这是indexloc提供的服务,不要输入任何密码

Publications

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

people standing in front of a screen with images and a chipboard

Our teams aspire to make discoveries that impact everyone, and core to our approach is sharing our research and tools to fuel progress in the field.

Sort By
  • Title
  • Title, descending
  • Year
  • Year, descending
1 - 15 of 10414 publications
    Preview abstract Measuring productivity is equivalent to building a model. All models are wrong, but some are useful. Productivity models are often “worryingly selective” (wrong because of omissions). Worrying selectivity can be combated by taking a holistic approach that includes multiple measurements of multiple outcomes. Productivity models should include multiple outcomes, metrics, and methods. View details
    AI as a Catalyst for Educational Equity: Addressing Global Teacher Shortages and Learning Disparities
    International Journal of Scientific Research in Computer Science, Engineering and Information Technology (IJSRCERT) (2025)
    Preview abstract The global education system is grappling with a critical shortage of teachers, threatening the achievement of universal quality education. This article examines how artificial intelligence (AI) technologies can revolutionize educational access and equity by addressing these systemic challenges. Through a comprehensive article analysis of AI-enabled solutions, including personalized learning mechanisms, virtual tutoring systems, and intelligent content distribution platforms, the article explores the transformative potential of these technologies in democratizing education. The article investigates the implementation of AI across established educational platforms, examining their effectiveness in providing adaptive learning experiences, breaking down language barriers, and ensuring cultural relevance. The article demonstrates that strategic AI integration can significantly impact learning outcomes while helping to bridge the global teacher shortage gap. The article also addresses critical implementation challenges, providing policy recommendations and resource allocation frameworks for successful AI adoption in education systems worldwide. This article analysis contributes to the growing body of knowledge on educational technology by offering practical insights into how AI can be leveraged to create more inclusive, effective, and accessible learning environments, ultimately advancing the goal of quality education for all. View details
    Preview abstract Specific quantum algorithms exist to—in theory— break elliptic curve cryptographic protocols. Implementing these algorithms requires designing quantum circuits that perform elliptic curve arithmetic. To accurately judge a cryptographic protocol’s resistance against future quantum computers, researchers figure out minimal resource-count circuits for performing these operations while still being correct. To assure the correctness of a circuit, it is integral to restore all ancilla qubits used to their original states. Failure to do so could result in decoherence of the computation’s final result. Through rigorous classical simulation and unit testing, I surfaced four inconsistencies in the state-ofthe-art quantum circuit for elliptic curve point addition where the circuit diagram states the qubits are returned in the original (|0⟩) state, but the intermediate values are not uncomputed. I provide fixes to the circuit without increasing the leading-order gate cost. View details
    Preview abstract Transformers have become the predominant architecture in foundation models due to their excellent performance across various domains. However, the substantial cost of scaling these models remains a significant concern. This problem arises primarily from their dependence on fixed parameters within linear projections, especially when architectural modifications (e.g., channel dimensions) are introduced. Each scaling iteration typically requires retraining the entire model from the beginning, leading to suboptimal utilization of computational resources. To overcome this limitation, we introduce TokenFormer, a naturally scalable architecture that leverages the attention mechanism exclusively for computations among input tokens and interactions between input tokens and model parameters, thereby enhancing architectural flexibility. By treating model parameters as tokens, we replace all the linear projections in Transformer with our token-parameter attention layer, where input tokens act as queries and model parameters as keys and values. This innovative approach allows for progressive and efficient scaling without necessitating retraining from scratch. Our model scales from 124 million to 1.4 billion parameters by incrementally adding new key-value parameters, achieving performance comparable to models trained from scratch while greatly reducing training costs. Code and models will be publicly available. View details
