这是indexloc提供的服务,不要输入任何密码
Skip to main content

Introduction to Machine Learning in Medicine

  • Chapter
  • First Online:
Introduction to Artificial Intelligence

Abstract

Introduction of Machine Learning is certainly a revolutionary outbreak, both in the medical field and in many other research fields. The opportunities ML opens up are many, and it can be used to analyze medical images, to relate clinical data, to identify lesions, to support diagnosis, and to make predictions on prognosis and disease evolution, but it must be used carefully and competently so as not to run into wrong applications and consequently in misleading results. Machine Learning is represented by a series of algorithms which, through a learning process, are able to develop strategies to analyse, classify, and evaluate many types of data. However, there are important points on which to pay close attention, such as the preparation of the learning dataset, the choice of the most suitable algorithm for the aimed task, the evaluation of the results, and the weighing of the computing resources available. There are also some aspects related to Artificial Intelligence that need to be carefully considered, such as evaluation of the developed model, explainability, interpretability, reproducibility of the outputs, and all the legal and ethical issues that the nature of these approaches generates. Taking the necessary precautions for use, however, it cannot be denied that the application of ML in the medical field opens up very interesting and revolutionary perspectives, especially in the field of precision and personalized medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 49.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wartman S, Combs C. Medical education must move from the information age to the age of artificial intelligence. Acad Med. 2018;93:1107–9.

    Article  PubMed  Google Scholar 

  2. Obermeyer Z, Lee T. Lost in thought – the limits of the human mind and the future of medicine. N Engl J Med. 2017;377(13):1209–11.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Vamathevan J, Clark D, Czodrowski P, Dunham I, Ferran E, Lee G, Li B, Madabhushi A, Shah P, Spitzer M, Zhao S. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov. 2019;18:463–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Valletta JJ, Torney C, Kings M, Thornton A, Madden J. Applications of machine learning in animal behaviour studies. Anim Behav. 2017;124:203–20.

    Article  Google Scholar 

  5. Recknagel F. Applications of machine learning to ecological modelling. Ecol Modell. 2001;146:303–310.

    Article  Google Scholar 

  6. Garg A, Mago V. Role of machine learning in medical research: a survey. Comput Sci Rev. 2021;40:100370.

    Article  Google Scholar 

  7. Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J Med. 2019;380:1347–1358.

    Article  PubMed  Google Scholar 

  8. Erickson B, Korfiatis P, Akkus Z, Kline T. Machine learning for medical imaging. Radiographics Rev Publ Radiol Soc North Am Inc. 2017;37(2):505–15.

    Google Scholar 

  9. Poplin R, Varadarajan A, Blumer K, Liu Y, McConnell M, Corrado G, Peng L, Webster D. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat Biomed Eng. 2018;2:158–64.

    Article  PubMed  Google Scholar 

  10. Rumsfeld J, Joynt K, Maddox T. Big data analytics to improve cardiovascular care: promise and challenges. Nat Rev Cardiol. 2016;13:350–9.

    Article  CAS  PubMed  Google Scholar 

  11. Ramalingam V, Dandapath A, Raja M. Heart disease prediction using machine learning techniques: a survey. Int J Eng Technol. 2018;7:684.

    Article  Google Scholar 

  12. Hsich E, Gorodeski E, Blackstone E, Ishwaran H, Lauer M. Identifying important risk factors for survival in patient with systolic heart failure using random survival forests. Circul Cardiovas Qual Outcomes. 2011;4:39–45.

    Article  Google Scholar 

  13. Zhou M, Scott J, Chaudhury B, Hall L, Goldgof D, Yeom K, Iv M, Ou Y, Kalpathy-Cramer J, Napel S, Gillies R, Gevaert O, Gatenby R. Radiomics in brain tumor: image assessment, quantitative feature descriptors, and machine-learning approaches. Am J Neuroradiol. 2018;39:208–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Setio A, Ciompi F, Litjens G, Gerke P, Jacobs C, Riel S, Wille M, Naqibullah M, Sánchez C, Ginneken B. Pulmonary nodule detection in ct images: false positive reduction using multi-view convolutional networks. IEEE Trans Med Imag. 2016;35:1160–9.

