small Worlds
(HNSW) ANN index, launched in August 2023.

8×
offers up to 8× faster index creation

4×
offers up to 4× faster vector queries

3–4×
typically uses 3–4× less memory

10×
offers up to 10× higher write throughput

Source: Google Internal Data, April 2024.

 3Google Cloud

By introducing ScaNN for AlloyDB alongside
pgvector HNSW, AlloyDB provides customers the
largest set of options in the PostgreSQL world,
from which they can choose what fits their needs
best.

This whitepaper explains how ScaNN for AlloyDB
achieves these important performance and
memory footprint benefits. The short answer:
AlloyDB is leveraging vector search technology that
has been developed over the last 12 years by
Google Research, with ScaNN being the vector
search technology behind Google Search, Youtube,
and Ads. We will:

cover the basics of
tree-quantization based
indices like ScaNN

demonstrate how ScaNN
improves vector indexing
and search in AlloyDB,
especially compared to
graph-based algorithms
like HNSW, and

explain key innovations in
ScaNN that help it excel

https://cloud.google.com/blog/topics/developers-practitioners/find-anything-blazingly-fast-googles-vector-search-technology
https://cloud.google.com/blog/topics/developers-practitioners/find-anything-blazingly-fast-googles-vector-search-technology

Part 1: The basics of nearest
neighbor search

Index construction

Querying

Putting it together in AlloyDB

The basics of ScaNNPart 2:

Performance of ScaNNPart 3:

Part 4: Comparison with graph-based
indices and HNSW
Comparison on ease of management and cost control

Memory footprint and indexing performance

Query performance

Part 5: Key innovations
CPU friendliness and SIMD

The power of geometry awareness

Anisotropic vector quantization (AVQ)

Spilling with Orthogonality Amplified Residuals (SOAR)

Conclusion
 4Google Cloud

 5Google Cloud

Before we begin the discussion of ScaNN, let’s
review Approximate Nearest Neighbor (ANN)
search and the role of vector indices. Finding the k
nearest neighbors is called the kNN problem, which
has an obvious brute force solution: compute the
distance between each database embedding and
the query embedding and return the top k
database embeddings that led to the shortest
distances. Depending on the application, typical
distance metrics include euclidean, cosine, and
inner product. But the brute force solution doesn’t
scale to millions or billions of vectors as brute
forcing this search would be latency and cost
prohibitive. This is where Approximate Nearest
Neighbor (ANN) vector indices enter the picture.
By indexing the database embeddings in ANN
indices, smart ANN search algorithms
approximately find the k nearest neighbors order(s)
of magnitude faster.

Notice the use of approximation: the search
algorithm may not return the exact k nearest
neighbors. Occasionally, a few database
embeddings that aren’t truly among the k nearest
neighbors will sneak into the top-k. This is called
recall loss. While recall loss generally isn’t ideal for
the application, the majority of use-cases can
tolerate some small recall loss — especially given
the performance benefit it enables. For example, in
a retail application offering product search, a small
recall loss may occasionally cause a few
less-relevant Stock Keeping Units (SKUs) to be
returned, but this is acceptable since the vast
majority of the returned items are highly relevant to
the user request.

Part 1:
The basics of nearest neighbor search

Furthermore, the embedding models themselves
also create recall loss because even the best
models can’t perfectly capture the meaning of text
and images. As we can see in the broader market,
small recall losses haven’t hindered the delivery of
amazing applications in the Gen AI era but large
recall losses can impact user experiences.

The important achievement of ANN indices, which
has made them ubiquitous, is that they can achieve
order(s) of magnitude speed improvement with
minimal recall loss. For example, a typical target of
95% recall (equivalent to 5% recall loss) means that
in, say, the top 20 results, on the average just one
of the selected vectors won't be a true top 20
nearest neighbor.

While the ANN space has produced multiple
innovations, it is far from being a fully solved
problem. As the applications grow in usage and
their data grow ever bigger, users demand higher
performance, better index update throughput, low
memory footprint, and fast index creation. In
addition, database users expect vector indexing in
their SQL environment so that they access vectors
along structured data with SQL and have the usual
guarantees of transactional consistency.

