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Next gen vector search by bringing
12 years of Google research to databases

Google Cloud supports pgvector in both Cloud SQL 
PostgreSQL and AlloyDB for PostgreSQL, and many 
of our customers have adopted the HNSW index to 
accelerate their vector search. However, the HNSW 
index doesn’t always work for customers’ 
real-world workloads, which may include large 
datasets or require faster index creation, faster 
vector search, faster real-time writes and/or 
updates, or a low memory footprint.

AlloyDB’s launch of the pgvector-compatible 
ScaNN for AlloyDB index addresses these needs. In 
particular, when compared to the HNSW index in 
standard PostgreSQL, ScaNN for AlloyDB:
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Vector embeddings are widely used to represent 
the semantics of unstructured data such as text, 
audio, images, and video. Nowadays, relational 
database users employ embedding models to 
generate embeddings for each piece of 
unstructured data and then store these 
embeddings in the database. Consequently, finding 
data that are semantically related to a user request 
turns into a vector proximity operation: find the 
database embeddings that are the nearest 
neighbors of the query embedding that 
represents the user’s request.

Many developers want support for storing and 
indexing vector embeddings in their operational 
databases to more easily integrate these new 
capabilities into existing applications and 
development workflows. They also expect:

● transactional semantics and strong 
consistency between the original data, their 
vector representations and the vector indices

● SQL-based vector search that includes 
unified SQL access to both conventional 
structured data and vector data/indices, so 
that they can combine filters, joins and other 
SQL operations with vector search

PostgreSQL has long been one of the most popular 
operational databases, and the recent introduction 
of the pgvector extension for SQL-based vector 
capabilities has made it one of the most popular 
vector databases as well. The pgvector extension 
introduced a new vector data type, vector distance 
operations using SQL, and two types of indexes to 
PostgreSQL. Among the two, the most popular has 
been the Hierarchical Navigable Small Worlds 
(HNSW) ANN index, launched in August 2023.

8×
offers up to 8× faster index creation

4×
offers up to 4× faster vector queries

3–4×
typically uses 3–4× less memory

10×
offers up to 10× higher write throughput

Source: Google Internal Data, April 2024. 
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By introducing ScaNN for AlloyDB alongside 
pgvector HNSW, AlloyDB provides customers the 
largest set of options in the PostgreSQL world, 
from which they can choose what fits their needs 
best.

This whitepaper explains how ScaNN for AlloyDB 
achieves these important performance and 
memory footprint benefits. The short answer: 
AlloyDB is leveraging vector search technology that 
has been developed over the last 12 years by 
Google Research, with ScaNN being the vector 
search technology behind Google Search, Youtube, 
and Ads. We will:

cover the basics of 
tree-quantization based 
indices like ScaNN

demonstrate how ScaNN 
improves vector indexing 
and search in AlloyDB, 
especially compared to 
graph-based algorithms 
like HNSW, and

explain key innovations in 
ScaNN that help it excel

https://cloud.google.com/blog/topics/developers-practitioners/find-anything-blazingly-fast-googles-vector-search-technology
https://cloud.google.com/blog/topics/developers-practitioners/find-anything-blazingly-fast-googles-vector-search-technology
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Before we begin the discussion of ScaNN, let’s 
review Approximate Nearest Neighbor (ANN) 
search and the role of vector indices. Finding the k 
nearest neighbors is called the kNN problem, which 
has an obvious brute force solution: compute the 
distance between each database embedding and 
the query embedding and return the top k 
database embeddings that led to the shortest 
distances. Depending on the application, typical 
distance metrics include euclidean, cosine, and 
inner product. But the brute force solution doesn’t 
scale to millions or billions of vectors as brute 
forcing this search would be latency and cost 
prohibitive. This is where Approximate Nearest 
Neighbor (ANN) vector indices enter the picture. 
By indexing the database embeddings in ANN 
indices, smart ANN search algorithms 
approximately find the k nearest neighbors order(s) 
of magnitude faster.