    Article  Google Scholar 

  15. Sidey-Gibbons JAM, Sidey-Gibbons CJ. Machine learning in medicine: a practical introduction. BMC Med Res Methodol. 2019;19(1):64. PMID: 30890124; PMCID: PMC6425557. https://doi.org/10.1186/s12874-019-0681-4.

  16. Koh DM, Papanikolaou N, Bick U, Illing R, Kahn CE Jr, Kalpathi-Cramer J, Matos C, Martí-Bonmatí L, Miles A, Mun SK, Napel S, Rockall A, Sala E, Strickland N, Prior F. Artificial intelligence and machine learning in cancer imaging. Commun Med (Lond). 2022;2:133. PMID: 36310650; PMCID: PMC9613681. https://doi.org/10.1038/s43856-022-00199-0.

  17. Zerouaoui H, Idri A. Reviewing machine learning and image processing based decision-making systems for breast cancer imaging. J Med Syst. 2021;45:1–20.

    Article  Google Scholar 

  18. Bi W, Hosny A, Schabath M, Giger M, Birkbak N, Mehrtash A, Allison T, Arnaout O, Abbosh C, Dunn I, Mak R, Tamimi R, Tempany C, Swanton C, Hoffmann U, Schwartz L, Gillies R, Huang R, Aerts H. Artificial intelligence in cancer imaging: clinical challenges and applications. Ca. 2019;69:127–57.

    PubMed  PubMed Central  Google Scholar 

  19. Liao C, Li S. A support vector machine ensemble for cancer classification using gene expression data. In: International symposium on bioinformatics research and applications; (2007).

    Google Scholar 

  20. Zhang F, Kaufman H, Deng Y, Drabier R. Recursive SVM biomarker selection for early detection of breast cancer in peripheral blood. BMC Med Genom. 2013;6:S4–S4.

    Article  Google Scholar 

  21. Kircher M, Witten D, Jain P, O’Roak B, Cooper G, Shendure J. A general framework for estimating the relative pathogenicity of human genetic variants. Nat Genet. 2014;46:310–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Vlahou A, Schorge J, Gregory B, Coleman R. Diagnosis of ovarian cancer using decision tree classification of mass spectral data. J Biomed Biotechnol. 2003;2003:308–14.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hsu Y, Huang P, Chen D. Sparse principal component analysis in cancer research. Transl Cancer Res. 2014;3(3):182–90.

    PubMed  Google Scholar 

  24. Chen L, Li H, Xie L, Zuo Z, Tian L, Liu C and Guo X. Editorial: big data and machine learning in cancer genomics. Front. Genet. 2021;12:749584. https://doi.org/10.3389/fgene.2021.749584.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pan XM. Multiple linear regression for protein secondary structure prediction. Proteins. 2001;43(3):256–9. PMID: 11288175. https://doi.org/10.1002/prot.1036.

    Article  CAS  PubMed  Google Scholar 

  26. Taguchi Y, Okamoto A. Principal component analysis for bacterial proteomic analysis. In: 2011 IEEE international conference on bioinformatics and biomedicine workshops (BIBMW); 2011. p. 961–3.

    Google Scholar 

  27. Cao C, Liu F, Tan H, Song D, Shu W, Li W, Zhou Y, Bo X, Xie Z. Deep learning and its applications in biomedicine. Genomics Proteomics Bioinformatics. 2018;16:17–32.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Asgari E, Mofrad MRK. Continuous distributed representation of biological sequences for deep proteomics and genomics. PLoS ONE 2015;10(11): e0141287. https://doi.org/10.1371/journal.pone.0141287.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Mathlin J, Le Pera L, Colombo T. A census and categorization method of epitranscriptomic marks. Int J Mol Sci. 2020;21(13):4684. PMID: 32630140; PMCID: PMC7370119. https://doi.org/10.3390/ijms21134684.

