这是indexloc提供的服务,不要输入任何密码
Skip to main content
Log in

Table 3 Classification accuracy of single-channel EEG signals under different sparsity constraints

From: Non-linear Feature Selection Based on Convolution Neural Networks with Sparse Regularization

Data

Backbone

Original accuracy

LSWFSNet-S(1)

LSWFSNet-S(2)

LSWFSNet-S(1+2)

JL20140404

VGG-16

77.27

82.34 (16.13)

78.05 (17.74)

77.95 (8.06)

 

Alexnet

69.07

71.80 (9.68)

70.93 (14.52)

76.98 (8.06)

 

Googlenet

57.07

65.56 (20.97)

65.37 (14.52)

60.68 (24.19)

 

Resnet-34

35.22

40.49 (8.06)

36.20 (3.23)

45.56 (14.52)

 

Densenet-101

34.93

37.27 (16.13)

38.44 (12.90)

39.12 (9.68)

 

Efficientnet-B0

37.76

40.10 (20.97)

37.56 (14.52)

39.41 (14.52)

 

Mobilenet-V2

36.68

37.27 (24.19)

35.80 (14.52)

37.95 (17.74)

JL20140419

VGG-16

78.54

78.54 (6.45)

74.34 (8.06)

76.39 (11.29)

 

Alexnet

70.83

72.49 (9.68)

74.05 (4.84)

70.93 (4.84)

 

Googlenet

65.76

68.98 (22.58)

68.49 (6.45)

68.68 (25.81)

 

Resnet-34

51.61

54.54 (25.81)

51.51 (9.68)

52.39 (11.29)

 

Densenet-101

42.63

45.95 (8.06)

44.98 (11.29)

48.88 (19.35)

 

Efficientnet-B0

43.61

47.71 (11.29)

44.59 (16.13)

44.88 (19.35)

 

Mobilenet-V2

37.37

39.12 (6.45)

37.07 (12.90)

39.41 (9.68)

JJ20140603

VGG-16

86.73

89.27 (12.90)

84.49 (6.45)

85.95 (8.06)

 

Alexnet

80.78

83.90 (12.90)

85.46 (4.84)

84.39 (9.68)

 

Googlenet

68.98

76.20 (19.35)

81.95 (6.45)

84.49 (14.52)

 

Resnet-34

45.76

52.98 (12.90)

50.73 (4.84)

49.95 (12.90)

 

Densenet-101

41.76

43.32 (27.42)

40.88 (6.45)

44.49 (11.29)

 

Efficientnet-B0

41.66

43.12 (16.13)

42.05 (22.58)

44.49 (9.68)

 

Mobilenet-V2

41.56

43.80 (9.68)

42.73 (9.68)

42.93 (29.03)

JJ20140611

VGG-16

90.15

91.90 (6.45)

92.59 (3.23)

93.37 (4.84)

 

Alexnet

86.63

88.68 (9.68)

81.95 (9.68)

88.49 (17.74)

 

Googlenet

82.44

84.49 (17.74)

78.24 (12.90)

86.54 (27.42)

 

Resnet-34

66.73

70.44 (19.35)

73.76 (4.84)

79.80 (19.35)

 

Densenet-101

48.88

53.95 (16.13)

53.46 (3.23)

49.85 (9.68)

 

Efficientnet-B0

41.27

46.05 (19.35)

44.88 (19.35)

45.37 (16.13)

 

Mobilenet-V2

36.78

39.80 (4.84)

39.90 (12.90)

38.83 (11.29)

LY20140506

VGG-16

82.73

88.88 (6.45)

83.51 (4.84)

87.41 (6.45)

 

Alexnet

81.27

86.73 (8.06)

81.66 (8.06)

86.63 (9.68)

 

Googlenet

73.85

78.05 (25.81)

78.83 (17.74)

79.02 (24.19)

 

Resnet-34

64.59

67.02 (16.13)

65.46 (8.06)

67.32 (25.81)

 

Densenet-101

55.61

59.51 (11.29)

60.00 (9.68)

57.66 (25.81)

 

Efficientnet-B0

44.20

49.85 (14.52)

51.41 (16.13)

50.05 (17.74)

 

Mobilenet-V2

41.85

44.88 (12.90)

39.51 (12.90)

47.02 (11.29)

LY20140411

VGG-16

74.73

75.02 (14.52)

63.90 (19.35)

84.59 (8.06)

 

Alexnet

82.93

84.00 (16.13)

84.00 (17.74)

85.66 (17.74)

 

Googlenet

72.68

78.93 (30.65)

79.80 (8.06)

81.85 (22.58)

 

Resnet-34

48.59

52.59 (11.29)

53.07 (11.29)

51.32 (20.97)

 

Densenet-101

44.39

54.54 (9.68)

46.15 (3.23)

48.00 (14.52)

 

Efficientnet-B0

46.93

53.37 (30.65)

52.78 (20.97)

50.44 (19.35)

 

Mobilenet-V2

40.39

42.24 (11.29)

40.59 (6.45)

43.71 (25.81)

MHW20130712

VGG-16

71.12

76.00 (6.45)

65.46 (12.90)

90.44 (12.90)

 

Alexnet

78.93

87.51 (6.45)

80.98 (1.61)

83.61 (17.74)

 

Googlenet

68.29

77.76 (24.19)

86.15 (6.45)

81.66 (33.87)

 

Resnet-34

50.15

59.61 (24.19)

50.05 (1.29)

60.00 (9.68)

 

Densenet-101

42.73

52.29 (24.19)

42.24 (3.23)

44.68 (4.84)

 

Efficientnet-B0

41.27

58.63 (14.52)

41.07 (4.84)

44.39 (20.97)

 

Mobilenet-V2

40.88

43.12 (17.74)

40.59 (11.29)

41.85 (12.90)

  1. The bold values indicates highest accuracy under same network, and the numbers in parentheses indicate the ratio of features screened out under different sparsity constraint