    Preview abstract Cloud platforms have been virtualizing storage devices like flash-based solid-state drives (SSDs) to make effective use of storage resources. They enable either software-isolated instance or hardware-isolated instance for facilitating the storage sharing between multi-tenant applications. However, for decades, they have to combat the fundamental tussle between the performance isolation and resource utilization. They suffer from either long tail latency caused by weak isolation or low storage utilization caused by strong isolation. In this paper, we present FleetIO, a learning-based storage virtualization framework that employs reinforcement learning (RL) for managing virtualized SSDs. FleetIO explores the unique features of RL to handle the dynamic changes of application workloads and storage states, and integrates the storage scheduling into the RL decision-making process. It achieves both performance isolation and improved storage utilization by enabling dynamic fine-grained storage harvesting across co-located application instances, while minimizing its negative impact on their service-level objectives (SLOs). FleetIO clusters workloads into different types (e.g., latency-sensitive and bandwidth-intensive) based on the collected I/O traces at runtime, and fine-tunes the RL reward functions for each type of workloads. We implement FleetIO on a real programmable SSD board and evaluate it with diverse cloud applications. We show that FleetIO improves the overall storage utilization of the shared SSD by up to 1.4×, and decreases the tail latency of I/O requests by 1.5× on average, compared to the state-of-the-art storage sharing approaches. View details
    Preview abstract Generative Artificial Intelligence (AI), particularly Large Language Models (LLMs), have demonstrated significant potential in clinical reasoning skills such as history-taking and differential diagnosis generation—critical aspects of medical education. This work explores how LLMs can augment medical curricula through interactive learning. We conducted a participatory design process with medical students, residents and medical education experts to co-create an AI-powered tutor prototype for clinical reasoning. As part of the co-design process, we conducted a qualitative user study, investigating learning needs and practices via interviews, and conducting concept evaluations through interactions with the prototype. Findings highlight the challenges learners face in transitioning from theoretical knowledge to practical application, and how an AI tutor can provide personalized practice and feedback. We conclude with design considerations, emphasizing the importance of context-specific knowledge and emulating positive preceptor traits, to guide the development of AI tools for medical education. View details
    Preview abstract As large language models (LLMs) improve in their capacity to serve as personal AI assistants, their ability to output uniquely tailored, personalized responses that align with the soft preferences of their users is imperative for maximizing user satisfaction and retention. However, lay users are notoriously bad at prompt specification and often struggle with conveying their latent preferences to AI assistants. To resolve this, we demonstrate that activation steering, an inference-time method, can effectively control the response of the LLMs towards expressing different preferences. In contrast to memory-based personalization methods that require long user history, steering is extremely lightweight and easily-controllable via an interpretable linear strength factor. We further conduct a within-subjects user study (n=14) to investigate how end users personalize their conversations through three different steerable chatbot interfaces. The results demonstrate the effectiveness of preference-based steering for aligning real-world conversations with user preferences, and we discuss qualitative findings on how diverse values around control, transparency, and usability of personalization lead users to prefer different interfaces. View details
    Preview abstract Large Language Models (LLMs) are revolutionizing many areas of AI, but their substantial resource requirements limit their deployment on mobile and edge devices. This survey paper provides a comprehensive overview of techniques for compressing LLMs to enable efficient inference in resource-constrained environments. We examine three primary approaches: knowledge distillation, model quantization and model pruning. For each technique, we discuss the underlying principles, present different forms, and provide examples of successful applications. We also briefly discuss complementary techniques like mixture-of-experts and early exit strategies and highlight the promising future directions. We aim to provide a valuable resource for both researchers and practitioners seeking to optimize LLMs for edge deployment. To the best of our knowledge, this is the first paper that provides a focused survey of LLM compression techniques from the lens of resource-constrained environments. View details