  30. Caudai C, Galizia A, Geraci F, Pera L, Morea V, Salerno E, Via A, Colombo T. AI applications in functional genomics. Comput Struct Biotechnol J. 2021;19:5762–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Coelewij L, Waddington KE, Robinson GA, Chocano E, McDonnell T, Farinha F, Peng J, Dönnes P, Smith E, Croca S, Bakshi J, Griffin M, Nicolaides A, Rahman A, Jury EC, Pineda-Torra I. Serum metabolomic signatures can predict subclinical atherosclerosis in patients with systemic lupus erythematosus. Arterioscler Thromb Vasc Biol. 2021;41(4):1446–1458. PMID: 33535791; PMCID: PMC7610443. https://doi.org/10.1161/ATVBAHA.120.315321.

  32. Da-Yuan, Liang Y, Yi L, Xu Q, Kvalheim O. Uncorrelated linear discriminant analysis (ULDA): a powerful tool for exploration of metabolomics data. Chemom Intell Lab Syst. 2008;93:70–9.

    Google Scholar 

  33. Alakwaa F, Chaudhary K, Garmire L. Deep learning accurately predicts estrogen receptor status in breast cancer metabolomics data. J Proteome Res. 2017;17:337–47.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Khodayari, A., Maranas, C. A genome-scale Escherichia coli kinetic metabolic model k-ecoli457 satisfying flux data for multiple mutant strains. Nat Commun 2016;7:13806. https://doi.org/10.1038/ncomms13806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Yang H, Yu B, Ouyang P, Li X, Lai X, Zhang G, Zhang H. Machine learning-aided risk prediction for metabolic syndrome based on 3 years study. Sci Rep. 2022;12(1):2248. PMID: 35145200; PMCID: PMC8831522. https://doi.org/10.1038/s41598-022-06235-2.

  36. Grinfeld J, Nangalia J, Baxter J, Wedge D, Angelopoulos N, Cantrill R, Godfrey A, Papaemmanuil E, Gundem G, Maclean C, Cook J, O’Neil L, O’meara S, Teague J, Butler A, Massie C, Williams N, Nice F, Andersen C, Hasselbalch H, Guglielmelli P, McMullin M, Vannucchi A, Harrison C, Gerstung M, Green A, Campbell P. Classification and personalized prognosis in myeloproliferative neoplasms. N Engl J Med. 2018;379:1416–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Denis F, Basch E, Septans A, Bennouna J, Urban T, Dueck A, Letellier C. Two-year survival comparing web-based symptom monitoring vs routine surveillance following treatment for lung cancer. JAMA. 2019;321:306–7.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Hasnain Z, Mason J, Gill K, Miranda G, Gill IS, Kuhn P, Newton PK. Machine learning models for predicting post-cystectomy recurrence and survival in bladder cancer patients. PLoS One 2019 Feb 20;14(2):e0210976. PMID: 30785915; PMCID: PMC6382101. https://doi.org/10.1371/journal.pone.0210976.

  39. Nie D, Zhang H, Adeli E, Liu L, Shen D. 3D deep learning for multi-modal imaging-guided survival time prediction of brain tumor patients. Med Image Comput Comput Assist Interv. 2016;9901:212–220. PMID: 28149967; PMCID: PMC5278791. https://doi.org/10.1007/978-3-319-46723-8_25.

  40. Meiring C, Dixit A, Harris S, MacCallum NS, Brealey DA, Watkinson PJ, Jones A, Ashworth S, Beale R, Brett S, Singer M, Ercole A. Optimal intensive care outcome prediction over time using machine learning. PLoS ONE 2018;13(11):e0206862. https://doi.org/10.1371/journal.pone.0206862.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Chen H, Engkvist O, Wang Y, Olivecrona M, Blaschke T. The rise of deep learning in drug discovery. Drug Discovery Today. 2018;23(6):1241–50.