 6Google Cloud

ScaNN (Scalable Nearest Neighbor) is the fundamental Google Research technology that AlloyDB uses for
vector indexing. The release of ScaNN for AlloyDB leverages some of the ScaNN library techniques to
accelerate vector index creation, to accelerate vector search and to deliver low memory footprint. We’ll cover
the basics here but, for those interested in additional details, there are many articles on ScaNN published in
prestigious research publications, including ICML and NeurIPS papers. ScaNN is also available in the Google
Research Github repository.

ScaNN indices belong to the family of tree-quantization based ANN indices. In a nutshell, tree-quantization
techniques learn a search tree together with a quantization (or hashing) function. When querying, the search
tree is used to prune the search space while quantization is used to compress the index size and, thereby,
speed up the scoring of the similarity (i.e., distance) between the query vector and the database vectors. We
refer interested readers to this journal paper for a comprehensive survey on the topic. In the interest of
presentation simplicity, we describe first the two-level tree and set aside the important Asymmetric Hashing
(AH), Anisotropic Vector Quantization (AVQ) and spilling (SOAR) optimizations for later in this whitepaper.

Index construction

A two-level tree is made up of a root and of leaf nodes that branch from that root. Each leaf node
includes a set of vectors that are close together in n-dimensional space. Each leaf node is associated with a
centroid vector. The root of the tree comprises a list of all of the centroid vectors and pointers to the
respective leaf nodes.

During index construction, centroids are first trained using sample vectors and a modified k-means algorithm.
The centroids are chosen to (approximately) minimize the distances of the vectors from their closest centroid,
i.e., from the centroid of their leaf node. Each vector v is then placed on the leaf node whose centroid is
closest to the vector v. In that sense, each leaf corresponds to the part of the space that is closer to its
centroid than to any other centroid. The illustration on the next page shows a two-level index over
two-dimensional vectors. Of course, in practice, the dimensions are far more than two.

Part 2:
The basics of ScaNN

https://blog.research.google/2020/07/announcing-scann-efficient-vector.html
https://proceedings.mlr.press/v119/guo20h.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/0973524e02a712af33325d0688ae6f49-Abstract-Conference.html
https://github.com/google-research/google-research/tree/master/scann
https://github.com/google-research/google-research/tree/master/scann
https://ieeexplore.ieee.org/document/7915742

 7Google Cloud

The two-level tree idea generalizes to multiple
levels: in a three-level tree, each second level
node (often called branch node) has its own
centroid and contains all the leaf level centroids
that are closest to it, along with pointers to the
leaf nodes.

Querying

Consider an example query. This query finds the
20 tickets whose embedding vectors are closest
to the provided parameter, which we call the
query embedding (aka query vector).

SELECT id, user_text, incident_time
FROM tickets
ORDER BY embedding <-> ?
LIMIT 10

At query time, under the hood, AlloyDB ScaNN
will compute the distance of each centroid from
the query vector — note the discussion still
assumes a two-level tree. The leaves
corresponding to the closest centroids will be
searched and the others won’t. The session
parameter scann.num_leaves_to_search
specifies how many leaf nodes will be searched.
Let’s assume for this example that
scann.num_leaves_to_search = 3. In the next
diagram, our query vector is highlighted in blue
and the three leaves chosen to search are in grey.
That’s because their centroids were closest to the
query vector.

Next, AlloyDB will compute the distance between
the query vector and each vector in the selected
leaf nodes and maintain a top-10 list,
implemented using a priority queue. The final
result is the 10 vectors within the blue circle. As is
the case with any ANN index, the result may
entail some recall loss. For instance, when we
zoom in on the running example (below) we see
that one of the exact top 10 isn’t included in the
result because it belongs to a non-selected
leaf node.

A two-level index over two-dimension vectors The centroids of the grey highlighted leaf nodes
are closest to the (blue) query vector

Below and to the left of the query vector there is a
database vector that should be in the top-10 but
its leaf wasn’t selected

The structure of a node in ScaNN for AlloyDB

 8Google Cloud

The obvious way to improve recall is to raise the scann.num_leaves_to_search (number of leaf nodes that
are searched). However, this has the expected tradeoff effect on latency and queries per second (QPS). This is
why benchmarks present recall-QPS curves, where the QPS falls as the recall goes up. ScaNN has an ace up
its sleeve on raising the recall, without raising the scann.num_leaves_to_search. But before we get on to
such advanced techniques, let’s introduce how we incorporated the fundamental ScaNN algorithm into the
ScaNN for AlloyDB index.