Notice the use of approximation: the search 
algorithm may not return the exact k nearest 
neighbors. Occasionally, a few database 
embeddings that aren’t truly among the k nearest 
neighbors will sneak into the top-k. This is called 
recall loss. While recall loss generally isn’t ideal for 
the application, the majority of use-cases can 
tolerate some small recall loss — especially given 
the performance benefit it enables. For example, in 
a retail application offering product search, a small 
recall loss may occasionally cause a few 
less-relevant Stock Keeping Units (SKUs) to be 
returned, but this is acceptable since the vast 
majority of the returned items are highly relevant to 
the user request.

Part 1:
The basics of nearest neighbor search

Furthermore, the embedding models themselves 
also create recall loss because even the best 
models can’t perfectly capture the meaning of text 
and images. As we can see in the broader market, 
small recall losses haven’t hindered the delivery of 
amazing applications in the Gen AI era but large 
recall losses can impact user experiences.

The important achievement of ANN indices, which 
has made them ubiquitous, is that they can achieve 
order(s) of magnitude speed improvement with 
minimal recall loss. For example, a typical target of 
95% recall (equivalent to 5% recall loss) means that 
in, say, the top 20 results, on the average just one 
of the selected vectors won't be a true top 20 
nearest neighbor.

While the ANN space has produced multiple 
innovations, it is far from being a fully solved 
problem. As the applications grow in usage and 
their data grow ever bigger, users demand higher 
performance, better index update throughput, low 
memory footprint, and fast index creation. In 
addition, database users expect vector indexing in 
their SQL environment so that they access vectors 
along structured data with SQL and have the usual 
guarantees of transactional consistency.
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ScaNN (Scalable Nearest Neighbor) is the fundamental Google Research technology that AlloyDB uses for 
vector indexing. The release of ScaNN for AlloyDB leverages some of the ScaNN library techniques to 
accelerate vector index creation, to accelerate vector search and to deliver low memory footprint. We’ll cover 
the basics here but, for those interested in additional details, there are many articles on ScaNN published in 
prestigious research publications, including ICML and NeurIPS papers. ScaNN is also available in the Google 
Research Github repository.

ScaNN indices belong to the family of tree-quantization based ANN indices. In a nutshell, tree-quantization 
techniques learn a search tree together with a quantization (or hashing) function. When querying, the search 
tree is used to prune the search space while quantization is used to compress the index size and, thereby, 
speed up the scoring of the similarity (i.e., distance) between the query vector and the database vectors. We 
refer interested readers to this journal paper for a comprehensive survey on the topic. In the interest of 
presentation simplicity, we describe first the two-level tree and set aside the important Asymmetric Hashing 
(AH), Anisotropic Vector Quantization (AVQ) and spilling (SOAR) optimizations for later in this whitepaper.

Index construction

A two-level tree is made up of a root and of leaf nodes that branch from that root. Each leaf node          
includes a set of vectors that are close together in n-dimensional space. Each leaf node is associated with a 
centroid vector. The root of the tree comprises a list of all of the centroid vectors and pointers to the 
respective leaf nodes.

During index construction, centroids are first trained using sample vectors and a modified k-means algorithm. 
The centroids are chosen to (approximately) minimize the distances of the vectors from their closest centroid, 
i.e., from the centroid of their leaf node. Each vector v is then placed on the leaf node whose centroid is 
closest to the vector v. In that sense, each leaf corresponds to the part of the space that is closer to its 
centroid than to any other centroid. The illustration on the next page shows a two-level index over 
two-dimensional vectors. Of course, in practice, the dimensions are far more than two.

Part 2:
The basics of ScaNN

https://blog.research.google/2020/07/announcing-scann-efficient-vector.html
https://proceedings.mlr.press/v119/guo20h.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/0973524e02a712af33325d0688ae6f49-Abstract-Conference.html
https://github.com/google-research/google-research/tree/master/scann
https://github.com/google-research/google-research/tree/master/scann
https://ieeexplore.ieee.org/document/7915742
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The two-level tree idea generalizes to multiple 
levels: in a three-level tree, each second level 
node (often called branch node) has its own 
centroid and contains all the leaf level centroids 
that are closest to it, along with pointers to the 
leaf nodes.