    Article  PubMed  Google Scholar 

  42. Gupta S, Chaudhary K, Kumar R, Gautam A, Nanda JS, Dhanda SK, Brahmachari SK, Raghava GP. Prioritization of anticancer drugs against a cancer using genomic features of cancer cells: A step towards personalized medicine. Sci Rep. 2016;6:23857. PMID: 27030518; PMCID: PMC4814902. https://doi.org/10.1038/srep23857.

  43. Hejase H, Chan, C. Improving drug sensitivity prediction using different types of data. CPT: Pharmacometrics Syst Pharmacol. 2015;4.

    Google Scholar 

  44. Vamathevan J, Clark D, Czodrowski P, Dunham I, Ferran E, Lee G, Li B, Madabhushi A, Shah P, Spitzer M, Zhao S. Applications of machine learning in drug discovery and development. Nat Rev Drug Discov. 2019;18:463–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Frankish K, Ramsey W. The Cambridge Handbook of Artificial Intelligence. Cambridge: Cambridge University Press; 2014.

    Book  Google Scholar 

  46. Smiti A. When machine learning meets medical world: current status and future challenges. Comput Sci Rev. 2020;37:100280. https://doi.org/10.1016/j.cosrev.2020.100280.

    Article  Google Scholar 

  47. Garg A, Mago V. Role of machine learning in medical research: a survey. Comput Sci Rev. 2021;40:100370. https://doi.org/10.1016/j.cosrev.2021.100370.

    Article  Google Scholar 

  48. Esteva A, Kuprel B, Novoa R, Ko J, Swetter S, Blau H, Thrun S. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542:115–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hawkins J, Brownstein J, Tuli G, Runels T, Broecker K, Nsoesie E, McIver D, Rozenblum R, Wright A, Bourgeois F, Greaves F. Measuring patient-perceived quality of care in US hospitals using Twitter. BMJ Qual Saf. 2015;25:404–13.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mangasarian O, Street W, Wolberg W. Breast cancer diagnosis and prognosis via linear programming. Oper Res. 1995;43:570–7.

    Article  Google Scholar 

  51. Colantonio S, Salvati A, Caudai C, Bonino F, De Rosa L, Pascali MA, Germanese D, Brunetto MR, Faita F. A deep learning approach for hepatic steatosis estimation from ultrasound imaging. In: Proceedings of ICCCI 2021 – 13th international conference on computational collective intelligence, Rhodes, Greece; 2021. p. 703–4.

    Google Scholar 

  52. Ali N, Srivastava D, Tiwari A, Pandey A, Pandey AK, Sahu A. Predicting life expectancy of hepatitis B patients using machine learning. In: IEEE international conference on distributed computing and electrical circuits and electronics (ICDCECE); 2022.

    Google Scholar 

  53. Simos N, Manikis G, Papadaki E, Kavroulakis E, Bertsias G, Marias K. Machine learning classification of neuropsychiatric systemic lupus erythematosus patients using resting-state fMRI functional connectivity. In: 2019 IEEE international conference on imaging systems and techniques (IST); 2019. p. 1–6.

    Google Scholar 

  54. Liu S, Lu M, Li H, Zuo Y. Prediction of gene expression patterns with generalized linear regression nodel. Front. Genet. 2019;10:120. https://doi.org/10.3389/fgene.2019.00120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Taylor RA, Moore CL, Cheung KH, Brandt C. Predicting urinary tract infections in the emergency department with machine learning. PLoS One. 2018;13(3):e0194085. PMID: 29513742; PMCID: PMC5841824. https://doi.org/10.1371/journal.pone.0194085.

  56. Leha A, Hellenkamp K, Unsöld B, Mushemi-Blake S, Shah AM, Hasenfuß G, Seidler T. A machine learning approach for the prediction of pulmonary hypertension. PLoS One. 2019;14(10):e0224453. PMID: 31652290; PMCID: PMC6814224. https://doi.org/10.1371/journal.pone.0224453.