Putting it together in AlloyDB

ScaNN for AlloyDB brings the fundamental ScaNN index and algorithm into AlloyDB. This entails expanding it to
work for large datasets, which exceed the memory size, by storing the tree in buffer pages like all other
indexes. The updating of the index pages is transactionally consistent and thus the database user needn’t
worry about whether the results of vector search reflect the latest state of the database.

Presently, the float32 vectors of pgvector are quantized into SQ8 (scalar quantized int8) vectors, which use 8
bits per dimension. This reduces the index size and accelerates processing. In particular, the vectors are laid
out in a contiguous fashion in storage to enable efficient distance computations. Each leaf node consists of a
chain of buffer pages containing these contiguous SQ8 vectors. Root and branch nodes are laid out in the
same way.

 9Google Cloud

As we discussed above, ScaNN for AlloyDB
outperforms the graph-based pgvector HNSW in
a large number of cases: up to 8× faster index
creation, typically 3–4× smaller memory footprint,
write throughput up to 10× higher, and vector
queries that are up to 4× faster — despite not yet
having incorporated all of the techniques of the
fundamental ScaNN algorithm.

But more generally, the fundamental ScaNN
algorithm typically outperforms graph-based
algorithms in benchmarks. Let’s take a look.

The ScaNN library released by Google Research
runs on x86 CPUs with AVX2 support and the
index is in main memory. (Note, ScaNN for AlloyDB
doesn’t require that the index fits in main
memory.) In this main memory setting, ScaNN
outperforms (in QPS, queries per second) all
HNSW main memory implementations while using
2–5× less memory. The only family that provides
competitive search performance for relatively
small datasets, the NGT family, has a 14× larger
memory footprint and correspondingly larger
index building times.

A more detailed performance picture below shows
the results of the standard ANN-Benchmarks, the
most popular benchmark for ANN
implementations. These benchmarks plot the
tradeoffs between recall and latency. Up and to
the right is better: it means an implementation has
higher recall at a similar QPS and higher QPS at a
similar recall percentage.

Part 3:
Performance of ScaNN

Where do these performance gains come from?
We dive deep into this question, starting with a
comparison to graph-based indices.

Comparison of queries per second for multiple
recalls. Up and to the right is better.

Source: Google Internal Data, April 2024

https://github.com/google-research/google-research/tree/master/scann

 10Google Cloud

Let us start with a quick primer of graph-based
indexing. The pgvector HNSW index belongs to
the family of graph-based indices. While
graph-based indices come in multiple variations,
they all share a common theme: the index is a
graph whose nodes are the database vectors and
whose edges connect neighboring database
vectors, i.e., neighboring nodes. At search time,
navigations start from entry points in the graph
and move in the directions that minimize the
distance to the query vector. HNSW maintains a
priority queue, of size ef_search, that contains
the nodes found to be nearest to the query vector
thus far. As it traverses the graph, the algorithm
evaluates the neighbors of the current node to
see if any of them are closer than the nodes (i.e.,
database vectors) on the list so far.

Method ScaNN for AlloyDB pgvector HNSW

Family Tree-quantization based indexing.
Also includes Faiss, SPTAG.

Graph-based indexing.
Also includes HNSW, NGT, DiskANN (Vamana).

Index size Tree overheads are typically smaller.
Quantization further reduces size.

Graphs have more edge connections therefore
bigger index overhead.

Index
time

Tree training and indexing are faster. The
operation is of O(#vectors * #centroids).

Graph construction fundamentally requires
many vector–vector comparisons.

Memory
access

Vectors in tree leaves are stored contiguously.
Memory access is more continuous and
friendly to SIMD acceleration.

Graph walk beam search requires random
memory accesses. NGT partially solves this by
duplicating data in nodes, but leads to bloated
indices.

Latency Constant search speed across queries.
Typically configured to search a fixed number
of leaves.

Varies more per query. Easy queries terminate
early as nothing is left in the working set of
beam search. But tail latency for harder
queries could be higher.

