
Build scalable and trustworthy
data pipelines with dbt and
BigQuery

Rabi Abbasi and Maruti C

1. Abstract 2
2. What is BigQuery 3

2.1. How does BigQuery Work 3
2.2 Bene�ts of using BigQuery 5

3. What is dbt 6
3.1 Why dbt ? 6
3.2 dbt Cloud 7
3.3 Documentation and Dependency Handling 8
3.4 Making Code Modular Using Macros 9
3.5 Jumpstarting dbt development with Packages 10
3.6 Document as you code with dbt 10
3.7 Centrally de�ned business metrics 11
3.8 Resources for Learning More 11

4. Customer Use Case 11
5. Data Architecture for dbt and BigQuery 12

5.1 Typical data warehousing pipeline for BigQuery 12
5.2 Organizing BigQuery Resources 14

5.2.1 Environment Setup 14
5.2.2 Single BigQuery project 15
5.2.3 Uni�ed source project & environment conformed projects 16
5.2.4 Uni�ed source project & business conformed projects 16

5.3 dbt Projects 17
5.4 Additional Considerations 18

6. Audit and Security 18
6.1 Connecting BigQuery to dbt Cloud 18
6.2 Set up Role Based Access Controls (RBAC) 19
6.3 Managing Encryption 19
6.4 Access Management 19
6.5 Working with Sensitive Data 20
6.6 Logging 21
6.7 Labels and Tags 21

7. Optimizing Performance 22
7.1 Identify Bo�lenecks 23
7.2 Optimising Joins 24
7.3 Partitioning 24

7.3.1 Improve query performance and reduce cost on large table joins 25
7.3.2 Control costs in your dbt development environment 26
7.3.3 Reduce table storage cost 27

7.4 Clustering 27
7.5 Date Sharded Tables 28
7.6 Denormalization 28
7.7 Merge Behaviour 29
7.8 Materialized Views 31
7.9 Writing e�ective SQL using DRY principles 31
7.11 Cache queries using BI Engine 32
7.12 Using Bigquery ML and dbt 33

8. Billing & Resource Management 33
8.1 Estimate 34
8.2 Monitor 34
8.3 Optimize 35

9. Appendix 36
9.1 Key Concepts and Terminology 36

1. Abstract
Data is collected by every organization, which gives us the opportunity to do something useful
with it: make informed decisions, solve problems and drive business growth. To deliver on
these outcomes, It is essential to have high performing data assets which are trusted across
the organization.

BigQuery is a petabyte scale data warehouse that empowers us to answer di�cult questions
expressed in SQL queries. dbt is a transformation work�ow tool that helps data practitioners
transform, test, document and deploy their data in BigQuery and other data warehouses. With
dbt, analytics engineers are able to deliver well-de�ned, transformed, tested, documented,
and code-reviewed data sets in BigQuery, making collaboration and maintenance easier.

This whitepaper presents key concepts of BigQuery and dbt and talks about the best practices
for utilizing their combined power to build scalable and trustworthy data pipelines.

2. What is BigQuery

Bigquery is a fully managed, serverless, highly scalable enterprise data warehouse, designed to
handle large-scale datasets and analytics workloads with zero infrastructure management. It is
well-suited for organizations that need to analyze data quickly and cost-e�ectively. The query
engine allows the execution of ANSI SQL which is a widely adopted data processing language.

BigQuery maximizes �exibility by separating the compute engine that analyzes your data from
the underlying storage layer. This allows the distributed analysis engine to query terabytes in
seconds and petabytes in minutes.

BigQuery o�ers an industry leading 99.99% uptime SLA. BigQuery automatically stores copies
of your data in two di�erent Google Cloud zones within a single region in the selected location.
In addition to storage redundancy, BigQuery also maintains redundant compute capacity
across multiple zones. By combining redundant storage and compute across multiple
availability zones, BigQuery provides both high availability and durability

BigQuery has robust security measures in place to protect your data, while also providing the
controls and compliance certi�cations required to meet the needs of regulated industries and
organizations handling sensitive data.

2.1. How does BigQuery Work

BigQuery’s serverless architecture decouples storage and computation and allows them to
scale independently. This o�ers both immense �exibility and cost controls for customers
because they don’t need to keep their expensive compute resources up and running all the

https://www.getdbt.com/what-is-analytics-engineering/
https://cloud.google.com/bigquery/sla
https://cloud.google.com/docs/geography-and-regions#regions_and_zones

time.

Under the hood, BigQuery uses a range of multi-tenant services powered by Google's
advanced infrastructure technologies such as Dremel, Colossus, Jupiter, and Borg. Let’s
discuss each of them in more detail.

Dremel: The Execution Engine

Dremel converts SQL queries into an execution tree for e�cient data processing. The leaves of
the tree are 'slots' for heavy data reading and computation, slot is a unit of compute resource
that is equivalent to a single CPU core and the branches are 'mixers' for aggregation, with
'shu�e' for rapid data transfer.

Dremel is widely used across various Google services , so there’s great emphasis on
continuously making Dremel be�er. BigQuery users get the bene�t of continuous
improvements in performance, durability, e�ciency and scalability, without downtime and
upgrades associated with traditional technologies.

Colossus: Distributed Storage

BigQuery relies on Colossus, Google’s generation distributed �le system. Colossus also
handles replication, recovery (when disks crash) and distributed management (so there is no
single point of failure). BigQuery leverages the ColumnIO columnar storage format and
compression algorithm to store data in Colossus in the most optimal way for reading large
amounts of structured data.

Colossus uses a mix of �ash and disk storage to meet di�erent access pa�erns and
frequencies. Hot data is stored on �ash to reduce latency whereas Disk-based storage is
intelligently managed to avoid overprovisioning and wasted disk IOPs. Data is evenly
distributed across all drives and then moved to larger capacity drives as it becomes colder.
This strategy maximizes storage e�ciency and works well for analytics workloads where data
tends to cool o� over time.

In addition, Colossus uses Colossus Flash Cache, which is an intermediate cache layer that
improves the performance and reliability of Google's services by reducing the number of hard disk
reads. It is a cost-e�ective way to increase IO capacity and reduce latency. The underlying storage
infrastructure caches data in Colossus Flash Cache based on access pa�erns. This way, queries
rarely need to go to disk to retrieve data; the data is served up quickly and e�ciently from Colossus
Flash Cache.

Colossus enables applications and clusters to scale to exabytes of storage and tens of
thousands of machines seamlessly, without paying the penalty of a�aching much more
expensive compute resources — typical with most traditional databases.

Borg: Compute

https://research.google.com/pubs/pub36632.html
https://cloud.google.com/blog/products/data-analytics/inside-bigquerys-serverless-optimizations

Google's Borg system is a cluster manager that runs hundreds of thousands of jobs, from
many thousands of di�erent applications, across a number of clusters each with up to tens of
thousands of machines. Borg is Google’s precursor to Kubernetes, which is open-sourced by
Google to help enterprises automate the deployment, scaling, and management of
containerized applications.

BigQuery is orchestrated via Borg. Borg is responsible for allocating compute resources to
BigQuery jobs. When a user submits a SQL query to BigQuery, Borg will �rst determine how
many slots are needed to execute the query. Borg will then allocate the requested number of
slots to the BigQuery job.

Jupiter: The Network

The compute and storage in BigQuery are physically separated and the ‘shu�e’ process, that is
between the storage and compute layer, takes advantage of Google's constantly evolving
Jupiter network to transfer data rapidly between locations. This high-speed, low-latency
network is made up of a distributed network of nodes. Each node is interconnected with other
nodes via high-speed links. This network architecture allows for the rapid transfer of data
between the compute and storage resources

Jupiter can now handle over 6 petabytes per second of data center bandwidth. Compared to
other leading alternatives, the Jupiter network consumes 40% less power, incurs 30% lower
costs, and experiences 50 times less downtime, all while reducing the �ow completion by 10%
and improving throughput by 30%.

Figure 2.2.1: BigQuery’s serverless architecture.

2.2 Bene�ts of using BigQuery

Some of the bene�ts for organizations that use BigQuery include:

http://research.google.com/pubs/pub43438.html
https://kubernetes.io/

Easy access: You can load a variety of formats of data including Parquet, Avro, CSV and JSON
�les into BigQuery from a variety of sources, as well as other Google Cloud services like Cloud
Storage. External tables allows access to external data including Amazon S3 and Azure blob
storage using BigQuery omni and and federated queries allows querying data in place from
databases like cloud spanner and cloud SQL without directly loading it to BigQuery tables,
making sourcing data easier.