  57. Huang S, Cai N, Pacheco P, Narrandes S, Wang Y, Xu W. Applications of support vector machine (SVM) learning in cancer genomics. Cancer Genom Proteom. 2018;15(1):41–51.

    CAS  Google Scholar 

  58. Ho T. Random decision forests. In: Proceedings of 3rd international conference on document analysis and recognition; 1995. vol. 1. p. 278–82.

    Google Scholar 

  59. Zhu M, Xia J, Jin X, Yan M, Cai G, Yan J, Ning G. Class weights random forest algorithm for processing class imbalanced medical data. IEEE Access. 2018;6:4641–52.

    Article  Google Scholar 

  60. Martin-Gutierrez L, Peng J, Thompson NL, Robinson GA, Naja M, Peckham H, Wu W, J’bari H, Ahwireng N, Waddington KE, Bradford CM, Varnier G, Gandhi A, Radmore R, Gupta V, Isenberg DA, Jury EC, Ciurtin C. Stratification of patients with Sjögren’s syndrome and patients with systemic lupus erythematosus according to two shared immune cell signatures, with potential therapeutic implications. Arthritis & Rheumatology 2021;73(9):1626–37. https://doi.org/10.1002/art.41708.

    Article  Google Scholar 

  61. Seccia R, Gammelli D, Dominici F, Romano S, Landi AC, Salvetti M, Tacchella A, Zaccaria A, Crisanti A, Grassi F, Palagi L. Considering patient clinical history impacts performance of machine learning models in predicting course of multiple sclerosis. PLoS ONE 2020;15(3): e0230219. https://doi.org/10.1371/journal.pone.0230219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Baumgartner C, Bóhm C, Baumgartner D. Modelling of classification rules on metabolic patterns including machine learning and expert knowledge. J Biomed Inf. 2005;38(2):89–98.

    Article  CAS  Google Scholar 

  63. Wang J, Shi L. Prediction of medical expenditures of diagnosed diabetics and the assessment of its related factors using a random forest model, MEPS 2000–2015. Int J Qual Health Care. 2020;32(2):99–112. PMID: 32159759. https://doi.org/10.1093/intqhc/mzz135.

    Article  PubMed  Google Scholar 

  64. Chen X, Ishwaran H. Random forests for genomic data analysis. Genomics. 2012;99(6):323–9.

    Article  CAS  PubMed  Google Scholar 

  65. Mo X, Chen X, Ieong C, Zhang S, Li H, Li J, Lin G, Sun G, He F, He Y, Xie Y, Zeng P, Chen Y, Liang H, Zeng H. Early prediction of clinical response to etanercept treatment in juvenile idiopathic arthritis using machine learning. Front Pharmacol. 2020;11:1164. PMID: 32848772; PMCID: PMC7411125. https://doi.org/10.3389/fphar.2020.01164.

  66. Murray S, Avati A, Schmajuk G, Yazdany J. Automated and flexible identification of complex disease: building a model for systemic lupus erythematosus using noisy labeling. J Am Med Inf Assoc JAMIA. 2019;26(1):61–5.

    Article  Google Scholar 

  67. D’souza K, Ansari Z. Big data science in building medical data classifier using Naïve Bayes model. In: 2018 IEEE international conference on cloud computing in emerging markets (CCEM); 2018. p. 76–80.

    Google Scholar 

  68. Degroeve S, Baets B, Peer Y, Rouzé P. Feature subset selection for splice site prediction. Bioinformatics. 2002;18(Suppl 2):S75–83.

    Article  PubMed  Google Scholar 

  69. Silla C, Freitas A. A global-model naive bayes approach to the hierarchical prediction of protein functions. In: 2009 Ninth IEEE international conference on data mining; 2009. p. 992–997.