Querying

Consider an example query. This query finds the 
20 tickets whose embedding vectors are closest 
to the provided parameter, which we call the 
query embedding (aka query vector).

SELECT id, user_text, incident_time
FROM tickets
ORDER BY embedding <-> ?
LIMIT 10

At query time, under the hood, AlloyDB ScaNN  
will compute the distance of each centroid from 
the query vector — note the discussion still 
assumes a two-level tree. The leaves 
corresponding to the closest centroids will be 
searched and the others won’t. The session 
parameter scann.num_leaves_to_search 
specifies how many leaf nodes will be searched. 
Let’s assume for this example that 
scann.num_leaves_to_search = 3. In the next 
diagram, our query vector is highlighted in blue 
and the three leaves chosen to search are in grey. 
That’s because their centroids were closest to the 
query vector.

Next, AlloyDB will compute the distance between 
the query vector and each vector in the selected 
leaf nodes and maintain a top-10 list, 
implemented using a priority queue. The final 
result is the 10 vectors within the blue circle. As is 
the case with any ANN index, the result may  
entail some recall loss. For instance, when we 
zoom in on the running example (below) we see 
that one of the exact top 10 isn’t included in the 
result because it belongs to a non-selected 
leaf node.

A two-level index over two-dimension vectors The centroids of the grey highlighted leaf nodes 
are closest to the (blue) query vector

Below and to the left of the query vector there is a 
database vector that should be in the top-10 but 
its leaf wasn’t selected



The structure of a node in ScaNN for AlloyDB
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The obvious way to improve recall is to raise the scann.num_leaves_to_search (number of leaf nodes that 
are searched). However, this has the expected tradeoff effect on latency and queries per second (QPS). This is 
why benchmarks present recall-QPS curves, where the QPS falls as the recall goes up. ScaNN has an ace up 
its sleeve on raising the recall, without raising the scann.num_leaves_to_search. But before we get on to 
such advanced techniques, let’s introduce how we incorporated the fundamental ScaNN algorithm into the 
ScaNN for AlloyDB index.

Putting it together in AlloyDB

ScaNN for AlloyDB brings the fundamental ScaNN index and algorithm into AlloyDB. This entails expanding it to 
work for large datasets, which exceed the memory size, by storing the tree in buffer pages like all other 
indexes. The updating of the index pages is transactionally consistent and thus the database user needn’t 
worry about whether the results of vector search reflect the latest state of the database.

Presently, the float32 vectors of pgvector are quantized into SQ8 (scalar quantized int8) vectors, which use 8 
bits per dimension. This reduces the index size and accelerates processing. In particular, the vectors are laid 
out in a contiguous fashion in storage to enable efficient distance computations. Each leaf node consists of a 
chain of buffer pages containing these contiguous SQ8 vectors. Root and branch nodes are laid out in the 
same way.
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As we discussed above, ScaNN for AlloyDB 
outperforms the graph-based pgvector HNSW in 
a large number of cases: up to 8× faster index 
creation, typically 3–4× smaller memory footprint, 
write throughput up to 10× higher, and vector 
queries that are up to 4× faster — despite not yet 
having incorporated all of the techniques of the 
fundamental ScaNN algorithm.

But more generally, the fundamental ScaNN 
algorithm typically outperforms graph-based 
algorithms in benchmarks. Let’s take a look.

The ScaNN library released by Google Research 
runs on x86 CPUs with AVX2 support and the 
index is in main memory. (Note, ScaNN for AlloyDB 
doesn’t require that the index fits in main 
memory.) In this main memory setting, ScaNN 
outperforms (in QPS, queries per second) all 
HNSW main memory implementations while using 
2–5× less memory. The only family that provides 
competitive search performance for relatively 
small datasets, the NGT family, has a 14× larger 
memory footprint and correspondingly larger 
index building times.