Working with large datasets: BigQuery is highly scalable and can work with datasets either
they are megabytes or petabytes in size, making it a cost e�ective choice for data
warehousing and big data analytics. The capacity pricing model which takes advantage of
BigQuery editions and the on-demand pricing model gives you the �exibility to choose
between ad-hoc or predictable capacity workloads.

Machine learning: BigQuery ML lets you create and execute machine learning models in
BigQuery using standard SQL queries. BigQuery democratizes machine learning by le�ing SQL
practitioners build models using existing SQL tools and skills. It increases development speed
by eliminating the need to move data. Furthermore, BigQuery closely integrates with Vertax AI,
and solves the need for customers which prefers a uni�ed data and AI pla�orm.

Securing data and complying with international privacy regulations: access control
mechanisms including roles-based access control allows organizations to �ne-tune access to
data based on user needs. Bigquery encrypts all data at rest and transit using AES-256
encryption. If your organization requires meeting regulatory compliance, BigQuery meets
standards for HIPAA, ISO 27001, PCI DSS, SOC 1 Type II, and SOC 2 Type II, among others.

Sharing data: Authorized view lets you share query results with particular users and groups
without giving them access to the underlying source data. An authorized dataset lets you
authorize all of the views in a speci�ed dataset to access the data in the shared dataset.
Additionally, Analytics Hub allows e�cient exchange of data across the organization either
internally and externally.

3. What is dbt

dbt is a transformation work�ow tool that is used to modularize and centralize your analytics
code, while also providing your data team with guardrails typically found in so�ware
engineering work�ows. It allows you to collaborate on data models, version them, and test and
document queries before safely deploying them to production, with monitoring and visibility.

You can choose dbt as a Core or Cloud o�ering. dbt Core is an open source command line
framework that enables data teams to transform data while maintaining the infrastructure
themselves. dbt Cloud is a managed service from dbt Labs. dbt Cloud provides a web-based

https://cloud.google.com/bigquery/docs/editions-intro
https://cloud.google.com/bigquery/docs/introduction

IDE, job orchestration, and data observability features for the fastest and most reliable way to
deploy dbt, it runs in all cloud providers including Google Cloud..

3.1 Why dbt ?

Collaboration: dbt creates a common ground for everyone in the data team to work together
more e�ciently, providing:

● Built-in Git integration so teams can work in parallel and manage code changes
e�ciently

● A testing framework to help developers validate assertions about their models during
and a�er development.

● Hosted, auto-generated documentation to enable business users to discover and
understand data assets created in a dbt project

● Support for code modularity via Jinja and macros, so teams can share, reuse, and
build upon existing code more e�ciently, reducing redundant work.

Orchestration/Automation: dbt Cloud allows teams to automate the execution of their pipeline,
making it easier to schedule and run data pipelines on a schedule. dbt webhooks can be used
to build continuous integration pipelines, allowing pull requests to be tested before merging,
while Slim CI allows for further re�nement by allowing you to run and test models based on the
state and selection criteria.

Monitoring:
dbt Cloud provides detailed execution logs, auditing and alerting features, making it easy to
keep track of your data pipeline's performance and troubleshoot any issues that may arise.

Security:
dbt uses a push down approach to analytics, doing all the calculations at the database level,
making the entire transformation process faster, more secure, and easier to maintain. All
connections are encrypted by default. dbt meets all modern compliance standards including
SOC2 Type II, GDPR, ISO 27001�2013, ISO 27701�2019.

3.2 dbt Cloud
dbt Cloud is the fastest and most reliable way to deploy dbt. It provides a centralized
experience for teams to develop, test, schedule, and investigate data models—all in one
web-based UI (see Figure 3.2.1). dbt Cloud also eliminates the setup and maintenance work
required to manage data transformations in BigQuery at scale. A turn-key adapter establishes
a secure connection built to handle enterprise loads, while allowing for �ne-grained policies
and permissions.

To get started with dbt and BigQuery, you can install the BigQuery adapter for local
development on the command line or create a free trial dbt Cloud account to leverage the

https://docs.getdbt.com/docs/deploy/cloud-ci-job#configuring-a-slim-ci-job
https://docs.getdbt.com/dbt-cli/install/overview
https://www.getdbt.com/signup/

in-pla�orm IDE and scheduler. Note that adapters de�ne how dbt connects with BigQuery or
various supported data pla�orms.

Figure 3.2.1: dbt Cloud provides a centralized experience for developing, testing, scheduling,
and investigating data models.

3.3 Documentation and dependency handling
A keystone of dbt’s functionality is the ref function. The ref function in dbt automatically
establishes a lineage from the dbt model being referenced to the model declared in the
reference. By using the ref function, dbt is able to (1) infer dependencies and (2) ensure that
the correct upstream tables and views are selected based on your environment. Always use
the ref function when selecting from another model, rather than using the direct relation
reference (e.g. my_schema.my_table).

When ref() is paired with the use of threads, dbt executes models following an optimal path
without requiring manual input. As you increase the number of threads for a run, dbt increases
the number of paths in the graph that it can work on at the same time, thus reducing the run
time of your project.

Models, sources, tests, and snapshots all represent nodes in dbt projects. By pairing threads
with dbt’s node selection, you can optimize your dbt run by only running what you need
without explicitly declaring the model build order. This makes it possible to limit commands to
only modi�ed models, or to restart from failure in parallel to running models.

https://docs.getdbt.com/docs/supported-data-platforms
https://docs.getdbt.com/reference/dbt-jinja-functions/ref
https://docs.getdbt.com/dbt-cli/configure-your-profile#understanding-threads
https://docs.getdbt.com/reference/node-selection/syntax

A sample dbt DAG: In this example, the user has declared in model dim_suppliers a reference to
stg_tpch_nations, stg_tpch_regions, and stg_tpch_suppliers. At time of a dbt run, if a user has
declared 3 threads, dbt would know to execute the �rst three staging models prior to running
dim_suppliers. By specifying 3 threads, dbt will work on up to 3 models at once without
violating dependencies – the actual number of models it can work on is constrained by the
available paths through the dependency graph.

In dbt, you can name and describe data loaded into BigQuery by declaring it as a source. This
allows you to:

● Create dbt models that select from the source object
● Document dependencies between sources and downstream models via dbt's data

lineage DAG
● Set up validations, tests, and other quality controls for sources — such as source

freshness checks

https://docs.getdbt.com/reference/commands/source
https://docs.getdbt.com/reference/commands/source
https://docs.getdbt.com/reference/commands/source

A sample dbt DAG including a source node: The green node here represents the source table
that stg_tpch_nation has a dependency on.

3.4 Making code modular using macros
In dbt, you can combine SQL with Jinja, a templating language similar to Python syntax. Jinja
provides a way to apply environment variables and use control structures (like if statements
and for loops), extending what is possible with SQL alone.

Macros are pieces of code wri�en with Jinja that can be reused throughout the dbt project.
They are analogous to functions in other programming languages, allowing you to de�ne code
in one central location and re-use it in other places. The ref and source functions mentioned
above are examples of Jinja.

Macros are useful for:

● De�ning environmental logic
● Operationalizing BigQuery administrative tasks like grant statements
● Removing deprecated objects systematically
● Reducing code redundancies

3.5 Jumpstarting dbt development with packages
dbt packages are libraries of open-source models and/or macros that help automate or
simplify common routines. The package hub is a directory of packages maintained by
members of the dbt community, including:

● Modeling methods for common data sources, like Facebook Ads or Netsuite
● Data assertions and validations that go beyond dbt’s standard tests
● dbt_ml, to help with training, auditing, and using BigQuery ML models
● dbt_utils, a package that automates data-modeling routines such as creating a date

spine, unpivoting columns, and more.

https://docs.getdbt.com/docs/building-a-dbt-project/jinja-macros
https://docs.getdbt.com/docs/build/jinja-macros#macros
https://docs.getdbt.com/docs/building-a-dbt-project/package-management
https://hub.getdbt.com/
https://hub.getdbt.com/fivetran/facebook_ads/latest/
https://hub.getdbt.com/fivetran/netsuite/latest/
https://hub.getdbt.com/calogica/dbt_expectations/latest
https://hub.getdbt.com/kristeligt-dagblad/dbt_ml/latest
https://github.com/dbt-labs/dbt-utils

Users can add hub packages to their dbt project by adding the package name and version to
the `packages.yml` �le and running `dbt deps`. Once done, they can use macros and models
from the package throughout their project using the normal ref and macro syntax. For private,
local, or git packages not in the dbt package hub, follow package installation directions
provided here.

Many teams also create and share internal packages to help standardize logic and de�nitions
across multiple dbt repositories.