    Validation of a Deep Learning Model for Diabetic Retinopathy on Patients with Young-Onset Diabetes
    Tony Tan-Torres
    Pradeep Praveen
    Divleen Jeji
    Arthur Brant
    Xiang Yin
    Lu Yang
    Tayyeba Ali
    Ilana Traynis
    Dushyantsinh Jadeja
    Rajroshan Sawhney
    Sunny Virmani
    Pradeep Venkatesh
    Nikhil Tandon
    Ophthalmology and Therapy (2025)
    Preview abstract Introduction While many deep learning systems (DLSs) for diabetic retinopathy (DR) have been developed and validated on cohorts with an average age of 50s or older, fewer studies have examined younger individuals. This study aimed to understand DLS performance for younger individuals, who tend to display anatomic differences, such as prominent retinal sheen. This sheen can be mistaken for exudates or cotton wool spots, and potentially confound DLSs. Methods This was a prospective cross-sectional cohort study in a “Diabetes of young” clinic in India, enrolling 321 individuals between ages 18 and 45 (98.8% with type 1 diabetes). Participants had fundus photographs taken and the photos were adjudicated by experienced graders to obtain reference DR grades. We defined a younger cohort (age 18–25) and an older cohort (age 26–45) and examined differences in DLS performance between the two cohorts. The main outcome measures were sensitivity and specificity for DR. Results Eye-level sensitivity for moderate-or-worse DR was 97.6% [95% confidence interval (CI) 91.2, 98.2] for the younger cohort and 94.0% [88.8, 98.1] for the older cohort (p = 0.418 for difference). The specificity for moderate-or-worse DR significantly differed between the younger and older cohorts, 97.9% [95.9, 99.3] and 92.1% [87.6, 96.0], respectively (p = 0.008). Similar trends were observed for diabetic macular edema (DME); sensitivity was 79.0% [57.9, 93.6] for the younger cohort and 77.5% [60.8, 90.6] for the older cohort (p = 0.893), whereas specificity was 97.0% [94.5, 99.0] and 92.0% [88.2, 95.5] (p = 0.018). Retinal sheen presence (94% of images) was associated with DME presence (p < 0.0001). Image review suggested that sheen presence confounded reference DME status, increasing noise in the labels and depressing measured sensitivity. The gradability rate for both DR and DME was near-perfect (99% for both). Conclusion DLS-based DR screening performed well in younger individuals aged 18–25, with comparable sensitivity and higher specificity compared to individuals aged 26–45. Sheen presence in this cohort made identification of DME difficult for graders and depressed measured DLS sensitivity; additional studies incorporating optical coherence tomography may improve accuracy of measuring DLS DME sensitivity. View details
    Preview abstract Generative AI is revolutionizing content creation and holds promise for real-time, personalized educational experiences. We investigated the effectiveness of converting textbook chapters into AI-generated podcasts and explored the impact of personalizing these podcasts for individual learner profiles. We conducted a 3x3 user study with 180 college students in the United States, comparing traditional textbook reading with both generalized and personalized AI-generated podcasts across three textbook subjects. The personalized podcasts were tailored to students’ majors, interests, and learning styles. Our findings show that students found the AI-generated podcast format to be more enjoyable than textbooks and that personalized podcasts led to significantly improved learning outcomes, although this was subject-specific. These results highlight that AI-generated podcasts can offer an engaging and effective modality transformation of textbook material, with personalization enhancing content relevance. We conclude with design recommendations for leveraging AI in education, informed by student feedback. View details
    Matryoshka Model Learning for Improved Elastic Student Models
    Chetan Verma
    Aditya Srinivas Timmaraju
    Cho-Jui Hsieh
    Ngot Bui
    Yang Zhang
    Wen Chen
    Xin Liu
    Inderjit Dhillon
    2025
    Preview abstract Industry-grade ML models are carefully designed to meet rapidly evolving serving constraints, which requires significant resources for model development. In this paper, we propose MatTA, a framework for training multiple accurate Student models using a novel Teacher-TA-Student recipe. TA models are larger versions of the Student models with higher capacity, and thus allow Student models to better relate to the Teacher model and also bring in more domain-specific expertise. Furthermore, multiple accurate Student models can be extracted from the TA model. Therefore, despite only one training run, our methodology provides multiple servable options to trade off accuracy for lower serving cost. We demonstrate the proposed method, MatTA, on proprietary datasets and models. Its practical efficacy is underscored by live A/B tests within a production ML system, demonstrating 20% improvement on a key metric. We also demonstrate our method on GPT-2 Medium, a public model, and achieve relative improvements of over 24% on SAT Math and over 10% on the LAMBADA benchmark. View details
    Ransomware over Modern Web Browsers: A Novel Strain and A New Defense Mechanism
    Harun Oz
    Ahmet Aris
    Leonardo Babun
    Selcuk Uluagac
    Abbas Acar
    ACM Transactions on the Web (2025)
    Preview abstract Ransomware is an increasingly prevalent form of malware targeting end-users, governments, and businesses. As it has evolved, adversaries added new capabilities to their arsenal. Throughout the ransomware evolution, the adversaries propose a next-generation browser-based ransomware, RøB, that performs its malicious actions via emerging web technologies, File System Access API (FSA) and WebAssembly (Wasm). RøB uses this API through the victims’ browsers; hence, it does not require the victims to download and install malicious binaries. We performed extensive evaluations with 3 different OSs, 23 file formats, 29 distinct directories, 5 cloud providers, and 4 antivirus solutions. Our evaluations show that RøB can encrypt various types of files in the local and cloud-integrated directories, external storage devices, and network-shared folders of victims. Our experiments also reveal that popular cloud solutions, Box Individual and Apple iCloud can be severely affected by RøB. Moreover, we conducted tests with commercial antivirus software such as AVG, Avast, Kaspersky, Malware Bytes that perform sensitive directory and suspicious behavior monitoring against ransomware. We verified that RøB can evade these antivirus software and encrypt victim files. Moreover, existing ransomware detection solutions in the literature also cannot be a remedy against RøB due to its distinct features. Therefore, in this paper, we also propose broguard, a new detection system for RøB-like attacks. broguard monitors the web applications that use the FSA API via function hooking and uses a machine learning classifier to detect RøB-like attacks in real-time without any file loss. Performance evaluations of broguard on a comprehensive dataset show that broguard can detect RøB-like browser-based ransomware attacks with over 99% accuracy and minimal overhead. View details
    HueManity: Probing Fine-Grained Visual Perception in MLLMs
    Rynaa Grover
    Jayant Tamarapalli
    Sahiti Yerramilli
    Nilay Pande
    (2025)
    Preview abstract Multimodal Large Language Models (MLLMs) excel at high-level visual reasoning, but their performance on nuanced perceptual tasks remains surprisingly limited. We present HueManity, a benchmark designed to assess visual perception in MLLMs. The dataset comprises 83,850 images featuring two-character alphanumeric strings embedded in Ishihara test style dot patterns, challenging models on precise pattern recognition. Our evaluation of nine state-of-the-art MLLMs on HueManity demonstrates a significant performance deficit compared to human and traditional computer vision baselines. The best-performing MLLM achieved a 33.6% accuracy on the numeric "easy" task and a striking 3% on the alphanumeric "hard" task. In contrast, human participants achieved near-perfect scores (100% and 95.6%), and a fine-tuned ResNet50 model reached accuracies of 96.5% and 94.5%. These results highlight a critical gap in the visual capabilities of current MLLMs. Our analysis further explores potential architectural and training-paradigm factors contributing to this perceptual gap in MLLMs. We will open-source HueManity dataset and code to foster further research in improving perceptual robustness of MLLMs. View details
    Preview abstract Large-scale machine learning models deliver strong performance across a wide range of tasks but come with significant computational and resource constraints. To mitigate these challenges, local smaller models are often deployed alongside larger models, relying on routing and deferral mechanisms to offload complex tasks. However, existing approaches inadequately balance the capabilities of these models, often resulting in unnecessary deferrals or sub-optimal resource usage. In this work we introduce a novel loss function called Gatekeeper for calibrating smaller models in cascade setups. Our approach fine-tunes the smaller model to confidently handle tasks it can perform correctly while deferring complex tasks to the larger model. Moreover, it incorporates a mechanism for managing the trade-off between model performance and deferral accuracy, and is broadly applicable across various tasks and domains without any architectural changes. We evaluated our method on encoder-only, decoder-only, and encoder-decoder architectures. Experiments across image classification, language modeling, and vision-language tasks show that our approach substantially improves deferral performance. View details