A more detailed performance picture below shows 
the results of the standard ANN-Benchmarks, the 
most popular benchmark for ANN 
implementations. These benchmarks plot the 
tradeoffs between recall and latency. Up and to 
the right is better: it means an implementation has 
higher recall at a similar QPS and higher QPS at a 
similar recall percentage.

Part 3:
Performance of ScaNN

Where do these performance gains come from? 
We dive deep into this question, starting with a 
comparison to graph-based indices.

Comparison of queries per second for multiple 
recalls. Up and to the right is better.

Source: Google Internal Data, April 2024

https://github.com/google-research/google-research/tree/master/scann
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Let us start with a quick primer of graph-based 
indexing. The pgvector HNSW index belongs to 
the family of graph-based indices. While 
graph-based indices come in multiple variations, 
they all share a common theme: the index is a 
graph whose nodes are the database vectors and 
whose edges connect neighboring database 
vectors, i.e., neighboring nodes. At search time, 
navigations start from entry points in the graph 
and move in the directions that minimize the 
distance to the query vector. HNSW maintains a 
priority queue, of size ef_search, that contains 
the nodes found to be nearest to the query vector 
thus far. As it traverses the graph, the algorithm 
evaluates the neighbors of the current node to 
see if any of them are closer than the nodes (i.e., 
database vectors) on the list so far.

Method ScaNN for AlloyDB pgvector HNSW

Family Tree-quantization based indexing.
Also includes Faiss, SPTAG.

Graph-based indexing.
Also includes HNSW, NGT, DiskANN (Vamana).

Index size Tree overheads are typically smaller. 
Quantization further reduces size.

Graphs have more edge connections therefore 
bigger index overhead.

Index 
time

Tree training and indexing are faster. The 
operation is of O(#vectors * #centroids).

Graph construction fundamentally requires 
many vector–vector comparisons.

Memory 
access

Vectors in tree leaves are stored contiguously. 
Memory access is more continuous and 
friendly to SIMD acceleration.

Graph walk beam search requires random 
memory accesses. NGT partially solves this by 
duplicating data in nodes, but leads to bloated 
indices.

Latency Constant search speed across queries. 
Typically configured to search a fixed number 
of leaves.

Varies more per query. Easy queries terminate 
early as nothing is left in the working set of 
beam search. But tail latency for harder 
queries could be higher.

Part 4: Comparison with
graph-based indices and HNSW

If so, these neighbors are added to the queue and 
it continues traversing the graph. The algorithm 
terminates when none of the neighbors of the 
nodes in the priority queue are closer to the query 
vector than the nodes in the priority queue 
themselves. Therefore, the ef_search plays a 
crucial role in the recall/QPS tradeoff: higher 
ef_search increases the number of navigations 
that are pursued, thus raising both the recall and 
the latency.

This table presents a summary of the ScaNN and 
HNSW approaches, while also making broader 
comments about other members of the 
graph-based family. We detail these points below.
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Comparison on ease of 
management and cost control

From an ease-of-use and management 
perspective HNSW is harder to cost control. At a 
high level, one might assert that “ef_search is 
to graph-based search what 
scann.num_leaves_to_search is to 
tree-based search” because they both control 
recall. However, this isn’t a fair comparison 
because scann.num_leaves_to_search comes 
with a performance guarantee. It produces 
predictably low latency (and thus QPS) because it 
specifies how many nodes are visited and nodes 
are of more-or-less similar size. In contrast, the 
HNSW convergence time is variable: it may be 
lucky and quickly reach the result nodes, or it may 
go into long sequences of replacing the 
candidates in the priority queue with 
just-a-little-bit-better candidates and thus 
reaching the convergence point much slower.

Memory footprint 
and indexing performance

ScaNN has much lower memory footprint than 
HNSW for a simple fundamental reason: in 
addition to the vectors themselves, ScaNN only 
stores the centroids — which are far fewer than 
the vectors themselves. Since >100 vectors per 
leaf node is a reasonable aim, it follows that the 
centroid overhead is around 1% of total vector 
size. In contrast, HNSW has to represent multiple 
edges per node. For example, the HNSW index 
that is tuned for the Glove-100 ANN-benchmark 
has 20 edges per node.

The difference between the memory footprints of 
the indices has to be carefully considered when 
the customer chooses between ScaNN for 
AlloyDB and HNSW: it may be the case that the 
ScaNN index is small enough to be cached in 
memory, while only a small part of the HNSW 
index will be cached. Then, the HNSW 
performance will become IO-bound while ScaNN 
will be CPU-bound. Moreover, in cases where both 
HNSW and ScaNN are IO-bound, the distinction 
between random IO access vs. sequential IO 
access is critical. Furthermore, real workloads are 
mixed — they will typically not just be pure vector 
search. The other parts of the workload also 
benefit from more memory.
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The smaller size of the index also pays off on 
indexing time. Furthermore, the index 
construction algorithm of ScaNN is running a 
modified k-means algorithm, thus having 
O(#centroids * #vectors) algorithmic complexity 
rather than the graph algorithms, which compare 
many pairs of vectors. Indeed, generally (and 
unsurprisingly) the tree-quantization family at 
large does better on index size and indexing time 
than the graph family.

Query performance

Even the first version of ScaNN for AlloyDB, with 
only a subset of ScaNN techniques, can beat 
HNSW by up to 4× in query performance in 
benchmarks. Similarly, the ScaNN library 
outperforms the graph-based family on main 
memory implementations, with notable partial 
exceptions of

To graph aficionados these query performance 
results may appear counterintuitive. After all, the 
larger size of the graph-based indices (which is 
due to the many edges) should confer an 
advantage to graph-based algorithms: there are 
multiple paths leading to a result node. If a path 
from an entry point towards a result node gets 
stuck in a local minimum of distance from the 
query vector, there is still a second path, a third 
path, and many more paths that may fare better. 
In contrast, tree-based algorithms have a single 
path from the root to each result node and ScaNN 
with spilling is usually configured to have two 
paths, essentially placing each vector in two leaf 
nodes. How can they do even better? At a high 
level, the answer is twofold:

Geometry awareness: while graph-based 
algorithms are only aware of distances, ScaNN 
is aware of the geometry behind these 
distances and exploits this knowledge to (a) 
produce better clustering and (b) to 
strategically position the (usually) two copies 
of each vector so that if one copy fails to be 
retrieved, the other copy will have an 
extremely high chance of being retrieved.

CPU-friendliness: ScaNN is friendly to modern 
CPU architectures and, in particular, to their 
parallelism using Single Instruction Multiple 
Data (SIMD). This enables “brute forcing” the 
evaluation of many more candidates.

the NGT sub-family that 
ties/beats ScaNN, but with 14× 
bigger memory footprint and

performance at extremely 
high recalls (98%+) for 
moderately-sized data where 
graph-based algorithms 
occasionally outperform ScaNN, 
but the latter regains its 
advantage when it is instructed to 
employ spilling. With spilling, each 
vector is placed in multiple 
(usually two) positions in the index
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Next, we elaborate on these geometry aware and CPU-friendly innovations and introduce the SOAR, AVQ and 
AH techniques employed by ScaNN.

CPU friendliness and SIMD

The vectors in tree leaves are stored in contiguous memory space and on-disk, which is friendly to the large 
caches and SIMD abilities of modern CPUs. In contrast, HNSW has to, in each step, access neighboring vectors 
that are randomly placed in memory. Interestingly, the NGT sub-family of graph-based indexing avoids HNSW’s 
random access problem by having copies of neighboring vectors on each node/vector. Thus, NGT achieves 
much higher query performance — winning or losing against ScaNN by a small margin for small datasets — but 
at the price of 14× larger memory footprint than ScaNN, which precludes the use of NGT for non-small 
datasets. Moreover, we aren’t aware of a PostgreSQL implementation of NGT.

The utilization of SIMD is further optimized by quantizations, which are compact approximate 
representations of the vectors. Every quantization speeds up the computation of the distance between a 
candidate vector (i.e., a vector in one of the selected leaf nodes) and the query vector, while causing minimal 
recall loss. The present release of ScaNN for AlloyDB uses the SQ8 quantization, which uses 8 bits per 
dimension. It turns out that the recall loss caused by the fewer bits is usually around 1% for modern use cases.

The Asymmetric Hashing (AH) feature of ScaNN is a far more sophisticated quantization, though it isn’t yet part 
of ScaNN for AlloyDB. Asymmetric Hashing entails splitting each vector into segments1 and each segment is 
approximated by the closest vector in a so-called code book. By doing so, ScaNN no longer engages in the 
expensive multiplications between query vector q and each candidate vector v. Rather, it multiplies segments 
of the query vector with the segments in the code book, thus producing a query code book, and then it 
approximates the q * v product by looking up and summing the relevant pieces from the query code book. It 
turns out that since 2013 CPUs can do this lookup in parallel. It is a testimony to the AH efficiency that the 
ScaNN deployments systematically find that their bottleneck is the main memory bandwidth and not the (SIMD 
optimized) CPU operations!

The power of geometry awareness

ScaNN has geometric awareness of the nature of the distances. This awareness is evident in optimizations that 
guide the placement of edges in the tree. Indeed, it is interesting to contrast these geometry aware 
placements with the purely distance-minded placement of edges by graph-based algorithms. We will first 
describe the Anisotropic Vector Quantization (AVQ) and its initially surprising, yet intuitive once you account for 
geometry, answer to the question “to which leaf/centroid c I should connect a vector x”. Then we will 
discuss spilling and its geometry aware way of essentially creating two paths to each vector, by smartly placing 
a second copy of each vector on another leaf.

1It also entails linearly transforming the vector. See here.

Part 5:
Key Innovations

https://arxiv.org/abs/1908.10396
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Anisotropic vector quantization 
(AVQ)

The classic approach of tree-quantization indices 
was to place each vector on the leaf node of the 
nearest centroid. This is based on the premise that 
the distance between the query vector and the 
database vector is usually well approximated by the 
distance between the query vector and its nearest 
centroid. However, the existence of recall loss tells us 
that this approximation isn’t always perfect; 
sometimes a database vector that is itself very close 
to the query vector (and thus should be in the result) 
is missed because its centroid isn’t so close to the 
query vector and other centroids/leaves are chosen.

Anisotropic Vector Quantization (AVQ) produces a 
more efficient assignment of vectors to 
leaves/centroids by having a key intuition that the 
classic approach ignores: most vector searches are 
looking for a tiny percentage of very relevant vectors 
among millions or billions in the database. The query 
vector, the chosen centroids, and the exact result 
vectors are thus close. Therefore, we care that a 
centroid best approximates the distance between its 
leaf vectors and query vectors in the case where the 
query vectors are very close. Note that this is 
different from the classic approach, which essentially 
optimizes the average approximation of distance 
over all possible query vectors as if all query vectors 
(both the near ones and the far ones) matter the 
same. They don’t!

To see the difference between the classic 
approach and the AVQ approach, consider the 
example in the diagram on the right. Suppose we 
have an index to assist in vector search using inner 
product. We have the two vectors x1 and x2 of the 
image on the right and we need to      assign each 
one either to a leaf with centroid c1 or to a leaf with 
centroid c2. The classic answer to this decision 
problem is to connect x1 to centroid(x1) = c2 and 
connect x2 to centroid(x2) = c1 because x1 is closer to 
c2 and x2 is closer to c1. But this is suboptimal! The 
optimal connections are x1 to c1 and x2 to c2. To 
realize why, think of the  query vector q, which is 
close to these vectors and centroids.

The goal is to make the inner product <q, 
centroid(xi)> as similar to the inner product <q, xi> 
as possible so that the best centroid/leaves are 
chosen. This can be visualized as making the 
magnitude of the projection of centroid(xi) onto q 
as similar as possible to the projection of xi onto q. 
This is illustrated in the figure below and leads to 
the opposite result: centroid(x1) = c1 and 
centroid(x2) = c2.

We see that direction matters as well as 
magnitude — even though c1 is farther from x1 
than c2, c1 is offset from x1 in a direction almost 
entirely orthogonal to x1, while c2’s offset is 
parallel (for x2, the same situation applies but 
flipped). It turns out that error in the parallel 
direction is much more harmful in the inner 
product vector search because it 
disproportionately impacts high inner products, 
which by definition are the ones that we want to 
estimate as accurately as possible. Thus, ScaNN 
indices more significantly penalize the parallel 
distance from the centroid.

⟨q, centroid(𝑥2)⟩
⟨q, 𝑥1⟩

⟨q, 𝑥2⟩
⟨q, centroid(𝑥1)⟩

𝑥1

c2

q

c1

𝑥2

⟨q, centroid(𝑥1)⟩

⟨q, 𝑥1⟩
⟨q, 𝑥2⟩

⟨q, centroid(𝑥2)⟩

𝑥1

c2

q

c1

𝑥2

Assigning vectors to the nearest centroid isn’t 
always right!
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Spilling with Orthogonality 
Amplified Residuals (SOAR)

While AVQ improves clustering, there will be some 
queries that have nearest neighbors that are very 
difficult to find. ScaNN for AlloyDB uses the SOAR 
technique to circumvent this problem via 
redundancy: it places each database vector x into 
two leaf nodes so that when a query vector q 
(that is a near neighbor of x) fails to find the first 
leaf, the probability that it will find the second leaf 
becomes much higher. Note, this isn’t a naive 
application of redundancy — as it would be the 
case if ScaNN simply chose the two nearest 
centroids to the database vector x and placed x in 
the respective leaf nodes. Rather, after ScaNN 
inserts the database vector in a first leaf, the 
SOAR technique chooses the second leaf in a 
geometry aware way that maximizes the chances 
that the second leaf will be found by queries that 
missed the first leaf.

To understand the choice of the two placements, 
it is worth understanding why there will always be 
some query vectors q that will miss a database 
vector x even if x is very close to q. Consider 
centroids c1 and c2, the database vector x, two 
queries q1  and q2  (as in the images on the right) 
and inner product distance. For q1, c2 provides a 
better inner product estimate (i.e., <q1,c2> is a 
better estimate of <q1,x> than <q1,c1>). But for q2 it 
is the other way around.

Essentially, the approximation of each database 
vector by its assigned centroid is at its worst when 
the vector-centroid residual is parallel to the 
query. Therefore, SOAR chooses leaf nodes to 
assign the database vector in a way that 
maximizes the probability that when the 
vector-first centroid residual is parallel for a 
query, the vector-second centroid residual will be 
more orthogonal to this query and, thereby, 
provide a better approximation. (It is good news 
that in high-dimensional spaces, unlike our 2D 
examples, there are plenty of ways to be 
orthogonal to a direction!)
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q2

c1 𝑥

⟨q, 𝑥⟩

⟨q, c1⟩

⟨q, c2⟩

q1

c2

𝑥c1

⟨q, c1⟩ ⟨q, c2⟩ ⟨q, 𝑥⟩



AlloyDB now gives you the richest set of native vector search options 
in SQL databases, by offering both the graph-based pgvector HNSW 
and the pgvector-compatible ScaNN for AlloyDB based on tree 
quantization. This is just the beginning of a journey which brings 
these and other vector innovations to our AlloyDB users.

Conclusion