3.6 Document as you code with dbt

You can use meta �elds to establish owners for the components of your dbt project (sources,
models, tests, and macros). You can also use meta �elds to �ag objects that contain sensitive
data like PII, and to implement policies via data governance tools that integrate with dbt.

When de�ned, exposures represent downstream BI dashboards, applications, or data science
pipelines that rely on data transformed in your dbt project. De�ning exposures enables you to:

● Use dbt’s node selection syntax to run dbt commands that reference those exposures.
● Include the exposures in your dbt documentation & lineage graph. This can help with

identifying upstream resources (when debugging data issues) or downstream
dependencies (when deprecating a resource).

You can generate dbt documentation by running two CLI commands (dbt docs generate &&
dbt docs serve) and accessing the results through local host, or by navigating to the
“Documentation” section in dbt Cloud. You can also use the dbt Cloud Metadata API to send
the information over to partner data catalogs.

3.7 Centrally de�ned business metrics

The dbt Semantic Layer helps organizations eliminate inconsistencies and duplicate code
across downstream analytics tools. It enables teams to de�ne metrics in one central
data-modeling layer, and propagate that logic to BI pla�orms — ensuring that business logic
referenced anywhere will be exactly the same everywhere.

https://hub.getdbt.com/
https://docs.getdbt.com/docs/building-a-dbt-project/package-management
https://docs.getdbt.com/docs/building-a-dbt-project/package-management
https://docs.getdbt.com/docs/build/packages
https://docs.getdbt.com/reference/resource-configs/meta
https://docs.getdbt.com/docs/build/exposures
https://docs.getdbt.com/reference/node-selection/syntax
https://www.getdbt.com/product/semantic-layer/

Figure 3.7.1: Consistent metrics across data applications with dbt Semantic Layer

3.8 Resources for learning more

To learn more about using dbt and BigQuery:
● Get started with a guide for connecting to BigQuery and se�ing up a �rst dbt project.
● Go deeper with the dbt Fundamental course, featuring video instructions and

exercises.
● Use the essential dbt project checklist to compare your project to best practices.

4. Customer example: Viktor Myrvang

Viktor Myrvang is a data pla�orm team lead at Elvia, Norway’s largest distribution system
operator (DSO). Elvia is responsible for delivering power to over 2M people, or 40% of the
country’s population.

“We started using BigQuery when we rolled out a million smart meters, which collect data
every hour for all our customers. Using that data, we can map the grid load during the day and
determine how to optimize around it.” With BigQuery, Elvia could store the vast data volume.
But a�er a few years, the team realized the data in their warehouse was becoming
unmanageable.

“It was becoming increasingly hard to understand what data was there.” A�er evaluating
solutions, Elvia chose dbt Cloud to enable teams to own their code and build models from the

https://docs.getdbt.com/docs/get-started/getting-started/getting-set-up/setting-up-bigquery
https://courses.getdbt.com/courses/fundamentals
https://docs.getdbt.com/blog/essential-dbt-project-checklist

data in BigQuery. “We're heavily invested in infrastructure-as-code—with BigQuery and dbt,
we can automate most aspects of project admin, access, and quality.”

BigQuery provides an easy-to-use pla�orm, and dbt layers on development guardrails,
dependency tracking, documentation, and lineage. The combination of tools facilitates
widespread adoption of their data pla�orm while also embedding best practices across the
organization. Teams now reuse data products to build new assets, and frequent analytical
questions can be answered with li�le to no new work.

“Each data engineering, data science, and analytics team leveraging BigQuery and dbt allows
us to be�er understand our customer’s consumption and behavior; which ultimately in�uences
decisions on how we will develop Oslo and the surrounding region for the next 20 years.”

The remainder of this paper dives into the dbt and BigQuery best practices that Elvia and
thousands of other customers have leveraged to build scalable, high-performing data
pla�orms.

5. Data architecture for using dbt and BigQuery
together

Transforming data used to be a slow resource-intensive process. Modern cloud warehousing
has taken away these limits, allowing data transformation to happen in-place. We will discuss
the steps to build a modern data warehouse using the in-place transformation or ELT
approach.

5.1 Typical data warehousing pipeline for BigQuery

Data Ingestion: BigQuery o�ers multiple methods for data ingestion to help with di�erent use
cases , including batch loading a set of data records, streaming individual records in real time
or batches of records with microbatches in quasi real-time, using queries to generate new data
and append or overwrite the results to a table, and utilizing third-party applications and
services.

Choosing the right approach for data ingestion can help ensure optimal performance and
e�ciency in analyzing and processing data with BigQuery.

When choosing a data ingestion method, consider:

https://cloud.google.com/bigquery/docs/loading-data

● File Formats: Self describing �le formats like Avro or Parquet are recommended. They
reduce the overhead of maintaining separate schema �les and allow for performant
data processing.

● Schema Identi�cation: Do not use the BigQuery auto-detect schema on source �les
for long term use as it can introduce uncertainty in your pipeline. If the data source
requires a schema, then explicitly provide it.

● Encoding: Stick to UTF-8 encoding for both nested and �at source data. This eliminates
the need to convert/translate the data encoding later on.

● Compression: JSON and CSV �les are not natively compressed. Consider compressing
them for transfer bandwidth control and long term storage.

● Pricing: BigQuery does not charge for loading batched datasets but you will be
charged for the amount of data stored and queried.

● External Data: By using external tables you are able to use data that is external to
BigQuery. However, be mindful of the performance impact.

● Streaming Ingestion: Consider using pubsub BigQuery subscriptions for a simpler
streaming setup.

dbt supports the external tables package to help create/replace/refresh external tables, using
the metadata provided in the .yml �le source de�nitions. This enables you to de�ne GCS �les
and external raw data as dbt sources without relying on any upstream processes.

Data Processing: Data processing refers to the transformation of raw data into usable
information. This can include operations like cleaning, enriching, and aggregating data to ease
analysis.

dbt helps teams collaborate on this process, with safeguards like version control, testing and
documentation of your queries, allowing you to safely deploy them to production, with monitoring
and visibility.

Data Visualization/Consumption: A�er data is cleaned and prepared, it can be:
● Visualized in products like Google's Looker and Looker Studio
● Fed back to upstream applications via Reverse ETL, to enrich user experience
● Used to train machine-learning models

https://hub.getdbt.com/dbt-labs/dbt_external_tables/latest/

Figure 5.1.1: Ingestion, Process and Consumption stages of a typical data warehouse pipeline
and where dbt �ts in the life cycle.

5.2 Organizing BigQuery resources

BigQuery resources are organized in a hierarchy. You can use this hierarchy to manage aspects
of your dbt + BigQuery workloads such as environments, permissions, quotas, slot
reservations, and billing.

When deciding on which setup is best for you, consider:
● Current team size and expected growth
● Number and growth of dbt models, and BigQuery quota limitations
● Access Management overhead
● Billing Requirements (Uni�ed or Per Vertical/Function)

5.2.1 Environment Setup

You can use environments in BigQuery and dbt to test data before exposing it to end-users
and the applications they interact with.

Teams typically take one of these two approaches to quality assurance (QA):
1. Test in a development environment before promoting code to a production

environment.

https://cloud.google.com/bigquery/docs/resource-hierarchy
https://cloud.google.com/bigquery/quotas

2. Test in two environments — QA and development — before promoting code to a
production environment. Teams with integration tests, multiple reviewers, or other
complex QA requirements may prefer this work�ow.

For the purpose of this writeup, we will consider the simpler approach of managing QA
work�ows inside of the development environment.

5.2.2 Single BigQuery project

A simple monolithic project structure is used to contain all dbt and Bigquery artifacts. Billing is
uni�ed for development and production workloads but it can be di�cult to predict costs,
storage and compute. Access management, while easy to manage, can be di�cult to audit,
and can result in over provisioned access. Project might be at the risk of frequently hi�ing
quota limits. Figure 5.2.2.1, shows how to structure all datasets under a single project structure:

Figure 5.2.2.1: Environment setup with a single BigQuery project

● Raw Datasets: stages all raw source data. We suggest the datasets containing PII are
segregated from clean datasets. Clean or obscured datasets can be consumed for
development purposes while PII data is only exposed for production use.

● Dev Datasets: we suggest that dbt developers have their own sandbox/development
dataset, pre�xed with their name (ex. dbt_<username>), for development. In this space,
dbt developers can create, update, and delete models without the risk of impacting
others’ development spaces

● Prod Datasets: organize your production data objects by functions or verticals. To do
this, you can put your dbt models into di�erent production datasets. We recommend
using custom schemas. For example, you would call the schema that holds your
production marketing models prod_marketing. If it’s a core model needed by multiple
teams, you can name the schema prod_core

https://docs.getdbt.com/docs/building-a-dbt-project/building-models/using-custom-schemas

5.2.3 Uni�ed source project & environment conformed projects

A single project is dedicated to hosting all raw source data. Additional projects per
environment, such as testing and production are used to execute function/vertical aligned data
pipelines. This setup features simple access management and uni�ed billing. As a downside
the production project can hit BigQuery project quotas depending on demand, so consider
quota limit increase or consider a more granular approach as per section 5.2.4. Figure 5.2.3.1,
depicts a typical three project setup:

Figure 5.2.3.1: Environment setup with uni�ed source and environment conformed projects

● Raw Project: stages all raw source datasets.
● Dev Transformation Project: segregated sandbox/development environment for all dbt

developers where each dataset is pre�xed with their name (ex. dbt_<username>)
● Prod Transformation Project: segregated production environment where each dataset

is organized by function or vertical. No need to pre�x the dataset names by prod_ as
we already made that distinction at the project level.

● Use zero copy cloning to clone production datasets/tables into the development
environment. A table clone is a lightweight copy of another table and you are only
charged for storage of data that di�ers from the original table. Creating table clones
not only saves costs but speeds up the onboarding process, not requiring you to
rebuild all models from scratch. You can clone datasets by creating a custom macro:
use the dbt_utils.get_relations_by_pre�x function to iterate over the tables (see
example) and clone the dataset using dbt run-operation

● For compatibility with dbt, ensure datasets across projects are either all in one
multi-regional location (e.g. EU, US), or all in a speci�c regional location

5.2.4 Uni�ed source project & business conformed projects

https://cloud.google.com/bigquery/docs/table-clones-create
https://docs.getdbt.com/docs/build/jinja-macros#macros
https://github.com/christineberger/dbt-demo-bigquery/blob/demo/bigquery_clone/macros/clone_to_dev.sql
https://github.com/christineberger/dbt-demo-bigquery/blob/demo/bigquery_clone/macros/clone_to_dev.sql
https://docs.getdbt.com/reference/commands/run-operation

A single project is dedicated to hosting all raw source data. Each function/vertical has a
dedicated project for building and executing data pipelines. This approach features modular
project level access control management and function/vertical based billing: each department
is billed separately based on on-demand or �at-rate usage of that project.

Figure 5.2.4.1: Environment setup with uni�ed source and business conformed projects

We recommend that you unify the development and deployment environments to the same
project. Having another set of environment conformed projects can result in a complex
architecture, where access control can become increasingly di�cult to manage. The
development datasets follow the same naming standard ex. dbt_<username>, while the
production datasets are named as prod_<function/vertical>.

5.3 dbt projects

A dbt project is a collection of data transformations (stored in .sql or .py �les), tests,
documentation, and con�guration �les, linked to one source repository and database
connection. You can organize these resources under one project (mono repo) or split them
into multiple granular projects (multi repo).

We recommend using a single project for simplicity, unless you need to separate resources to
manage scale or meet security requirements.

For more on how to structure your dbt project, see the overview here.
The next big step forwards for analytics engineering, discusses the dbt multi project strategy
and what to expect in the near future.

https://docs.getdbt.com/blog/how-to-configure-your-dbt-repository-one-or-many
https://www.getdbt.com/blog/analytics-engineering-next-step-forwards/

5.4 Additional considerations

We recommend the following practices to maintain data quality, developer experience, and an
e�cient analytics work�ow:

● Use naming conventions for projects, tables, datasets, GCS buckets and data �les to
remove ambiguity and make data resources easier to discover.

● Use the simplest git branching strategy possible, to avoid adding complexity to
developer work�ow.

● Use a pull request template to help developers check for missing requirements before
submi�ing code for review. The template can improve developer e�ciency and ensure
everyone follows a shared standard.

● Use continuous integration to automate the process of testing code before it is
merged to production.

● Choose an orchestration tool like Google cloud’s cloud composer, apache air�ow or
other robust tools available to automate and coordinate with your dbt jobs. These tools
make it easier to manage and maintain them over time.

6. Audit and security

In this section we will cover the best practices for ensuring a secure and auditable data
pla�orm.

6.1 Connecting BigQuery to dbt Cloud
dbt provides two methods for securely connecting to BigQuery:

1. JSON key �le: This method allows non-Enterprise dbt account users to quickly and
accurately con�gure a connection to BigQuery. To use this authentication method:

○ Generate a JSON key�le using the BigQuery credential wizard
○ Upload the �le to dbt Cloud to auto-populate the relevant �elds in connection

se�ings of the Project
2. BigQuery OAuth: This method is available to dbt Enterprise accounts and provides an

extra layer of security by con�guring connections through OAuth. Credential requests
are made under the SSL protocol and access is granted through a transitory token. To
use this authentication method:

○ Create a client ID and secret for authentication with BigQuery

https://docs.getdbt.com/docs/deploy/cloud-ci-job#configure-ci-for-a-job
https://docs.getdbt.com/guides/orchestration
https://docs.getdbt.com/docs/get-started/getting-started/getting-set-up/setting-up-bigquery#connecting-to-dbt-cloud
https://console.cloud.google.com/apis/credentials/wizard
https://docs.getdbt.com/docs/collaborate/manage-access/set-up-bigquery-oauth
https://cloud.google.com/bigquery/docs/authentication

○ Provide it under the OAuth2.0 Se�ings section in connection se�ings

6.2 Set up role based access controls (RBAC)
By using role-based access control (RBAC) to manage database privileges in BigQuery, you
can assign di�erent privileges to roles and assign these roles to users to have more granular
control of user access. Role-based permissions can be generated dynamically from
con�gurations in an Identity Provider.

RBAC supports row level, and column level security. dbt Cloud o�ers RBAC for the dbt
experience on the enterprise tier, allowing administrators to control who has access to develop
the dbt project and alter job orchestration.

6.3 Managing encryption

BigQuery encrypts your content stored at rest. It handles and manages this default encryption
without any additional actions. However you may have regulatory or internal requirements
requiring you to manage your encryption yourself.

With customer-managed encryption keys (CMEK) you control and manage key encryption
keys that protect your data. While working with dbt you can supply the customer managed key
for one or group of models by providing the kms_key_name con�g.

It is recommended that you control compliance as an organization policy. This will ensure that
CMEK is always required for all resources in your BigQuery project.

6.4 Access management

You can share your data or provide users access to models using Authorized Views and Grants.

An authorized view allows data sharing without giving users access to the underlying objects.
It is also a great way to share data across BigQuery projects, making the users from the target
project responsible for the query costs. With dbt you can create an authorized view using the
grant_access_to con�guration.

Grants are a generic way (not BigQuery speci�c) to manage access for a set of users, groups,
or service accounts on models, seed, or snapshots. Service accounts should be granted the
permissions to authorize access to services in your automated pipelines. This will minimize
concerns about over-permissioning to users in production environments. Grants have two
components:

● Privilege: action to be performed, for example, select

https://cloud.google.com/bigquery/docs/access-control
https://docs.getdbt.com/docs/collaborate/manage-access/sso-overview
https://docs.getdbt.com/docs/collaborate/manage-access/enterprise-permissions
https://cloud.google.com/security/encryption/default-encryption
https://cloud.google.com/bigquery/docs/customer-managed-encryption
https://docs.getdbt.com/reference/resource-configs/bigquery-configs#managing-kms-encryption
https://docs.getdbt.com/reference/resource-configs/bigquery-configs#authorized-views
https://docs.getdbt.com/reference/resource-configs/grants
https://cloud.google.com/bigquery/docs/authorized-views

● Grantees: the user, group or service account to which the privilege is granted

If you need more custom/complex con�guration than what Grants allow, or need to apply
con�gurations to objects other than tables and views, consider using pre and post hooks in
dbt.

6.5 Working with sensitive data

BigQuery provides two options for managing sensitive data: column-level access control and
dynamic data masking. You can manage PII by creating column-level access enforceable
con�gurations or policy tags.

Start by identifying what needs to be tagged. Consider generating pro�les about your data
across all BigQuery objects using Cloud Data Loss Prevention. Cloud DLP is able to report
where sensitive and high-risk data reside.

Using BigQuery column-level access control, you can create policies that check whether a user
has proper access. Data masking is used to obscure column data, while still allowing users
access to the column. You can use data masking in combination with column-level access
control, to con�gure a range of access to data, based on the requirements of di�erent groups
of users.

The three important steps to enforcing access control are
1. Create policy taxonomies
2. De�ne data policy and policy tag
3. A�ach policy tag to columns

Steps 1, 2 can be automated using an Infrastructure as code (IaC) service like terraform. We
can use dbt to a�ach the policy tags on models. dbt enables this feature as a column resource
property as shown in Code snippet 6.6.1.

models:
- name: orders
columns:

- name: credit_card_number
policy_tags:

- 'projects/<gcp-project>/locations/<location>/taxonomies/<organization>/policyTags/<tag>'
Code snippet 6.6.1: se�ing BigQuery policy tags

6.6 Logging

https://docs.getdbt.com/reference/resource-configs/pre-hook-post-hook
https://cloud.google.com/bigquery/docs/column-level-security-intro
https://cloud.google.com/bigquery/docs/column-data-masking-intro
https://cloud.google.com/dlp
https://cloud.google.com/dlp/docs/sensitivity-risk-calculation

With dbt Cloud you can view and retain execution and audit logs. Execution logs provide model
level execution details. The audit log includes details such as who performed an action, what
the action was, and when it was performed.

BigQuery also provides audit logs for insight into operational concerns related to your use of
Google Cloud services. It reports resource interactions such as which tables were read from
and wri�en to by a given query job. Additionally, audit logs can be streamed to BigQuery to be
queried with standard SQL.

Consider consolidating the dbt logs in Cloud Logging. You can do this by fetching the logs
from a dbt job, using the dbt Cloud API. Since cloud logging is searchable, this can be a useful
tool for the operations team to quickly identify issues across your pipeline.

6.7 Labels and tags

A label is a key value pair that can be added to a resource in BigQuery. Labels are searchable
and are a great way to organize tables/models (Figure 6.7.1). Common examples include se�ing:

● Sensitive data indicator: contains_pii:yes
● Refresh Interval: refresh:daily
● Model Type: type:incremental
● Environment: environment:production
● Vertical/Function/Team Label: team:marketing, vertical:�nance

Figure 6.7.1: Labels are searchable in BigQuery Explorer and Dataplex

A tag is a label without any key values. Tags are useful where you are labeling a resource and
do not need the key-value format. As an example, if you want to indicate that a table should
only be used for testing purposes, you can add a for_testing_only tag to it. dbt Models support
labels and tags as shown in Code snippet 6.7.1.

https://docs.getdbt.com/docs/collaborate/manage-access/audit-log
https://cloud.google.com/bigquery/docs/reference/auditlogs
https://cloud.google.com/logging
https://docs.getdbt.com/dbt-cloud/api-v2
https://docs.getdbt.com/reference/resource-configs/bigquery-configs#labels-and-tags

{{
con�g(

materialized = "table",
labels = {'contains_pii': '', # BQ Tag (not to be confused with Policy Tag)

'refresh': 'daily'}, # BQ Label
tags=["daily"] # dbt Tag (not to be confused with dbt Tag)

)
}}
Code snippet 6.7.1: se�ing BigQuery label and tag con�gurations

We recommend pairing dbt's node selection syntax with dbt tags instead of BigQuery labels
and tags, to ensure a consistent experience when running subsets of the DAG. Refer to Table
6.7.1 for recommendations on when to use which resource.

BigQuery job labels help with organizing, monitoring performance, and calculating the charges
incurred by a group of queries. dbt exposes this functionality through query-comments. It
parses the comments and sets them as labels for the executing queries. You can override the
default query comment macro and append a wide range of useful audit information to the
BigQuery job, enabling you to understand the performance characteristics of your dbt project.

Resource Common Use Case

Label Organizing and searching resources in Google Cloud. Use as function
speci�c key:value pairs

Job Label Aggregate billing per label, Auditing BigQuery jobs

Tag Organizing and searching resources in Google Cloud. Use as cross
function string values

Tag (dbt) Organizing and searching resources in dbt. Use for running parts of the
dbt work�ow.

Tag Resource /
Policy Tag

Column-level access control and masking

Table 6.7.1: Recommendations on using Label and Tag resources

7. Optimizing performance

In this section we explore a number of practices that should be considered during your
BigQuery & dbt development journey. Table 7.1, provides a summary of the best practices.

Link to bq:

Best Practice Why

https://docs.getdbt.com/reference/node-selection/syntax
https://docs.getdbt.com/reference/resource-configs/tags
https://cloud.google.com/bigquery/docs/adding-labels#job-label
https://docs.getdbt.com/reference/project-configs/query-comment#bigquery-include-query-comment-items-as-job-labels
https://docs.getdbt.com/reference/project-configs/query-comment#advanced-use-a-macro-to-generate-a-comment

Identify Bo�lenecks Look for optimization opportunities

Denormalize models Improve query performance

Optimizing joins Improve join performance

Partitioning Predict guaranteed costs and improve performance

Clustering Reduce costs (unguaranteed) and Improve query performance

Date Sharded Tables Avoid complex/depreciated con�gurations

Merge Behaviour Enhance incremental models

Materialized Views Pre compute complex logic (experimental)

Write modular SQL Create maintainable, modular and e�cient SQL

Avoid custom UDFs Prevent UDF overhead when possible

Data Caching using BI
Engine

Improve query performance in BI tools

Using BigQuery ML and
dbt

Use ML packages to increase modularity, velocity and
reliability for predictive analysis

Table 7.1: Summary of optimization best practices

7.1 Identify bo�lenecks
If you have already built your models and are considering performance optimisations, a good
place to start is by observing the Model timing tab in dbt Cloud and looking for bo�lenecks. In
Figure 7.1.1 we can quickly identify the fct_orders model as a great candidate for optimization.

The timeline statistics can then help you understand whether certain stages of a model/sql
dominate resource utilization. This is useful information which can help narrow down the best
practices which would be most bene�cial in optimizing the performance.

Using a custom query comment macro can also help monitor the performance characteristics
of your dbt project by making it easier to identify queries in the BigQuery query plan.

dbt Cloud also generates metadata on the timing, con�guration, and freshness of models in
your dbt project. The dbt Metadata API is a GraphQL service which supports queries on the
metadata, via the graphical explorer or the endpoint itself. Teams can pipe this data into their
data warehouse and analyze it like any other data source in a business intelligence pla�orm.

https://docs.getdbt.com/docs/dbt-cloud/using-dbt-cloud/cloud-model-timing-tab
https://docs.getdbt.com/docs/dbt-cloud/dbt-cloud-api/metadata/metadata-overview
https://metadata.cloud.getdbt.com/graphiql

Figure 7.1.1. Job model timing tab

7.2 Optimizing joins
To ensure e�cient performance, use the following best practices to avoid anti-query pa�erns
when joining data in BigQuery:

● Use unique join keys: Ensure join keys are unique and distinct. Avoid joining on
descriptive columns

● Optimize join order: When joining a large and a small table, BigQuery creates a
broadcast join, which sends the small table to every slot, to process against the large
table. Based on this behavior, you can optimize performance by using this logical order
in your common table expressions (CTE):

○ Place the largest table �rst
○ Place the smallest table next
○ Perform subsequent joins in order of decreasing size of the tables

● Cluster join keys: Optimize hash data shu�ing by co-locating or clustering data. Refer
to section 7.3 for more on clustering.

● Avoid self-joins: Self-joins square the number of rows, which results in poor
performance. Use window (analytic) functions instead.

● Avoid many-to-many cross joins: Avoid joins that generate more outputs than inputs.
As an alternative, pre-aggregate your data.

● Unbalanced joins: Data skew can occur due to uneven table partitions resulting in poor
performance. If there is a signi�cant di�erence between AVG and MAX compute times
in the query explain plan, your data is probably skewed. To remedy the issue, consider
using the incremental dbt materialization in favor of table/full refresh, ensuring you are
pre �ltering the data, and reevaluating the table partition type and column. Refer to
section 7.3 on choosing the optimal partitions for your tables

7.3 Partitioning

Partitioning allows BigQuery to split a table into multiple segments. Each of these segments
can be read selectively, making the data retrieval faster and cheaper. Consider partitioning to:

● Improve query performance and reduce cost on large table joins

https://cloud.google.com/bigquery/docs/reference/standard-sql/analytic-function-concepts
https://cloud.google.com/bigquery/docs/query-plan-explanation
https://docs.getdbt.com/docs/build/incremental-models
https://cloud.google.com/bigquery/docs/partitioned-tables

● Control costs in your dbt development environment
● Reduce table storage costs

7.3.1 Improve query performance and reduce cost on large table joins

Partitioning can help improve performance when a query requires multiple resource-intensive
joins and only a speci�c range of data is needed. Partitioning only works when data is �ltered
using literal values: selecting partitions using a subquery or �ltering on a non-partitioned
column won't improve performance. Approach partitioning with the following recommended
steps:

1. Identify and partition upstream dbt models
2. Use a common table expression (CTE) to �lter/prune the referenced upstream models
3. Join the �ltered tables and perform any data transformations
4. Return the transformed data

Refer to Code snippet 7.3.1.1, on how to write structured and optimized CTEs.

with orders as (
select * from {{ ref('stg_tpch_orders') }}
where order_date >= DATETIME("2019-01-01") # �lter the referenced partitioned tables early

),
line_item as (

select * from {{ ref('stg_tpch_line_items') }}
where commit_date >= DATETIME("2019-01-01") # always �lter on the partitioned column

to prune the partitions
),
�nal as (

select
order_key, ... from orders # transform and
inner join line_item # join the partition pruned tables

on line_item.order_key = orders.order_key
)
Select # return �nal query expression

order_key, ...from �nal
Code snippet 7.3.1.1: writing clean & performant CTEs for partition pruning

BigQuery supports three types of partitioning:

● Time-unit column: You can partition a table by any column with a data type of
TIMESTAMP, DATE, or DATETIME. This strategy is o�en used for marts models that
business users can query.

● Integer range: You can partition a table using a range of values on an integer column.
This approach is less common, as it can be tricky to con�gure the correct number of
non-skewed buckets without exceeding BigQuery’s partition limit (4,000).

● Ingestion time: You can partition a table by the ingestion time of the source data.

https://cloud.google.com/bigquery/docs/querying-partitioned-tables#pruning_limiting_partitions
https://docs.getdbt.com/terms/subquery
https://docs.getdbt.com/terms/cte
https://cloud.google.com/bigquery/docs/partitioned-tables#types_of_partitioning

BigQuery automatically assigns rows to partitions based on the time when BigQuery
ingests the data. You can choose hourly, daily, monthly, or yearly granularity for the
partitions.

In order to avoid partition skew and consequent performance overhead, do not select partition
columns which are at a risk of creating unbalanced partition sizes as data grows.

The dbt partition con�g can be used to set the partition type and granularity, as shown in Code
snippet 7.3.1.2. Use the require_partition_�lter = true con�g to require a �lter clause on the
partitioned column in all queries against a given table. This can help reduce query costs.

{{ con�g(
materialized='table',
partition_by={

"�eld": "<�eld name>",
"data_type": "<timestamp | date | datetime | int64>",
"granularity": "<hour | day | month | year>"

Only required if data_type is "int64"
"range": {

"start": <int>,
"end": <int>,
"interval": <int>

}
},
require_partition_�lter = true

)}}
Code snippet 7.3.1.2: dbt model partition con�guration

7.3.2 Control costs in your dbt development environment

You can use partitions to reduce the cost of iterating code during development. For example:
Consider a table consisting of historical customer orders. The table has ten years of data, with
approximately 1 TB of order data per year. Without partitioning, BigQuery will scan all 10 TB of
data each time you query that table, at an approximate cost of $50 per query.

Alternatively, you can partition the table by its date column, creating 120 monthly partitions.
This allows you to use a WHERE clause to limit scans to individual partitions, as shown in code
snippet 7.3.2.1.In the given example, this would reduce the amount of data scanned to 2
partitions or 0.16 TB, bringing cost per query from $50 down to $0.80. This will also reduce job
execution time.

select *
from {{ source('tpch', 'orders') }}
-- this �lter will only apply during a dev run
{% if target.name == 'dev' %}
where created_at >= dateadd('month', -, current_date)

https://cloud.google.com/bigquery/docs/best-practices-performance-patterns#data_skew
https://docs.getdbt.com/reference/resource-configs/bigquery-configs#using-table-partitioning-and-clustering

{% endif %}
Code snippet 7.3.2.1: conditional date �lter

To apply logic in a DRY (don't repeat yourself) fashion, use a macro that can be called across all
models in your project. Code snippet 7.3.1.2 shows how a macro can be used to add the �lter
clause to models in the development environment.

{% macro limit_in_dev(timestamp) %}
{% if target.name == 'dev' %}

where {{timestamp}} >= dateadd('month', -{{var('development_months_of_data')}}, current_date)
{% endif %}
Code snippet 7.3.1.2: a generic date �lter macro for reducing development costs

7.3.3 Reduce table storage cost

You can take advantage of cheaper long-term storage by creating partitions. If a partition is
not modi�ed for 90 consecutive days, the price of storage drops by 50%.

You can also optimize storage by se�ing the partition expiration at the table or dataset level.
The data will not be queryable a�er the speci�ed interval and will be eventually deleted. You
can set it by using the partition_expiration_days con�g in dbt.

7.4 Clustering

BigQuery supports clustering over both partitioned and non-partitioned tables as another way
of improving query performance. Clustering organizes data so that similar values are stored
next to each other. Use clustering if:

● Your queries o�en �lter on certain columns. BigQuery eliminates scanning unnecessary
data reducing cost and increasing performance. However unlike partitioning, clustering
does not provide query cost guarantees

● Your queries o�en aggregate on certain columns. Performance is improved because of
colocation of data

● You require more granularity than partitioning provides. Since partitioning can only be
done on one column, you can use clustering on four additional columns.

● Target table size exceeds 1GB. You will not see any bene�ts to clustering for small
tables

You can use the cluster_by con�g as shown in code snippet 7.4.1, to implement clustering for
your dbt models. You can specify up to four clustering columns per model. If you need to
cluster on additional columns, consider combining clustering with partitioning. The order of

https://cloud.google.com/bigquery/pricing#long-term-storage
https://cloud.google.com/bigquery/docs/managing-partitioned-tables#partition-expiration
https://cloud.google.com/bigquery/docs/clustered-tables
https://docs.getdbt.com/reference/resource-configs/bigquery-configs#clustering-clause

clustered columns determines the sort order of the data. High cardinality and non-temporal
columns are be�er-suited for clustering.

{{
con�g(

materialized = "table",
cluster_by = ["customer_id", "order_id"],

)
}}
Code snippet 7.4.1: se�ing the dbt model cluster con�guration

7.5 Date sharded tables
Sharding, like partitioning, allows you to limit queries to speci�c dates by creating multiple
tables with a date su�x. You can use wildcards to query across a range of dates in a sharded
table.

Partitioned tables perform be�er than sharded tables. With sharding, BigQuery has to maintain
a copy of the schema and metadata for each table, adding to querying overhead. As of dbt
version 1.0, sharding has been deprecated in favor of column-based partitioning.

You can convert date-sharded tables to ingestion-time partitioned tables following these
instructions.

7.6 Denormalization
Denormalization is the process of adding redundant data to a database, to improve query
performance by reducing the need for complex JOIN operations. Consider denormalizing a
table when it is larger than 10GB and you require additional optimizations over partitioning and
clustering. Hower, keep in mind that querying a large denormalized table may be slower than
joining it with a small table, so it is important to weigh the tradeo�s.

One common way to denormalize a database is to create a single wide table by joining a fact
table with all of its dimensions.We recommend taking advantage of BigQuery’s native support
for nested and repeated structures by using a combination of ARRAY and STRUCT data types
to de�ne the table schema.

As an example, consider the following orders data:

Order Table
order_key cust_key total_price order_date

1 73100 26602 2023-01-19

2 92861 17680 2023-02-03

https://docs.getdbt.com/guides/legacy/creating-date-partitioned-tables
https://cloud.google.com/bigquery/docs/creating-partitioned-tables#convert-date-sharded-tables
https://cloud.google.com/bigquery/docs/creating-partitioned-tables#convert-date-sharded-tables
https://cloud.google.com/bigquery/docs/nested-repeated

Line Item Table
order_key line_number quantity extended_price ship_date

1 1 3 4081 2023-01-29

1 2 18 22521 2023-01-23

2 1 41 7010 2023-02-05

2 2 27 3288 2023-02-05

2 3 42 7382 2023-02-09

Fla�en order-lineitems using joins
order_ke
y

cust_key total_price order_date line_num
ber

quantity price ship_date

1 73100 26602 2023-01-19 1 3 4081 2023-01-29

1 73100 26602 2023-01-19 2 18 22521 2023-01-23

2 92861 17680 2023-02-03 1 41 7010 2023-02-05

2 92861 17680 2023-02-03 2 27 3288 2023-02-05

2 92861 17680 2023-02-03 3 42 7382 2023-02-09

Fla�en order-line items using nested and repeated �elds
order_ke
y

cust_key total_price order_date line_numbe
r

quantity price ship_date

1 73100 26602 2023-01-19 1 3 4081 2023-01-29

1 2 18 22521 2023-01-23

2 92861 17680 2023-02-03 1 41 7010 2023-02-05

2 2 27 3288 2023-02-05

2 3 42 7382 2023-02-09

Figure 7.6.1: using BigQueries native and repeated structures to denormalize data

Fla�ening data with nested and repeated �elds prevents duplication, maintains the normalized
nature of the original data, and boosts performance. However, this structure is only valuable if
your downstream models or applications can use it.

7.7 Merge behaviour

The incremental_strategy con�g controls how dbt builds incremental models. dbt uses a
merge statement by default to refresh incremental tables on BigQuery. Incremental strategy
can be con�gured with a merge or insert_overwrite strategy using the con�guration block
shown in code snippet 7.7.1.

{{
con�g(

materialized = 'incremental',

https://docs.getdbt.com/docs/build/incremental-models#about-incremental_strategy
https://cloud.google.com/bigquery/docs/reference/standard-sql/dml-syntax

incremental_strategy = '<merge | insert_overwrite>'
incremental_predicates = ''

if merge
unique_key = 'id',
cluster_by: ['session_start']

if insert_overwrite
partition_by = {'�eld': 'session_start', 'data_type': 'timestamp'},
partitions = ['timestamp(current_date)'] #if static partitions

)
}}
Code snippet 7.7.1: se�ing the dbt model merge behavior con�guration

The merge approach automatically updates late-arriving facts in the destination table, but
requires scanning all referenced source tables and the destination table, which can be slow
and expensive. Clustering the merge keys can help reduce costs. For more on clustering, refer
to section 7.4.

The insert_overwrite strategy replaces entire partitions in the destination table, and requires a
partition clause. Dynamic partitions can be determined automatically, but static partitions
(which rely on user-supplied con�guration) can be more e�cient.

The advanced incremental_predicates con�guration improves performance for large data
volumes, and accepts a list of any valid SQL expression(s).

Possible merge con�gurations are as follows:

● merge: simple
● merge: clustered keys
● Insert_overwrite: static partitions
● Insert_overwrite: dynamic partitions

https://docs.getdbt.com/reference/resource-configs/bigquery-configs#partition-clause
https://docs.getdbt.com/docs/build/incremental-models#about-incremental_predicates
https://docs.getdbt.com/reference/resource-configs/bigquery-configs#the-merge-strategy
https://docs.getdbt.com/reference/resource-configs/bigquery-configs#clustering-clause
https://docs.getdbt.com/reference/resource-configs/bigquery-configs#static-partitions
https://docs.getdbt.com/reference/resource-configs/bigquery-configs#dynamic-partitions

Figure 7.7.1: data processed by BigQuery per incremental merge strategy over increasing
number of days

Figure 7.7.1, depicts the average performance for an incremental model with 2.5GB daily
partitions over a period of 1-30 days. Static insert_overwrite is most performant, while
dynamic insert overwrite strategy is the slowest. Clustered merge is cheaper than simple
merge with similar performance. For more on the results refer to : Benchmarking: Incremental
Strategies on BigQuery.

7.8 Materialized views

Materialized views are precomputed views that periodically cache the results of a query for
increased performance and e�ciency. Consider using materialized views for queries with high
computation cost and small dataset results. Processes that bene�t from materialized views
include online analytical processing (OLAP) operations that require signi�cant processing with
predictable and repeated queries.

dbt currently supports Materialized views as an experimental feature, with o�cial support
coming this year. If you plan on using this feature, experiment with the con�guration, and plan
for the upcoming release.

7.9 Writing e�ective SQL using DRY principles

BigQuery uses a columnar format to store data, so the number of columns retrieved from a
query impacts performance. Best practice is to select only the columns you need by explicitly
stating the column names and avoiding using select all statements.

https://discourse.getdbt.com/t/benchmarking-incremental-strategies-on-bigquery/981
https://discourse.getdbt.com/t/benchmarking-incremental-strategies-on-bigquery/981
https://github.com/dbt-labs/dbt-labs-experimental-features/blob/main/materialized-views/README.md

Applying �lters early allows BigQuery to perform aggregations and joins on a smaller subset of
data improving performance. Consider making your pipeline more modular, by spli�ing your
SQL into multiple models or �ltering early in your CTE.

Use the dbt_utils package to apply DRY (don't repeat yourself) principles to your data models.
This package contains macros and tests that can address common data modeling pain points
and expedite tasks like creating a date spine, unpivoting columns, and more.

As your team and data grow, you may want to create and share internal packages to
standardize logic and de�nitions across multiple dbt repositories. This can help limit redundant
code, and keep business logic and metric de�nition consistent.

7.10 Avoid custom UDFs

A user-de�ned function (UDF) lets you create a function in BigQuery using a SQL expression or
JavaScript code.
We recommend using dbt macros instead of custom UDFs where possible. Javascript UDFs
provide greater �exibility, but can signi�cantly slow down query processing time due to the
spin-up overhead required for their instantiation.

The order of performance from highest to lowest is:

● dbt macro
● native (SQL) UDF
● javascript UDF

7.11 Cache queries using BI engine

BI Engine accelerates SQL queries in BigQuery by intelligently caching the data you access
most frequently. Reservations manage memory allocation at the project level. You can use the
BigQuery Admin Console to reserve up-to 10GB of memory per table, or 250GB when
compressed per project, per location for in memory processing. You can partition larger tables
to avoid exceeding quota limits.

BI engine is a great way to get extra performance from BigQuery if

● You want to improve the performance of BI tools connected to BigQuery
● Your pipeline includes designated tables that are queried frequently, such as reference

or dimension tables

https://github.com/dbt-labs/dbt-utils
https://cloud.google.com/bigquery/docs/reference/standard-sql/user-defined-functions
https://docs.getdbt.com/docs/build/jinja-macros#macros
https://docs.getdbt.com/docs/build/jinja-macros#macros
https://cloud.google.com/bigquery/docs/reference/standard-sql/user-defined-functions#sql-udf-structure
https://cloud.google.com/bigquery/docs/reference/standard-sql/user-defined-functions#javascript-udf-structure
https://cloud.google.com/bigquery/docs/bi-engine-intro
https://cloud.google.com/bigquery/quotas#biengine-limits

7.12 Using Bigquery ML and dbt

dbt can optimize BigQuery ML models with feature reuse, low overhead, and reliable
implementation. It simpli�es upstream data and handles dependencies across various steps in
the machine learning work�ow, including feature engineering, model training, and predicting.

● Feature Engineering is the process of transforming input data into a format that can be
e�ciently used for machine learning. We recommend making this process as
repeatable as possible, by using dbt macros to apply the same transformations to input
and prediction data. Also consider using the dbt-ml-preprocessing package to
automate data preprocessing tasks and standardize data sets.

● Training & Predicting: The dbt machine learning package allows users to train, audit and
use BigQuery ML models, from a select statement and a set of parameters. It also
provides helper macros that assist with model audit and prediction

You probably don't want to retrain your models every time the dbt work�ow runs, as this can
be expensive and time-consuming. We recommend se�ing the ‘enabled’ con�guration in dbt
to an environment variable �ag, to retrain the models selectively.

dbt now supports BigQuery python models, starting from v1.3. This enables users to execute
Python as PySpark jobs via Google Dataproc service. The Python/PySpark code can read from
tables and views in BigQuery, perform all computation in Dataproc, and write the �nal result
back to BigQuery as part of the dbt work�ow.This allows for advanced ML and predictive
analysis using Python, for use cases beyond BigQuery ML capabilities.

8. Billing & resource management

BigQuery automatically allocates computing resources as you need them. You can reserve
compute capacity ahead of time in the form of slots (virtual CPUs) to save costs. In this section
we will look at how to monitor resource consumption and optimize billing.

BigQuery provides the following billing plans:

- Free Usage tier: As part of the Google Cloud Free Tier, BigQuery o�ers some resources
free of charge up to a speci�c limit. These free usage limits are available during and
a�er the free trial. If you go over these usage limits and are no longer in the free trial
period, you will be charged according to the pricing on this page.

- On-Demand: You are charged for the number of bytes processed by each query. The
�rst 1 TB of query data processed per month is free

https://hub.getdbt.com/omnata-labs/dbt_ml_preprocessing/latest/
https://hub.getdbt.com/kristeligt-dagblad/dbt_ml/latest/
https://docs.getdbt.com/reference/resource-configs/enabled
https://docs.getdbt.com/docs/build/python-models#specific-data-platforms
https://cloud.google.com/bigquery/pricing#free-tier
https://cloud.google.com/bigquery/pricing#free-tier
https://cloud.google.com/bigquery/pricing/?utm_source=google&utm_medium=cpc&utm_campaign=japac-AU-all-en-dr-BKWS-all-all-trial-EXA-dr-1605216&utm_content=text-ad-none-none-DEV_c-CRE_602321035090-ADGP_Hybrid%20%7C%20BKWS%20-%20EXA%20%7C%20Txt%20~%20Data%20Analytics%20~%20BigQuery_Pricing-KWID_43700071547833180-kwd-604550033266&userloc_9071443-network_g&utm_term=KW_google%20cloud%20bigquery%20pricing&gclid=CjwKCAiA0JKfBhBIEiwAPhZXDxgkR_DhPuzHqWUbSVl9Y8-ljVz-5nBWIxWCl88zfIeqt4ovfVTX_hoCsPsQAvD_BwE&gclsrc=aw.ds#on_demand_pricing

On demand pricing can access up to 2000 slots to execute queries. However as the
slots are shared among all queries in a single project,the queries are executed in a best
e�ort pa�ern . This is the default billing plan.

- Editions: BigQuery provides three editions (Standard, Enterprise, and Enterprise Plus) to
support di�erent types of workloads. Each edition provides a set of capabilities at a
di�erent price point to match the requirements of di�erent types of customers. You
can create a reservation or a capacity commitment associated with an edition. All
editions support autoscaling slots by default.

When it comes to storage pricing, BigQuery provides a transparent and �exible model, as
outlined in this documentation. The pricing structure is based on two types of storage: active
storage and long-term storage. Active storage, designed for frequently accessed data, incurs
higher costs, while long-term storage is ideal for less frequently accessed information and
comes at a lower cost.

By default, BigQuery calculates storage usage in logical bytes for billing purposes. However,
when creating datasets using SQL or the BigQuery API, you can opt to be billed based on
physical bytes instead. This enables a tailored billing model that aligns with speci�c
requirements. Moreover, BigQuery facilitates a seamless transition for existing datasets to
switch to physical bytes for billing, which can help you optimize your storage strategy and
costs within the BigQuery ecosystem.

It is recommended that you start your project with on-demand billing, unless you have prior
indication of resource usage. Monitor the billing for a set period of time, identify usage
pa�erns and switch to a more suited billing plan. Use the following three steps to build a billing
strategy:

8.1 Estimate

Start by estimating the cost of running BigQuery for your department or organization. You can
use the BigQuery pricing estimator to �nd out the execution and storage costs for your
project. This is also a great time to start incorporating best practices:

● Estimate query cost before running large queries: When you enter a query in the
Google Cloud console, the query validator provides an estimate of the number of bytes
read. You can use this estimate to calculate cost in the Pricing Calculator

● Set billing limit in dbt: Limit query costs by se�ing the maximum byte billed �ag in dbt.
Note that if this limit is exceeded, the executing query and job will fail

● Set billing alerts and budgets: By se�ing alerts and budgets you can avoid surprises and
monitor all charges in one place

https://cloud.google.com/bigquery/docs/editions-intro
https://cloud.google.com/bigquery/docs/reservations-intro
https://cloud.google.com/bigquery/docs/reservations-details
https://cloud.google.com/bigquery/docs/slots-autoscaling-intro
https://cloud.google.com/bigquery/pricing#storage
https://cloud.google.com/bigquery/docs/datasets-intro#dataset_storage_billing_models
https://cloud.google.com/bigquery/docs/estimate-costs#estimating_query_costs
https://cloud.google.com/products/calculator/
https://docs.getdbt.com/reference/warehouse-setups/bigquery-setup#maximum-bytes-billed
https://cloud.google.com/billing/docs/how-to/budgets

8.2 Monitor

There are three common approaches for monitoring spend:

● Export billing data to BigQuery and use your reporting tool of choice to build a billing
dashboard

● Visualize spend over time with Looker Studio
● Use query labels to categorize and calculate job spend

It is also important to monitor slot usage trends over time. To access slot usage, head over to
Cloud Monitoring metrics explorer and search for Slots used by project, reservation, and job
type. You can also use the billing dashboard, INFORMATION_SCHEMA.JOBS* views, Cloud
Logging, the Jobs API, or BigQuery Audit logs to check how many slots are being used by your
projects.

If you have identi�ed projects or users with unexpectedly high usage in the metrics explorer,
se�ing custom quotas Is a great way to control costs. Project quotas aggregate usage of all
users, while user quota is enforced individually for all users of the project. See Managing your
quota using the Google Cloud console.

8.3 Optimize
With on-demand pricing, you only pay for the queries you run, making it a good option for
when you need to run occasional queries.

The capacity-based analysis pricing model o�ers predictable cost for queries. This is ideal for
running regular queries or if you need dedicated processing capacity. BigQuery provides
three editions (Standard, Enterprise, and Enterprise Plus) to support di�erent types of
workloads.

Each edition provides a set of capabilities at a di�erent price point to match the requirements
of di�erent types of customers. You can create a reservation or a capacity commitment
associated with an edition. Capacity commitments are not required to purchase slots, but can
save on costs. The commitment plans are a good option if you are looking to save money by
commi�ing to a �xed amount of resources for a speci�ed period.

The general recommendation is to use Standard editions for trail and test projects, Enterprise
plus is when you need features like CMEK (customer managed encryption keys) and advanced
features like BQML otherwise Enterprise should work for most of the use cases.

As your workload increases, BigQuery dynamically adjusts your slots so that you only pay for
what you use as all the Editions support Autoscaling slots. While Enterprise and Enterprise plus
lets you set the baseline slots, which is the minimum number of slots that will always be
allocated to the reservation, standard doesn’t support baseline.

https://cloud.google.com/billing/docs/how-to/export-data-bigquery
https://cloud.google.com/billing/docs/how-to/visualize-data
https://cloud.google.com/bigquery/docs/reservations-monitoring#viewing-slot-usage
https://cloud.google.com/docs/quota#managing_your_quota_console
https://cloud.google.com/docs/quota#managing_your_quota_console
https://cloud.google.com/bigquery/docs/reservations-intro
https://cloud.google.com/bigquery/docs/reservations-details
https://cloud.google.com/bigquery/docs/slots

At any given time, some slots might be idle. This can include:

● Slot commitments that are not allocated to any reservation.
● Slots that are allocated to a reservation baseline but aren't currently in use.

By default, queries running in a reservation automatically use idle slots from other reservations
within the same administration project as long as they use the same edition as You cannot
share idle slots between reservations of di�erent editions. You can share only the baseline
slots or commi�ed slots.

In some use-cases where performance is a priority, it may be bene�cial to identify the
business vertical responsible for the sporadic usage and provision a separate on-demand
project or create a reservation with standard edition.

9. Appendix

9.1 Key concepts and terminology

● BigQuery Project: Grouping of all your Google Cloud resources
● Dataset: Also known as a schema in some databases, Datasets are top-level containers

that are used to organize and control access to your tables and views.
● Partitioned Table: Dividing a large table into smaller time or range based partitions,

query performance and costs can be controlled by reducing the number of bytes read
by a query.

● Clustered Table: Columns are used to colocate data. This helps with faster retrieval data
and be�er query performance.

● External Table: Tables that are created, backed by storage that is external to Bigquery
● Temporary Table: Restricted tables used to cache query results and exist only up till 24

hours.
● Materialized View: Precomputed views that periodically cache the results of a query for

increased performance and e�ciency.
● Authorized View: Lets you share query results without giving users access to the

underlying tables
● Slots: A virtual CPU used by BigQuery to execute SQL queries. BigQuery automatically

calculates how many slots each query requires, depending on query size and
complexity

● Reservations: A�er you purchase slots, you can assign them to di�erent buckets, called
reservations. Reservations let you allocate the slots in ways that make sense for your
particular organization.

● Commitments: A capacity commitment is a purchase of BigQuery compute capacity
for some minimum duration of time. Commitments are measured in BigQuery slots,
which are a unit of computational capacity.

● dbt Project: Grouping of all your dbt resources (Models, Macros, Tests)

● Model: sql or py �les where the transformation logic resides in dbt
● dbt DAG: a visual representation of your data models and their connection to each

other.
● Jinja: A templating language used by dbt to implement control structures and more
● Packages: Standalone dbt projects, with models and macros that tackle a speci�c

problem area
● Macros: pieces of code that can be reused multiple times – are analogous to

"functions" in other programming languages
● dbt Docs: generate documentation for dbt projects and render it as a website
● dbt Tests: ensure data models are of good quality and meet your assertions
● dbt Deployment: promote and deploy code to production and other environments
● dbt Semantic Layer: centrally de�ned business metrics in the modeling layer for less

duplicative coding and more consistency for data consumers

https://docs.getdbt.com/docs/build/jinja-macros#macros