    Google Scholar 

  70. Sandberg R, Winberg G, Brändén C, Kaske A, Ernberg I, Cöster J. Capturing whole-genome characteristics in short sequences using a naïve Bayesian classifier. Gen Res. 2001;11(8):1404–9.

    Article  CAS  Google Scholar 

  71. Khamis H. Application of k-nearest neighbour classification in medical data in the context of Kenia. Digit Repositry Unimib. 2014.

    Google Scholar 

  72. Parry R, Jones W, Stokes T, Phan J, Moffitt R, Fang H, Shi L, Oberthuer A, Fischer M, Tong W, Wang M. k-Nearest neighbor models for microarray gene expression analysis and clinical outcome prediction. Pharmacogenomics J. 2010;10:292–309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Alexe G, Dalgin G, Ganesan S, DeLisi C, Bhanot G. Analysis of breast cancer progression using principal component analysis and clustering. J Biosci. 2007;32:1027–39.

    Article  CAS  PubMed  Google Scholar 

  74. Maisuradze G, Liwo A, Scheraga H. Principal component analysis for protein folding dynamics. J Mol Biol. 2009;385(1):312–29.

    Article  CAS  PubMed  Google Scholar 

  75. Le T. Fuzzy C-means clustering interval type-2 cerebellar model articulation neural network for medical data classification. IEEE Access. 2019;7:20967–73.

    Article  Google Scholar 

  76. Khanmohammadi S, Adibeig N, Shanehbandy S. An improved overlapping k-means clustering method for medical applications. Expert Syst Appl. 2017;67:12–8.

    Article  Google Scholar 

  77. Handhayani T, Hiryanto L. Intelligent kernel K-means for clustering gene expression. Procedia Comput Sci. 2015;59:171–7.

    Article  Google Scholar 

  78. Greenspan H, Ginneken B, Summers R. Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans Med Imaging. 2016;35:1153–9.

    Article  Google Scholar 

  79. Litjens G, Kooi T, Bejnordi B, Setio A, Ciompi F, Ghafoorian M, Laak J, Ginneken B, Sánchez C. A survey on deep learning in medical image analysis. Med Image Anal. 2017;42:60–88.

    Article  PubMed  Google Scholar 

  80. Gao X, Lin S, Wong T. Automatic feature learning to grade nuclear cataracts based on deep learning. IEEE Trans Biomed Eng. 2015;62:2693–701.

    Article  PubMed  Google Scholar 

  81. Sundaram L, Gao H, Padigepati S, McRae J, Li Y, Kosmicki J, Fritzilas N, Hakenberg J, Dutta A, Shon J, Xu J, Batzoglou S, Li X, Farh K. Predicting the clinical impact of human mutation with deep neural networks. Nat Genet. 2018;50:1161–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Frid-Adar M, Diamant I, Klang E, Amitai M, Goldberger J, Greenspan H. GAN-based synthetic medical image augmentation for increased CNN performance in liver lesion classification. Neurocomputing. 2018;321:321–31.

    Article  Google Scholar 

  83. Kamnitsas K, Ledig C, Newcombe V, Simpson J, Kane A, Menon D, Rueckert D, Glocker B. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation. Med Image Anal. 2017;36:61–78.

    Article  PubMed  Google Scholar 

  84. Jain A, Patel H, Nagalapatti L, Gupta N, Mehta S, Guttula S, Mujumdar S, Afzal S, Mittal R, Munigala V. Overview and importance of data quality for machine learning tasks. In: Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining. 2020.

    Google Scholar 

  85. Dai W, Yoshigoe K, Parsley W. Improving data quality through deep learning and statistical models. ArXiv. abs/1810.07132; 2018.

    Google Scholar 

  86. Luca A, Ursuleanu T, Gheorghe L, Grigorovici R, Iancu S, Hlusneac M, Grigorovici A. Impact of quality, type and volume of data used by deep learning models in the analysis of medical images. Inf Med Unlocked. 2022;29:100911. https://doi.org/10.1016/j.imu.2022.100911.