Part 4: Comparison with
graph-based indices and HNSW

If so, these neighbors are added to the queue and
it continues traversing the graph. The algorithm
terminates when none of the neighbors of the
nodes in the priority queue are closer to the query
vector than the nodes in the priority queue
themselves. Therefore, the ef_search plays a
crucial role in the recall/QPS tradeoff: higher
ef_search increases the number of navigations
that are pursued, thus raising both the recall and
the latency.

This table presents a summary of the ScaNN and
HNSW approaches, while also making broader
comments about other members of the
graph-based family. We detail these points below.

 11Google Cloud

Comparison on ease of
management and cost control

From an ease-of-use and management
perspective HNSW is harder to cost control. At a
high level, one might assert that “ef_search is
to graph-based search what
scann.num_leaves_to_search is to
tree-based search” because they both control
recall. However, this isn’t a fair comparison
because scann.num_leaves_to_search comes
with a performance guarantee. It produces
predictably low latency (and thus QPS) because it
specifies how many nodes are visited and nodes
are of more-or-less similar size. In contrast, the
HNSW convergence time is variable: it may be
lucky and quickly reach the result nodes, or it may
go into long sequences of replacing the
candidates in the priority queue with
just-a-little-bit-better candidates and thus
reaching the convergence point much slower.

Memory footprint
and indexing performance

ScaNN has much lower memory footprint than
HNSW for a simple fundamental reason: in
addition to the vectors themselves, ScaNN only
stores the centroids — which are far fewer than
the vectors themselves. Since >100 vectors per
leaf node is a reasonable aim, it follows that the
centroid overhead is around 1% of total vector
size. In contrast, HNSW has to represent multiple
edges per node. For example, the HNSW index
that is tuned for the Glove-100 ANN-benchmark
has 20 edges per node.

The difference between the memory footprints of
the indices has to be carefully considered when
the customer chooses between ScaNN for
AlloyDB and HNSW: it may be the case that the
ScaNN index is small enough to be cached in
memory, while only a small part of the HNSW
index will be cached. Then, the HNSW
performance will become IO-bound while ScaNN
will be CPU-bound. Moreover, in cases where both
HNSW and ScaNN are IO-bound, the distinction
between random IO access vs. sequential IO
access is critical. Furthermore, real workloads are
mixed — they will typically not just be pure vector
search. The other parts of the workload also
benefit from more memory.

 12Google Cloud

The smaller size of the index also pays off on
indexing time. Furthermore, the index
construction algorithm of ScaNN is running a
modified k-means algorithm, thus having
O(#centroids * #vectors) algorithmic complexity
rather than the graph algorithms, which compare
many pairs of vectors. Indeed, generally (and
unsurprisingly) the tree-quantization family at
large does better on index size and indexing time
than the graph family.

Query performance

Even the first version of ScaNN for AlloyDB, with
only a subset of ScaNN techniques, can beat
HNSW by up to 4× in query performance in
benchmarks. Similarly, the ScaNN library
outperforms the graph-based family on main
memory implementations, with notable partial
exceptions of

To graph aficionados these query performance
results may appear counterintuitive. After all, the
larger size of the graph-based indices (which is
due to the many edges) should confer an
advantage to graph-based algorithms: there are
multiple paths leading to a result node. If a path
from an entry point towards a result node gets
stuck in a local minimum of distance from the
query vector, there is still a second path, a third
path, and many more paths that may fare better.
In contrast, tree-based algorithms have a single
path from the root to each result node and ScaNN
with spilling is usually configured to have two
paths, essentially placing each vector in two leaf
nodes. How can they do even better? At a high
level, the answer is twofold:

Geometry awareness: while graph-based
algorithms are only aware of distances, ScaNN
is aware of the geometry behind these
distances and exploits this knowledge to (a)
produce better clustering and (b) to
strategically position the (usually) two copies
of each vector so that if one copy fails to be
retrieved, the other copy will have an
extremely high chance of being retrieved.

CPU-friendliness: ScaNN is friendly to modern
CPU architectures and, in particular, to their
parallelism using Single Instruction Multiple
Data (SIMD). This enables “brute forcing” the
evaluation of many more candidates.

the NGT sub-family that
ties/beats ScaNN, but with 14×
bigger memory footprint and

performance at extremely
high recalls (98%+) for
moderately-sized data where
graph-based algorithms
occasionally outperform ScaNN,
but the latter regains its
advantage when it is instructed to
employ spilling. With spilling, each
vector is placed in multiple
(usually two) positions in the index

 13Google Cloud

Next, we elaborate on these geometry aware and CPU-friendly innovations and introduce the SOAR, AVQ and
AH techniques employed by ScaNN.

CPU friendliness and SIMD

The vectors in tree leaves are stored in contiguous memory space and on-disk, which is friendly to the large
caches and SIMD abilities of modern CPUs. In contrast, HNSW has to, in each step, access neighboring vectors
that are randomly placed in memory. Interestingly, the NGT sub-family of graph-based indexing avoids HNSW’s
random access problem by having copies of neighboring vectors on each node/vector. Thus, NGT achieves
much higher query performance — winning or losing against ScaNN by a small margin for small datasets — but
at the price of 14× larger memory footprint than ScaNN, which precludes the use of NGT for non-small
datasets. Moreover, we aren’t aware of a PostgreSQL implementation of NGT.

The utilization of SIMD is further optimized by quantizations, which are compact approximate
representations of the vectors. Every quantization speeds up the computation of the distance between a
candidate vector (i.e., a vector in one of the selected leaf nodes) and the query vector, while causing minimal
recall loss. The present release of ScaNN for AlloyDB uses the SQ8 quantization, which uses 8 bits per
dimension. It turns out that the recall loss caused by the fewer bits is usually around 1% for modern use cases.

The Asymmetric Hashing (AH) feature of ScaNN is a far more sophisticated quantization, though it isn’t yet part
of ScaNN for AlloyDB. Asymmetric Hashing entails splitting each vector into segments1 and each segment is
approximated by the closest vector in a so-called code book. By doing so, ScaNN no longer engages in the
expensive multiplications between query vector q and each candidate vector v. Rather, it multiplies segments
of the query vector with the segments in the code book, thus producing a query code book, and then it
approximates the q * v product by looking up and summing the relevant pieces from the query code book. It
turns out that since 2013 CPUs can do this lookup in parallel. It is a testimony to the AH efficiency that the
ScaNN deployments systematically find that their bottleneck is the main memory bandwidth and not the (SIMD
optimized) CPU operations!

The power of geometry awareness

ScaNN has geometric awareness of the nature of the distances. This awareness is evident in optimizations that
guide the placement of edges in the tree. Indeed, it is interesting to contrast these geometry aware
placements with the purely distance-minded placement of edges by graph-based algorithms. We will first
describe the Anisotropic Vector Quantization (AVQ) and its initially surprising, yet intuitive once you account for
geometry, answer to the question “to which leaf/centroid c I should connect a vector x”. Then we will
discuss spilling and its geometry aware way of essentially creating two paths to each vector, by smartly placing
a second copy of each vector on another leaf.

1It also entails linearly transforming the vector. See here.

Part 5:
Key Innovations

https://arxiv.org/abs/1908.10396

 14Google Cloud

Anisotropic vector quantization
(AVQ)

The classic approach of tree-quantization indices
was to place each vector on the leaf node of the
nearest centroid. This is based on the premise that
the distance between the query vector and the
database vector is usually well approximated by the
distance between the query vector and its nearest
centroid. However, the existence of recall loss tells us
that this approximation isn’t always perfect;
sometimes a database vector that is itself very close
to the query vector (and thus should be in the result)
is missed because its centroid isn’t so close to the
query vector and other centroids/leaves are chosen.

Anisotropic Vector Quantization (AVQ) produces a
more efficient assignment of vectors to
leaves/centroids by having a key intuition that the
classic approach ignores: most vector searches are
looking for a tiny percentage of very relevant vectors
among millions or billions in the database. The query
vector, the chosen centroids, and the exact result
vectors are thus close. Therefore, we care that a
centroid best approximates the distance between its
leaf vectors and query vectors in the case where the
query vectors are very close. Note that this is
different from the classic approach, which essentially
optimizes the average approximation of distance
over all possible query vectors as if all query vectors
(both the near ones and the far ones) matter the
same. They don’t!

To see the difference between the classic
approach and the AVQ approach, consider the
example in the diagram on the right. Suppose we
have an index to assist in vector search using inner
product. We have the two vectors x1 and x2 of the
image on the right and we need to assign each
one either to a leaf with centroid c1 or to a leaf with
centroid c2. The classic answer to this decision
problem is to connect x1 to centroid(x1) = c2 and
connect x2 to centroid(x2) = c1 because x1 is closer to
c2 and x2 is closer to c1. But this is suboptimal! The
optimal connections are x1 to c1 and x2 to c2. To
realize why, think of the query vector q, which is
close to these vectors and centroids.

The goal is to make the inner product <q,
centroid(xi)> as similar to the inner product <q, xi>
as possible so that the best centroid/leaves are
chosen. This can be visualized as making the
magnitude of the projection of centroid(xi) onto q
as similar as possible to the projection of xi onto q.
This is illustrated in the figure below and leads to
the opposite result: centroid(x1) = c1 and
centroid(x2) = c2.

We see that direction matters as well as
magnitude — even though c1 is farther from x1
than c2, c1 is offset from x1 in a direction almost
entirely orthogonal to x1, while c2’s offset is
parallel (for x2, the same situation applies but
flipped). It turns out that error in the parallel
direction is much more harmful in the inner
product vector search because it
disproportionately impacts high inner products,
which by definition are the ones that we want to
estimate as accurately as possible. Thus, ScaNN
indices more significantly penalize the parallel
distance from the centroid.

⟨q, centroid(𝑥2)⟩
⟨q, 𝑥1⟩

⟨q, 𝑥2⟩
⟨q, centroid(𝑥1)⟩

𝑥1

c2

q

c1

𝑥2

⟨q, centroid(𝑥1)⟩

⟨q, 𝑥1⟩
⟨q, 𝑥2⟩

⟨q, centroid(𝑥2)⟩

𝑥1

c2

q

c1

𝑥2

Assigning vectors to the nearest centroid isn’t
always right!

 15Google Cloud

Spilling with Orthogonality
Amplified Residuals (SOAR)

While AVQ improves clustering, there will be some
queries that have nearest neighbors that are very
difficult to find. ScaNN for AlloyDB uses the SOAR
technique to circumvent this problem via
redundancy: it places each database vector x into
two leaf nodes so that when a query vector q
(that is a near neighbor of x) fails to find the first
leaf, the probability that it will find the second leaf
becomes much higher. Note, this isn’t a naive
application of redundancy — as it would be the
case if ScaNN simply chose the two nearest
centroids to the database vector x and placed x in
the respective leaf nodes. Rather, after ScaNN
inserts the database vector in a first leaf, the
SOAR technique chooses the second leaf in a
geometry aware way that maximizes the chances
that the second leaf will be found by queries that
missed the first leaf.

To understand the choice of the two placements,
it is worth understanding why there will always be
some query vectors q that will miss a database
vector x even if x is very close to q. Consider
centroids c1 and c2, the database vector x, two
queries q1 and q2 (as in the images on the right)
and inner product distance. For q1, c2 provides a
better inner product estimate (i.e., <q1,c2> is a
better estimate of <q1,x> than <q1,c1>). But for q2 it
is the other way around.

Essentially, the approximation of each database
vector by its assigned centroid is at its worst when
the vector-centroid residual is parallel to the
query. Therefore, SOAR chooses leaf nodes to
assign the database vector in a way that
maximizes the probability that when the
vector-first centroid residual is parallel for a
query, the vector-second centroid residual will be
more orthogonal to this query and, thereby,
provide a better approximation. (It is good news
that in high-dimensional spaces, unlike our 2D
examples, there are plenty of ways to be
orthogonal to a direction!)

c2

q2

c1 𝑥

⟨q, 𝑥⟩

⟨q, c1⟩

⟨q, c2⟩

q1

c2

𝑥c1

⟨q, c1⟩ ⟨q, c2⟩ ⟨q, 𝑥⟩

AlloyDB now gives you the richest set of native vector search options
in SQL databases, by offering both the graph-based pgvector HNSW
and the pgvector-compatible ScaNN for AlloyDB based on tree
quantization. This is just the beginning of a journey which brings
these and other vector innovations to our AlloyDB users.

Conclusion