    Article  Google Scholar 

  87. Wang Z, Poon J, Sun S, Poon S. Attention-based multi-instance neural network for medical diagnosis from incomplete and low quality data. In: 2019 International joint conference on neural networks (IJCNN); 2019. p. 1–8.

    Google Scholar 

  88. Chang Y, Yan L, Chen M, Fang H, Zhong S. Two-stage convolutional neural network for medical noise removal via image decomposition. IEEE Trans Instrument Meas. 2020;69:2707–21.

    Article  Google Scholar 

  89. Marcinkevics R, Vogt J. Interpretability and explainability: a machine learning zoo mini-tour. ArXiv. abs/2012.01805; 2020.

    Google Scholar 

  90. Samek W, Müller K. Towards explainable artificial intelligence. ArXiv. abs/1909.12072; 2019.

    Google Scholar 

  91. Montavon G, Samek W, Müller K. Methods for interpreting and understanding deep neural networks. ArXiv. abs/1706.07979; 2018.

    Google Scholar 

  92. Chen I, Pierson E, Rose S, Joshi S, Ferryman K, Ghassemi M. Ethical machine learning in health care. Ann Rev Biomed Data Sci. 2021;4:123–44.

    Article  Google Scholar 

  93. Yoon C, Torrance R, Scheinerman N. Machine learning in medicine: should the pursuit of enhanced interpretability be abandoned? J Med Ethics. 2021;48:581–5.

    Article  PubMed  Google Scholar 

  94. Martin A, Kanai M, Kamatani Y, Okada Y, Neale B, Daly M. Clinical use of current polygenic risk scores may exacerbate health disparities. Nat Genet. 2019;51:584–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Johnson K, Wei W, Weeraratne D, Frisse M, Misulis K, Rhee K, Zhao J, Snowdon J. Precision medicine, AI, and the future of personalized health care. Clin Transl Sci. 2020;14:86–93.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Quazi, S. Artificial intelligence and machine learning in precision and genomic medicine. Med Oncol 2022;39:120. https://doi.org/10.1007/s12032-022-01711-1.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Xu J, Yang P, Xue S, Sharma B, Sanchez-Martin M, Wang F, Beaty K, Dehan E, Parikh B. Translating cancer genomics into precision medicine with artificial intelligence: applications, challenges and future perspectives. Hum Genet. 2019;138:109–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Grapov D, Fahrmann J, Wanichthanarak K, Khoomrung S. Rise of deep learning for genomic, proteomic, and metabolomic data integration in precision medicine. OMICS J Integrat Biol. 2018;22:630–6.

    Article  CAS  Google Scholar 

  99. Hamamoto R, Komatsu M, Takasawa K, Asada K, Kaneko S. Epigenetics analysis and integrated analysis of multiomics data, including epigenetic data, using artificial intelligence in the era of precision medicine. Biomolecules. 2019;10(1):62. PMID: 31905969; PMCID: PMC7023005. https://doi.org/10.3390/biom10010062.

  100. Björnsson B, Borrebaeck C, Elander N, Gasslander T, Gawel DR, Gustafsson M, Jörnsten R, Lee EJ, Li X, Lilja S, Martínez-Enguita D, Matussek A, Sandström P, Schäfer S, Stenmarker M, Sun XF, Sysoev O, Zhang H, Benson, M. Digital twins to personalize medicine. Gen Med. 2019;12(1):4. PMID: 31892363; PMCID: PMC6938608. https://doi.org/10.1186/s13073-019-0701-3.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Colantonio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Buongiorno, R., Caudai, C., Colantonio, S., Germanese, D. (2023). Introduction to Machine Learning in Medicine. In: Klontzas, M.E., Fanni, S.C., Neri, E. (eds) Introduction to Artificial Intelligence. Imaging Informatics for Healthcare Professionals. Springer, Cham. https://doi.org/10.1007/978-3-031-25928-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-25928-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-25927-2

  • Online ISBN: 978-3-031-25928-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics