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Abstract

We analyse quantile temporal-difference learning (QTD), a distributional reinforcement
learning algorithm that has proven to be a key component in several successful large-scale
applications of reinforcement learning. Despite these empirical successes, a theoretical un-
derstanding of QTD has proven elusive until now. Unlike classical TD learning, which can
be analysed with standard stochastic approximation tools, QTD updates do not approxi-
mate contraction mappings, are highly non-linear, and may have multiple fixed points. The
core result of this paper is a proof of convergence to the fixed points of a related family
of dynamic programming procedures with probability 1, putting QTD on firm theoreti-
cal footing. The proof establishes connections between QTD and non-linear differential
inclusions through stochastic approximation theory and non-smooth analysis.
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1. Introduction

In distributional reinforcement learning, an agent aims to predict the full probability dis-
tribution over future returns it will encounter (Morimura et al., 2010b,a; Bellemare et al.,
2017, 2023), in contrast to predicting just the mean return, as in classical reinforcement
learning (Sutton and Barto, 2018). A widely-used family of algorithms for distributional
reinforcement learning is based on the notion of learning quantiles of the return distribu-
tion, an approach that originated with Dabney et al. (2018b), who introduced the quantile
temporal-difference (QTD) learning algorithm. This approach has been particularly suc-
cessful in combination with deep reinforcement learning, and has been a central component
in several recent real-world applications, including sim-to-real stratospheric balloon navi-
gation (Bellemare et al., 2020), robotic manipulation (Bodnar et al., 2020), and algorithm
discovery (Fawzi et al., 2022), as well as on benchmark simulated domains such as the Ar-
cade Learning Environment (Bellemare et al., 2013; Machado et al., 2018; Dabney et al.,
2018b,a; Yang et al., 2019) and racing simulation (Wurman et al., 2022).

Despite these empirical successes of QTD, little is known about its behaviour from a theoret-
ical viewpoint. In particular, questions regarding the asymptotic behaviour of the algorithm
(Do its predictions converge? Under what conditions? What is the qualitative character of
the predictions when they do converge?) were left open. A core reason for this is that unlike
classical TD, and other distributional reinforcement learning algorithms such as categorical
temporal-difference learning (Rowland et al., 2018; Bellemare et al., 2023), the updates of
QTD rely on asymmetric L1 losses. As a result, these updates do not approximate the
application of a contraction mapping, are highly non-linear (even in the tabular setting),
and also may have multiple fixed points (depending on the exact structure of the reward
distributions of the environment), and their analysis requires a distinct set of tools to those
typically used to analyse temporal-difference learning algorithms.

In this paper, we prove the convergence of QTD—notably under weaker assumptions than
are required in typical proofs of convergence for classical TD learning—establishing it as a
sound algorithm with theoretical convergence guarantees, and paving the way for further
analysis and investigation. The more general conditions stem from the structure of the
QTD updates (namely, their boundedness), and the proof is obtained through the use of
stochastic approximation theory with differential inclusions.

We begin by providing background on Markov decision processes, classical TD learning,
and quantile regression in Section 2. After motivating the QTD algorithm in Section 3,
we describe the related family of quantile dynamic programming (QDP) algorithms, and
provide a convergence analysis of these algorithms in Section 4. We then present the main
result, a convergence analysis of QTD, in Section 5. The proof relies on the stochastic
approximation framework set out by Benäım et al. (2005), arguing that the QTD algorithm
approximates a continuous-time differential inclusion, and then constructing a Lyapunov
function to demonstrate that the limiting behaviour of trajectories of the differential in-
clusion matches that of the QDP algorithms introduced earlier. Finally, in Section 6, we
analyse the limit points of QTD, bounding their approximation error to the true return
distributions of interest, and investigating the kinds of approximation artefacts that arise
empirically.
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2. Background

We first introduce background concepts and notation.

2.1 Markov Decision Processes

We consider a Markov decision process specified by finite state and action spaces X and A,
transition kernel PX : X ×A →P(X ), reward distribution function PR : X ×A →P1(R),
and discount factor γ ∈ [0, 1). Here, P(X ) is the set of probability distributions over the
finite set X , and P1(R) is the set of probability distributions over R (with its usual Borel
σ-algebra) with finite mean.

Given a policy π : X → P(A) and an initial state x0 ∈ X , an agent interacting with
the environment using the policy π generates a sequence of states, actions and rewards
(Xt, At, Rt)

∞
t=0, called a trajectory, the joint distribution of which is determined by the

transition dynamics and reward distributions of the environment, and the policy of the
agent. More precisely, we have

• X0 = x0, and for each t ≥ 0:

• At | X0:t, A0:t−1, R0:t−1 ∼ π(·|Xt);

• Rt | X0:t, A0:t, R0:t−1 ∼ PR(·|Xt, At);

• Xt+1 | X0:t, A0:t, R0:t ∼ PX (·|Xt, At).

The distribution of the trajectory is thus parametrised by the initial state x0, and the policy
π. To illustrate this dependency, we use the notation Pπx0 and Eπx0 to denote the probability
distribution and expectation operator corresponding to this distribution, and will write
P π(·|x) for the joint distribution over a reward–next-state pair when the current state is x.

2.2 Predicting Expected Returns and the Return Distribution

The quality of the agent’s performance on the trajectory is quantified by the discounted
return, or simply the return, given by

∞∑
t=0

γtRt . (1)

The return is a random variable, whose sources of randomness are the random selections of
actions made according to π, the randomness in state transitions, and the randomness in
rewards observed. Typically in reinforcement learning, a single scalar summary of perfor-
mance is given by the expectation of this return over all these sources of randomness. For
a given policy, this is summarised across each possible starting state via the value function
V π : X → R, defined by

V π(x) = Eπx

[ ∞∑
t=0

γtRt

]
. (2)
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Learning the value function of a policy π from sampled trajectories generated through
interaction with the environment is a central problem in reinforcement learning, referred to
as the policy evaluation task.

Each expected return is a scalar summary of a much more rich, complex object: the proba-
bility distributions of the random return in Equation (1) itself. Distributional reinforcement
learning (Bellemare et al., 2023) is concerned with the problem of learning to predict the
probability distribution over returns, in contrast to just their expected value. Mathemati-
cally, the goal is to learn the return-distribution function ηπ : X → P(R); for each state
x ∈ X , ηπ(x) is the probability distribution of the random return in Expression (1) when
the trajectory begins at state x, and the agent acts using policy π. Mathematically, we
have

ηπ(x) = Dπx

(∑
t≥0

γtRt

)
,

where Dπx extract the probability distribution of a random variable under Pπx.

There are several distinct motivations for aiming to learn these more complex objects. First,
the richness of the distribution provides an abundance of signal for an agent to learn from,
in contrast to a single scalar expectation. The strong performance of deep reinforcement
learning agents that incorporate distributional predictions is hypothesised to be related to
this fact (Dabney et al., 2018b; Barth-Maron et al., 2018; Dabney et al., 2018a; Yang et al.,
2019). Second, learning about the full probability distribution of returns makes possible the
use of risk-sensitive performance criteria; one may be interested in not only the expected
return under a policy, but also the variance of the return, or the probability of the return
being under a certain threshold.

Unlike the value function V π, which is an element of RX , and can therefore be straightfor-
wardly represented on a computer (up to floating-point precision), the return-distribution
function ηπ is not representable. Each object ηπ(x) is a probability distribution over the real
numbers, and, informally speaking, probability distributions have infinitely many degrees
of freedom. Distributional reinforcement learning algorithms therefore typically work with
a subset of distributions that are amenable to parametrisation on a computer (Bellemare
et al., 2023). Common choices of subsets include categorical distributions (Bellemare et al.,
2017), exponential families (Morimura et al., 2010b), and mixtures of Gaussian distribu-
tions (Barth-Maron et al., 2018). Quantile temporal-difference learning, the core algorithm
of study in this paper, aims to learn a particular set of quantiles of the return distribution,
as described in Section 3.

2.3 Monte Carlo and Temporal-Difference Learning

To foreshadow our description and motivation of quantile temporal-difference learning, we
recall a line of thinking that interprets the classical TD learning update rule as an approx-
imation to Monte Carlo learning; this material is common to many introductory texts on
reinforcement learning (Sutton and Barto, 2018), and we present it here to make a direct
analogy with QTD. First, we may observe that, under the condition that all reward distri-
butions have finite variance, V π(x) is the unique minimiser of the following loss function
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over u ∈ R, the prediction of mean return at x:

Lπx(u) =
1

2
Eπx
[(
u−

∞∑
t=0

γtRt

)2]
.

This well-known characterisation of the expectation of a random variable is readily verified
by, for example, observing that the loss is convex and differentiable in u, and solving the
equation ∂uLπx(u) = 0. This motivates an approach to learning V π(x) based on stochastic
gradient descent on the loss function Lπx. We maintain an estimate V ∈ RX of the value
function, and each time a trajectory (Xt, At, Rt)t≥0 beginning at state x is observed, we
can obtain an unbiased estimator of the negative gradient of Lπx(V (x)) as

∞∑
t=0

γtRt − V (x) ,

and update V (x) by taking a step in the direction of this negative gradient, with some step
size α:

V (x)← V (x) + α
( ∞∑
t=0

γtRt − V (x)
)
. (3)

This is a Monte Carlo algorithm, so called because it uses Monte Carlo samples of the
random return to update the estimate V .

A popular alternative to this Monte Carlo algorithm is temporal-difference learning, which
replaces samples from the random return with a bootstrapped approximation to the return,
obtained from a transition (x,A,R,X ′) by combining the immediate reward R with the
current estimate of the expected return obtained at X ′, resulting in the return estimate

R+ γV (X ′) , (4)

and the corresponding update rule

V (x)← V (x) + α(R+ γV (X ′)− V (x)) . (5)

While the mean-return estimator in Expression (4) is generally biased, since V (X ′) is not
generally equal to the true expected return V π(X ′), it is often a lower-variance estimate,
since we are replacing the random return from X ′ with an estimate of its expectation
(Sutton, 1988; Sutton and Barto, 2018; Kearns and Singh, 2000).

This motivates the TD learning rule in Expression (5) based on the Monte Carlo update
rule in Expression (3), with the understanding that this algorithm can be applied more
generally, with access only to sampled transitions (rather than full trajectories), and may
result in more accurate estimates of the value function, due to lower-variance updates, and
the propensity of TD algorithms to “share information” across states. Note however that
this does not prove anything about the behaviour of temporal-difference learning, and a
fully rigorous theory of the asymptotic behaviour emerged several years after TD methods
were formally introduced (Sutton, 1984, 1988; Watkins, 1989; Watkins and Dayan, 1992;
Dayan, 1992; Dayan and Sejnowski, 1994; Jaakkola et al., 1994; Tsitsiklis, 1994).
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3. Quantile Temporal-Difference Learning and Quantile Dynamic
Programming

We now present the main algorithms of study in this paper.

3.1 Quantile Regression

To motivate QTD, we begin by considering how we might adapt a Monte Carlo algorithm
such as that in Expression (3) to learn about the distribution of returns, rather than just
their expected value. We cannot learn the return distribution in its entirety with a finite
collection of parameters; the space of return distributions is infinite-dimensional, so we
must instead be satisfied with learning an approximation of the return distribution by
selecting a probability distribution representation (Bellemare et al., 2023, Chapter 5): a
subset of probability distributions parametrised by a finite-dimensional set of parameters.
The approach of quantile temporal-difference learning is to learn an approximation of the
form

η(x) =

m∑
i=1

1

m
δθ(x,i) ; (6)

an equally-weighted mixture of Dirac deltas, for each state x ∈ X . The quantile-based ap-
proach to distributional reinforcement learning aims to have the particle locations (θ(x, i))mi=1

approximate certain quantiles of ηπ(x).

Definition 1 For a probability distribution ν ∈P(R) and parameter τ ∈ (0, 1), the set of
τ -quantiles of ν is given by the set

{z ∈ R : Fν(z) = τ} ∪ inf{y ∈ R : Fν(y) > τ} ,

where Fν : R→ [0, 1] is the CDF of ν, defined by Fν(t) = PZ∼ν(Z ≤ t) for all t ∈ R.

Expanding on this definition, if the set {z ∈ R : Fν(z) = τ} is non-empty, then the τ -
quantiles are precisely the values z such that PZ∼ν(Z ≤ z) = τ . If however this set is
empty (which may arise when Fν has points of discontinuity), then the quantile is the
smallest value y such that PZ∼ν(Z ≤ y) > τ . Note also that if Fν is strictly increasing, this
guarantees uniqueness of each τ -quantile for τ ∈ (0, 1); this is often a useful property in the
analysis we consider later. These different cases are illustrated in Figure 1. The generalised
inverse CDF of ν, F−1

ν : (0, 1)→ R, is defined by

F−1
ν (τ) = inf{y : Fν(y) ≥ τ} ,

and provides a way of uniquely specifying a quantile for each level τ . In cases where there
is not a unique τ -quantile (see Figure 1), F−1

ν (τ) corresponds to the left-most or least valid
τ -quantile. We also introduce the notation

F̄−1
ν (τ) = inf{y : Fν(y) > τ} ,

which corresponds to the right-most or greatest τ -quantile; notice the strict inequality that
appears in the definition, in contrast to that of F−1

ν (τ). If F−1
ν is continuous at τ , then
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Figure 1: The three distinct scenarios that arise in defining quantiles. Firstly, there is a
value z1 for which Fν(z1) = τ1 and at which Fν is strictly increasing. Therefore
z1 is the unique τ1-quantile of ν. Next, there is an interval [z2, z

′
2] on which Fν

equals τ2, therefore all elements in this interval are τ2-quantiles of ν. Finally,
there is no value z such that Fν(z) = τ3, and the unique τ3-quantile is therefore
defined by the infimum part of the definition.

F−1
ν (τ) = F̄−1

ν (τ), as is the case for τ = τ1 and τ = τ3 in Figure 1. However, if Fν has a
flat region for the value τ (as is the case for τ = τ2 in Figure 1), then F−1

ν (τ) and F̄−1
ν (τ)

are distinct, and correspond to the boundary points of this flat region.

Algorithmically, we aim for θ(x, i) to approximate a τi-quantile of ηπ(x), where τi = 2i−1/2m.
To build learning algorithms that achieve this, we require an incremental algorithm that
updates θ(x, i) in response to samples from the target distribution ηπ(x), which converges
to a 2i−1/2m-quantile of ηπ(x).

Such an approach is available by using the quantile regression loss. We define the quantile
regression loss associated with distribution ν ∈ P(R) and quantile level τ ∈ (0, 1) as a
function of v by

EZ∼ν [(τ1{Z ≥ v}+ (1− τ)1{Z < v})|Z − v|] . (7)

This loss is the expectation of an asymmetric absolute value loss, in which positive and
negative errors are weighted according to the parameters τ and 1 − τ respectively. Just
as the expected squared loss encountered above encodes the mean as its unique minimiser,
the quantile regression loss encodes the τ -quantiles of ν as the unique minimisers; see, for
example, Koenker (2005) for further background. Thus, applying the quantile regression
loss to the problem of estimating τ -quantiles of the return distribution, we arrive at the loss

Lτ,πx (v) = Eπx
[
(τ1{∆ ≥ 0}+ (1− τ)1{∆ < 0})|∆|

]
, where ∆ =

∞∑
t=0

γtRt − v .
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Given an observed return
∑

t≥0 γ
tRt from the state x, we therefore have that an unbiased

estimator of the negative gradient1 of this loss is

τ1
{ ∞∑
t=0

γtRt ≥ v
}
− (1− τ)1

{ ∞∑
t=0

γtRt < v
}
,

which motivates an update rule of the form

θ(x, i)← θ(x, i) + α
(
τi1
{ ∞∑
t=0

γtRt ≥ θ(x, i)
}
− (1− τi)1

{ ∞∑
t=0

γtRt < θ(x, i)
})

. (8)

This can be rewritten as

θ(x, i)← θ(x, i) + α
(
τi − 1

{ ∞∑
t=0

γtRt < θ(x, i)
})

. (9)

This is essentially the application of the stochastic gradient descent method for quantile
regression to learning quantiles of the return distribution.

3.2 Quantile Temporal-Difference Learning

We can motivate and describe the quantile temporal-difference learning algorithm (Dabney
et al., 2018b; Bellemare et al., 2023) by modifying the Monte Carlo algorithm in Expres-
sion (8) in a similar manner to the modification that led to the TD algorithm in Expres-
sion (5). We replace the Monte Carlo return

∞∑
t=0

γtRt

based on a full trajectory, with an approximate sample from the return distribution derived
from an observed transition (x,R,X ′), and the estimate η(X ′) of the return distribution at
state X ′. If the return distribution estimate η(X ′) takes the form given in Equation (6),
as is the case for the probability distribution representation considered here, then such a
sample return is obtained as

R+ γθ(X ′, J) ,

with J sampled uniformly from {1, . . . ,m}. This yields the update rule

θ(x, i)← θ(x, i) + α
(
τi − 1

{
R+ γθ(X ′, J) < θ(x, i)

})
.

We can consider also a variance-reduced version of this update, in which we average over
updates performed under different realisations of J , leading to the update

θ(x, i)← θ(x, i) +
α

m

m∑
j=1

(
τi − 1

{
R+ γθ(X ′, j) < θ(x, i)

})
. (10)

1. Technically speaking, we are assuming that differentiation and expectation can be interchanged here.
Further, under certain circumstances the loss is only sub-differentiable. As our principal goal in this
section is to provide intuition for QTD, we do not comment further on these technical details here. The
convergence results later in the paper deal with these issues carefully.
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This is precisely the quantile temporal-difference learning update, presented in Algorithm 1
below, which underlies many recent successful applications of reinforcement learning at
scale (Dabney et al., 2018b,a; Yang et al., 2019; Bellemare et al., 2020; Wurman et al.,
2022; Fawzi et al., 2022). Similar to other temporal-difference learning algorithms, QTD
updates its parameters ((θ(x, i))mi=1 : x ∈ X ) on the basis of sample transitions (x, r, x′)
generated through interaction with the environment via the policy π, comprising a state,
reward, and next state.

Algorithm 1 QTD update

Require: Quantile estimates θ ∈ RX×[m] ,
Observed transition (x, r, x′) ,
Learning rate α.

1: Set τi = 2i−1
2m for each i = 1, . . . ,m.

2: for i = 1, . . . ,m do

3: Set θ′(x, i)← θ(x, i) + α 1
m

∑m
j=1

[
τi − 1

{
r + γθ(x′, j)− θ(x, i) < 0

}]
4: end for
5: for i = 1, . . . ,m do
6: Set θ(x, i)← θ′(x, i)
7: end for
8: return ((θ′(x, i))mi=1 : x ∈ X )

Whilst the QTD update makes use of temporal-difference errors r+γθ(x′, j)−θ(x, i), there
are two key differences to the use of analogous quantities in classical TD learning. First, the
TD errors influence the update only through their sign, not their magnitude. Second, the
predictions at each state (θ(x, i))mi=1 are indexed by i, and each update includes a distinct
term τi (equal to 2i−1/2m). The presence of these terms causes the learnt parameters to
make distinct predictions, as described in Section 3.1. Practical implementations of QTD
use these precise values for τi, equally spaced out on [0, 1], as proposed by Dabney et al.
(2018b). Much of the analysis in this paper goes through straightforwardly for other values
of τi, though we will see in Section 6 that this choice is well motivated in that it provides
the best bounds on distribution approximation. The tabular QTD algorithm as described
in Algorithm 1 uses a factor O(m) times more memory than an analogous classical TD
algorithm, owing to the need to store multiple predictions at each state, though the scaling
with the size of the state space is the same as for classical TD. For further discussion of the
computational complexity of QTD, see Rowland et al. (Appendix A.3; 2023).

The discussion above provides motivation for the form of the QTD update given in Al-
gorithm 1, and intuition as to why this algorithm might perform reasonably, and learn a
sensible approximation to the return distribution. However, it stops short of providing an
explanation of how the algorithm should be expected to behave, or providing any theoretical
guarantees as to what the algorithm will in fact converge to. A core goal of the sections
that follow is to answer these questions, and put QTD on firm theoretical footing.
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3.3 Motivating Examples

Before undertaking an analysis of QTD, we pause to provide several numerical examples of
its behaviour in small environments. These examples provide further intuition for the char-
acteristics of the algorithm, illustrate the breadth of qualitative behaviours it can exhibit,
and provide motivation for the kinds of theoretical questions we might hope to answer.

Example 2 Consider the chain MDP illustrated at the top of Figure 2. The random return
at each state is a sum of independent Gaussian random variables, and hence the return
distribution at each state is Gaussian. The centre plot in Figure 2 illustrates the evolution
of m = 5 quantile estimates learnt by QTD, using a constant learning rate of 0.01, and
updating all states at each update. The estimated quantile values eventually settle after
around 6,000 updates, with small oscillations around this point. The bottom of Figure 2
compares the true return distribution at each state (in blue), with the approximation learnt
by QTD (in black), and the approximation obtained with the true value of the five quantiles of
interest (grey). The behaviour of QTD in this case raises several questions: Can it be shown
that QTD is guaranteed to stabilise/converge around a certain point? Can a guarantee be
given on the quality of the approximate distributions learnt by QTD?

Example 3 For a different perspective on the behaviour of QTD, consider a two-state
MDP with transition dynamics as illustrated in the top-left of Figure 3, and discount factor
γ = 0.5. The reward obtained when transitioning from state x1 is distributed as N(2, 1),
and the reward obtained when transitioning from state x2 is distributed as N(-1, 1); here,
we write N(µ, σ2) for the normal distribution with mean µ and variance σ2. We consider
the case of learning a single quantile (the median) at each of these two states, taking m = 1;
this allows us to plot the full phase space of the QTD algorithm in a two-dimensional plot.

The top-right of Figure 3 shows a path taken by QTD under this MDP. In addition, the
streamplot illustrates the direction of the expected update that QTD undertakes at each
point in phase space. We empirically observe convergence of the algorithm to a point.
Additionally, the expected update direction changes smoothly; the result is a vector field that
appears to point towards the point of convergence from all directions.

The bottom-left of Figure 3 shows a path taken by QTD under a modified version of the
MDP, in which the reward distributions N(2, 1) and N(-1, 1) are replaced with δ2 and δ−1,
respectively. We observe that the algorithm still converges to a point, although the vector field
of expected update directions is now piecewise constant, with discontinuities along several
lines. This behaviour is typical of QTD; the less ‘smooth’ the reward distributions in the
MDP, the more abrupt the changes in behaviour we typically observe with QTD.

Finally, we consider a modified version of the MDP in which all transition probabilities
are 1/2, rewards from state x1 are always 2, and rewards from state x2 are always −1. In
this case, QTD no longer appears to converge to a point, but instead converges to the set
bounded by the four grey lines appearing in the bottom-right of Figure 3, and subsequently
performing a random walk over this set. This collection of examples illustrates that QTD
can exhibit a fairly wide family of behaviours depending on the characteristics of the envi-
ronment. In particular, non-uniqueness of quantiles in reward distributions (corresponding
to flat regions in reward distribution CDFs) can lead to multiple possible limit points, and
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Figure 2: Top: A chain MDP with four states. Each transition yields a normally-distributed
reward; from x3, the episode ends. The discount factor is γ = 0.9. Centre-top:
The progress of QTD, run withm = 5 quantiles, over the course of 10,000 updates.
The vertical axis corresponds to the predicted quantile values. Centre-bottom:
The true CDF of the return distribution (blue) at each state, along with the
final estimate produced by QTD (black), and the approximation produced by
the quantiles of the return distribution (grey). Bottom: The PDF of the return
distribution (blue) at each state, along with the final quantile approximation
produced by QTD (black).
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Figure 3: Top left: The example Markov decision process described in Example 3. Top
right: Example dynamics of QTD with m = 1 in this environment, when reward
distributions are Gaussian. Also included are the directions of expected update,
in blue. Bottom left: Example dynamics and expected update directions when
reward distributions are Dirac deltas. Bottom right: Example dynamics and
expected updates with modified environment transition probabilities.

discontinuities in reward distributions can lead to discontinuous changes in expected updates;
by contrast, reward distributions that are absolutely continuous lead to smooth changes in
expected dynamics.

3.4 Quantile Dynamic Programming

Recall the QTD update given in Equation (10). As described in Section 3.2, this update
serves, on average, to move θ(x, i) in the direction of the τi-quantiles of the distribution
of the random variable R + θ(X ′, J), where (x,R,X ′) is a random transition generated by
interacting with the environment using π, and J ∼ Unif({1, . . . ,m}).

Suppose we were able to update θ(x, i) not just with a single gradient step in this direction,
but instead were able to update it to take on exactly this quantile value. This motivates a

12
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dynamic programming alternative to QTD, quantile dynamic programming (QDP), which
directly calculates these quantiles iteratively, in a similar manner to iterative policy evalu-
ation in classical reinforcement learning (Bertsekas and Tsitsiklis, 1996).

The mathematical structure of such an algorithm is given in Algorithm 2. This stops
short of being an implementable algorithm, since we do not describe in what format the
transition probabilities and reward distributions are available, which are required to evaluate
the inverse CDFs that arise in the algorithm. However, for MDPs in which transition
probabilities and reward distributions are available, QDP is an algorithmic framework of
interest in its own right, and to this end we provide several concrete implementations in
Appendix B.

The QDP template in Algorithm 2 is parametrised by the interpolation parameters λ ∈
[0, 1]X×[m]. These parameters control exactly which quantile is chosen when the desired
quantile level τi corresponds to a flat region of the CDF for the distribution ν (the second
case in Figure 1). QDP was originally presented by Bellemare et al. (2023) in the case
λ(x, i) ≡ 0; the presentation here generalises QDP to a family of algorithms, parametrised
by λ.

Our interest in QDP stems from the fact that QTD can be viewed as approximating the
behaviour of the QDP algorithms, without requiring access to the transition structure and
reward distributions of the environment. In particular, we will show that under appropriate
conditions, the asymptotic behaviour of QTD and QDP are equivalent: they both converge
to the same limiting points. Figure 4 illustrates the behaviour of the QDP algorithm in the
environment described in Example 3; since the reward distributions in this example have
strictly increasing CDFs, QDP behaves identically for all choices of interpolation parameters
λ. QTD and QDP appear to have the same asymptotic behaviour, converging to the
same limiting point. In cases where QTD appears to converge to a set, such as in the
bottom-right plot of Figure 3, the relationship is slightly more complicated, and there is
a correspondence between the asymptotic behaviour of QTD and the family of dynamic
programming algorithms parametrised by λ, as illustrated at the bottom of Figure 4. Thus,
to understand the asymptotic behaviour of QTD, we begin by analysing the asymptotic
behaviour of QDP.

Algorithm 2 Quantile dynamic programming

Require: Quantile estimates ((θ(x, i))mi=1 : x ∈ X ),
Interpolation parameters λ ∈ [0, 1]X×[m].

1: for x ∈ X do
2: Let (x,R,X ′) be a random transition under π, and J ∼ Unif({1, . . . ,m}).
3: Set ν to be the distribution of R+ γθ(X ′, J).
4: for i = 1, . . . ,m do
5: Set θ(x, i)← (1− λ(x, i))F−1

ν (τi) + λ(x, i)F̄−1
ν (τi).

6: end for
7: end for
8: return ((θ(x, i))mi=1 : x ∈ X )

13
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Figure 4: Top left: Illustration of QDP (dashed purple) and QTD (solid red) on the first
MDP from Example 3, with Gaussian rewards. Top right: Illustration of QDP
and QTD on the second MDP from Example 3, with deterministic rewards. Bot-
tom: Values of λ and corresponding fixed points of QDP in the final MDP from
Example 3.

14



An Analysis of Quantile Temporal-Difference Learning

4. Convergence of Quantile Dynamic Programming

We can decompose the update QDP performs into the composition of several operators.
Algorithm 2 manipulates tables of the form ((θ(x, i))mi=1 : x ∈ X ). For a given state x, the
vector (θ(x, i))mi=1 represents the estimated 2i−1/2m-quantiles of the return distribution at
state x, for i = 1, . . . ,m. In mathematically analysing the algorithm, it is useful to be able
to refer to the distribution encoded by these quantiles:

1

m

m∑
i=1

δθ(x,i) , (11)

and reason about the transformations undertaken by Algorithm 2 directly in terms of dis-
tributions. To this end, if we write η(x) ∈P(R) for the probability distribution associated
with the quantile estimates (θ(x, i))mi=1, we can interpret the transformation performed by
Algorithm 2 as comprising two parts, which we now describe in turn.

First, the variable η(x) is assigned the distribution of R + γG(X ′), where R,X ′ are the
random reward and next-state encountered from the initial state x with policy π, and
(G(y) : y ∈ X ) is an independent collection of random variables, with each G(y) distributed
according to η(y).

We write T π : P(R)X → P(R)X for this transformation. The function T π is known as
the distributional Bellman operator (Bellemare et al., 2017; Rowland et al., 2018; Bellemare
et al., 2023). In terms of the above definition via distributions of random variables, T π can
be written

(T πη)(x) = Dπ(R+ γG(X ′)) ,

where (x,R,X ′) is a random environment transition beginning at x, independent of (G(y) :
y ∈ X ), and Dπ extracts the distribution of its argument when (x,R,X ′) is generated by
sampling an action from π. See Bellemare et al. (2023) for further background on the
distributional Bellman operator.

In general, T πη may comprise much more complicated distributions than η itself, with many
more atoms, or possibly infinite support, if reward distributions are infinitely-supported.
Algorithm 2 does not return these full transformed distributions, but rather approximations,
or projections, of these distributions, obtained by keeping only information about certain
quantiles (in the inner for-loop of Algorithm 2); this is the second distribution transforma-
tion the algorithm undertakes. Each choice of interpolation parameters λ corresponds to a
different projection operator, denoted Πλ : P(R)X →P(R)X , and defined by

(Πλη)(x) =
1

m

m∑
i=1

δ(1−λ(x,i))F−1
η(x)

(τi)+λ(x,i)F̄−1
η(x)

(τi)
. (12)

Thus, the composition ΠλT π, the projected distributional Bellman operator, is a transfor-
mation on the space of return-distribution functions P(R)X . We will also find it useful to
abuse notation slightly and consider ΠλT π as an operator on the space RX×[m] of parame-
ters that QDP and QTD operate over. The understanding is that an input θ ∈ RX×[m] is
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first re-interpreted as a collection of distributions as in Expression (11), with ΠλT π applied
as defined above to this collection of probability distributions, and then finally extracting
the support of the output distributions, which take the form

m∑
i=1

1

m
δzi ,

to return an element of RX×[m]. We will also write T πθ for the element of P(R)X obtained
by applying T π to the distributions (η(x) : x ∈ X ) defined by

η(x) =

m∑
i=1

1

m
δθ(x,i) .

Remark 4 This convention highlights that there are two complementary views of distri-
butional reinforcement learning algorithms, through finite-dimensional sets of parameters,
and through probability distributions. The view in terms of probability distributions is of-
ten useful in contraction analysis, and in measuring approximation error, while we will see
that the parameter view is key to the stochastic approximation analysis that follows, and is
ultimately the way in which these algorithms are implemented.

With this convention, ΠλT πθ is precisely the table θ′ output by Algorithm 2 on input θ, and
so the QDP algorithm is mathematically equivalent to repeated application of the operator
ΠλT π to an initial collection of quantile estimates. To understand the long-term behaviour
of QDP, we can therefore seek to understand this projected operator ΠλT π.

4.1 Convergence Analysis

We will show that ΠλT π is a contraction mapping with respect to an appropriate metric
over return-distribution functions. Building on the analysis in the case of λ ≡ 0 carried
out by Dabney et al. (2018b) and Bellemare et al. (2023), we use the Wasserstein-∞ metric
w∞ : P(R)×P(R)→ [0,∞], defined by

w∞(ν, ν ′) = sup
t∈(0,1)

|F−1
ν (t)− F−1

ν′ (t)| ,

and its extension to return-distribution functions, w̄∞ : P(R)X ×P(R)X → [0,∞], given
by

w̄∞(η, η′) = max
x∈X

sup
t∈(0,1)

|F−1
η(x)(t)− F

−1
η′(x)(t)| .

Both w∞ and w̄∞ fulfil all the requirements of a metric, except that they may assign infinite
distances (Villani, 2009; see also Bellemare et al., 2023 for a detailed discussion specifically
in the context of reinforcement learning). We must therefore take some care as to when
distances are finite. The following is established by Bellemare et al. (2023, Proposition 4.15).

Proposition 5 The distributional Bellman operator T π : P(R)X → P(R)X is a γ-
contraction with respect to w̄∞. That is,

w̄∞(T πη, T πη′) ≤ γw̄∞(η, η′) ,

for all η, η′ ∈P(R)X .
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Next, we show that the projection operator Πλ cannot expand distances as measured by
w̄∞, generalising the proof given by Bellemare et al. (2023) in the case λ ≡ 0; the proof is
given in Appendix A.1.

Proposition 6 The projection operator Πλ : P(R)X → P(R)X is a non-expansion with
respect to w̄∞. That is, for any η, η′ ∈P(R)X , we have

w̄∞(Πλη,Πλη′) ≤ w̄∞(η, η′) .

Finally, we put these two results together to obtain our desired conclusion. In stating this
result, it is useful here to introduce the notation

FQ,m =
{ m∑
i=1

1

m
δzi : zi ∈ R for i = 1, . . . ,m

}
,

for the set of probability distributions representable with m quantile locations.

Proposition 7 The projected operator ΠλT π : FXQ,m → FXQ,m is a γ-contraction with

respect to w̄∞. Hence, ΠλT π has a unique fixed point in FXQ,m, which we denote η̂πλ . Further,

given any initial η0 ∈ FXQ,m, the sequence (ηk)
∞
k=0 defined iteratively by ηk+1 = ΠλT πηk for

k ≥ 0 satisfies w̄∞(ηk, η̂
π
λ) ≤ γkw̄∞(η0, η̂

π
λ)→ 0.

Proof That ΠλT π : FXQ,m → FXQ,m is a γ-contraction with respect to w̄∞ follows directly
from Propositions 5 and 6:

w̄∞(ΠλT πη,ΠλT πη′) ≤ w̄∞(T πη, T πη′) ≤ γw̄∞(η, η′) .

Next, observe that w̄∞ assigns finite distance to all pairs of return-distribution functions in
FXQ,m, and further, this set is complete with respect to w̄∞. Hence, we may apply Banach’s

fixed point theorem to obtain the existence of the unique fixed point η̂πλ in FXQ,m. The final

claim follows by induction, and the contraction property established for ΠλT π.

Note that the fixed point η̂πλ depends on λ, and therefore implicitly on m. We also introduce

the notation θ̂πλ ∈ RX×[m] for the parameters of this collection of distributions, which is what
the QDP algorithm really operates over, so that we have

η̂πλ(x) =

m∑
i=1

1

m
δθ̂πλ(x,i) .

Note that the convergence result of Proposition 7 also implies convergence of the estimated
quantile locations to θ̂πλ . In Section 6, we will analyse the fixed point η̂πλ , and understand
how closely it approximates the true return-distribution function ηπ. For now, having
established convergence of QDP through contraction mapping theory, we can return to
QTD and demonstrate its own convergence to the same fixed points.
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5. Convergence of Quantile Temporal-Difference Learning

We now present the convergence analysis of QTD. We will consider a synchronous version
of QTD, in which all states are updated using independent transitions at each algorithm
step, given by:

θk+1(x, i) = θk(x, i) + αk
1

m

m∑
j=1

(τi − 1{Rk(x) + γθk(X
′
k(x), j) < θk(x, i)}) , (13)

where given x and k, we have (Rk(x), X ′k(x)) ∼ P π(·|x), independently of the transitions
used at all other states/time steps, and (αk)

∞
k=0 is a sequence of step sizes. The assumption

of synchronous updates makes the analysis easier to present, and means that our results
follow classical approaches to stochastic approximation with differential inclusions (Benäım
et al., 2005). It is also possible to extend the analysis to the asynchronous case, where a
single state is updated at each algorithm time step (as would be the case in fully online
QTD, or an implementation using a replay buffer); see Section 5.7. We now state the main
convergence result of the paper.

Theorem 8 Consider the sequence (θk)
∞
k=0 defined by an initial point θ0 ∈ RX×[m], the

iterative update in Equation (13), and non-negative step sizes satisfying the condition

∞∑
t=0

αk =∞ , αk = o(1/ log k) . (14)

Then (θk)
∞
k=0 converges almost surely to the set of fixed points of the projected distributional

Bellman operators {ΠλT π : λ ∈ [0, 1]X×[m]}; that is,

inf
λ∈[0,1]X×[m]

‖θk − θ̂πλ‖∞ → 0

with probability 1.

Of particular note is the generality of this result. It does not require finite-variance con-
ditions on rewards (as is typically the case with convergence results for classical TD); it
holds for any collection of reward distributions with the finite mean property set out at the
beginning of the paper. Some intuition as to why this is the case is that the finite-variance
conditions typically encountered are to ensure that the updates performed in classical TD
learning cannot grow in magnitude too rapidly. Since the updates performed in QTD are
bounded, this is not a concern, meaning that the proof does not rely on such conditions. We
note also that the step size conditions are weaker than the typical Robbins-Monro condi-
tions used in classical TD analyses (see, for example, Bertsekas and Tsitsiklis, 1996), which
enforce square-summability, also to avoid the possibility of divergence due to unbounded
noise in the classical TD learning.

The proof is based on the ODE method for stochastic approximation; in particular we use
the framework set out by Benäım (1999) and Benäım et al. (2005). This involves interpreting
the QTD update as a noisy Euler discretisation of a differential equation (or more generally,
a differential inclusion). The broad steps are then to argue that the trajectories of the
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differential equation/inclusion converge to some set of fixed points in a suitable way (that
is, in such a way that is robust to small perturbations), and that the asymptotic behaviour
of QTD, forming a noisy Euler discretisation, matches the asymptotic behaviour of the
true trajectories. This then allows us to deduce that the QTD iterates converge to the
same set of fixed points as the true trajectories. We begin by elucidating the connection to
differential equations and differential inclusions.

5.1 The QTD Differential Equation

Taking the expectation over the random variables Rk(x) and X ′k(x) in Equation (13) con-
ditional on the algorithm history up to time k yields an expected increment of

αk
(
τi − Pπx(R+ θk(X

′, J) < θk(x, i))
)
. (15)

We now briefly introduce an assumption on the MDP reward structure that simplifies the
analysis that follows. This assumption guarantees that the two “difficult” cases of flat and
vertical regions of CDFs (see Figure 1) do not arise; note that this assumptions removes
the possibility of multiple fixed points or discontinuous expected dynamics, as described in
Example 3. We will lift this assumption later.

Assumption 9 For each state x ∈ X , the reward distribution at x has a CDF which is
strictly increasing, and Lipschitz continuous.

As described in Section 4, the distribution of R + θk(X
′, J) given the initial state x is

in fact equal to the application of the distributional Bellman operator T π applied to the
return-distribution function ηk ∈P(R)X given by

ηk(x) =
1

m

m∑
i=1

δθk(x,i) .

Under Assumption 9, and in particular the assumption of continuous reward CDFs, this
yields a concise rewriting of the increment as

αk
(
τi − F(T πθk)(x)(θk(x, i))

)
.

We may therefore intuitively interpret Equation (13) as a noisy discretisation of the differ-
ential equation

∂tϑt(x, i) = τi − F(T πϑt)(x)(ϑt(x, i)) , (16)

which we refer to as the QTD differential equation (or QTD ODE). Note also that As-
sumption 9 guarantees the global existence and uniqueness of solutions to this differential
equation, by the Cauchy-Lipschitz theorem.

Remark 10 Calling back to Figure 3, the trajectories of the QTD ODE are obtained pre-
cisely by integrating the vector fields that appear in these plots. In contrast to the ODE that
emerges when analysing classical TD learning (both in tabular and linear function approx-
imation settings) (Tsitsiklis and Van Roy, 1997), the right-hand side of Equation (16) is
non-linear in the parameters ϑt, meaning that we are outside the domain of linear stochastic
approximation methods.
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5.2 The QTD Differential Inclusion

In lifting Assumption 9, a few complications arise. Firstly, if F(T πθ)(x) is not continuous at
θ(x, i), then the right-hand side of the QTD ODE in Equation (16) is modified to

τi − PZ∼(T πϑt)(x)(Z < ϑt(x, i)) ;

the difference is the strict inequality. Now the right-hand side of the differential equation
itself is not continuous; in general, solutions may not even exist for this differential equation.
The situation is illustrated in the bottom-left panel of Figure 3; the lines in this plot illustrate
points of discontinuity of the vector field to be integrated, and there are instances where the
vector field either side of such a line of discontinuity “pushes” back into the discontinuity. In
such cases, the differential equation has no solution in the usual sense. This phenomenon is
known as sliding, or sticking, from cases when it arises in the modelling of physical systems
with potentially discontinuous forces (such as static friction models in mechanics).

Filippov (1960) proposed a method to deal with such non-existence issues, by relaxing the
definition of the dynamics at points of discontinuity. Technically, Filippov’s proposal is to
allow the derivative to take on any value in the convex hull of possible limiting values as
we approach the point of discontinuity. In our case, we consider redefining the dynamics at
points of discontinuity as follows:

∂tϑt(x, i) ∈ [τi − F(T πϑt)(x)(ϑt(x, i)), τi − F(T πϑt)(x)(ϑt(x, i)−)] , (17)

where F(T πϑt)(x)(ϑt(x, i)−) denotes lims↑ϑt(x,i) F(T πϑt)(x)(s). This refines the dynamics so
that for each coordinate (x, i), the derivative may take on either the left or right limit around
ϑt(x, i), or any value in between; this is a looser relaxation than Filippov’s proposal, and is
easier to work with in our analysis.

Equation (17) is a differential inclusion, as opposed to a differential equation; the derivative
is constrained to a set at each instant, rather than constrained to a single value. We refer
to Equation (17) specifically as the QTD differential inclusion (or QTD DI). Note that
if F(T πθ)(x) is continuous at θ(x, i), then the right-hand side of Equation (17) reduces to
the singleton {τi − F(T πθ)(x)(θ(x, i))}, and we thus obtain the ODE dynamics considered
previously.

5.3 Solutions of Differential Inclusions

We briefly recall some key concepts regarding solutions of differential inclusions; a full review
of the theory of differential inclusions is beyond the scope of this article, and we refer the
reader to the standard references by Aubin and Cellina (1984), Clarke et al. (1998), and
Smirnov (2002).

Definition 11 Let H : Rn ⇒ Rn be a set-valued map. The path (zt)t≥0 is a solution to
the differential inclusion ∂tzt ∈ H(zt) if there exists an integrable function g : [0,∞)→ Rn
such that

zt =

∫ t

0
gsds (18)

for all t ≥ 0, and gt ∈ H(zt) for almost all t ≥ 0.
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Note that Definition 11 does not require that zt is differentiable with derivative gt, but only
the weaker integration condition in Equation (18). We then have the following existence
result (see, for example, Smirnov, 2002 for a proof).

Proposition 12 Consider a set-valued map H : Rn ⇒ Rn, and suppose that H is a Mar-
chaud map: that is,

• the set {(z, h) : z ∈ Rn, h ∈ H(z)} is closed.

• For all z ∈ Rn, H(z) is non-empty, compact, and convex.

• There exists a constant C > 0 such that for all z ∈ Rn,

max
h∈H(z)

‖h‖ ≤ C(1 + ‖z‖) .

Then the differential inclusion ∂tzt ∈ H(zt) has a global solution, for any initial condition.

It is readily verified that the QTD DI satisfies the requirements of this result, and we
are therefore guaranteed global solutions to this differential inclusion, under any initial
conditions.

5.4 Asymptotic Behaviour of Differential Inclusion Trajectories

Recall that our goal is to show that the trajectories of the QTD differential inclusion must
approach the fixed points of QDP. A key tool in doing so is the notion of a Lyapunov
function; the following definition is based on Benäım et al. (2005).

Definition 13 Consider a Marchaud map H : Rn ⇒ Rn, and a subset Λ ⊆ Rn. A con-
tinuous function L : Rn → [0,∞) is said to be a Lyapunov function for the differential
inclusion ∂tzt ∈ H(zt) and subset Λ if for any solution (zt)t≥0 of the differential inclusion
and 0 ≤ s < t, we have L(zt) < L(zs) for all zs 6∈ Λ and L(z) = 0 for all z ∈ Λ.

Intuitively, L is a Lyapunov function if it decreases along trajectories of the differential
inclusion, and is minimal precisely on Λ. Lyapunov functions are a central tool in dynamical
systems for demonstrating convergence, and in the sections that follow, we will consider the
QTD differential inclusion, and take Λ to be the set of fixed points of the family of QDP
algorithms.

5.5 QTD as a Stochastic Approximation to the QTD Differential Inclusion

We can now give the proof of our core result, Theorem 8. The abstract stochastic approx-
imation result at the heart of the convergence proof of QTD is presented below. It is a
special case of the general framework described by Benäım et al. (2005), the proof of which
is given in Appendix A.2.

Theorem 14 Consider a Marchaud map H : Rn ⇒ Rn, and the corresponding differential
inclusion ∂tzt ∈ H(zt). Suppose there exists a Lyapunov function L for this differential
inclusion and a subset Λ ⊆ Rn. Suppose also that we have a sequence (θk)k≥0 satisfying

θk+1 = θk + αk(gk + wk) ,
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where:

• (αk)
∞
k=0 satisfy the conditions

∑∞
k=0 αk =∞, αk = o(1/ log(k));

• gk ∈ H(θk) for all k ≥ 0;

• (wk)
∞
k=0 is a bounded martingale difference sequence with respect to the natural filtration

generated by (θk)
∞
k=0; that is, there is an absolute constant C such that ‖wk‖∞ < C

almost surely, and E[wk|θ0, . . . , θk] = 0.

If further (θk)
∞
k=0 is bounded almost surely (that is, supk≥0 ‖θk‖∞ <∞ almost surely), then

θk → Λ almost surely.

The intuition behind the conditions of the theorem are as follows. The Marchaud map
condition ensures the differential inclusion of interest has global solutions. The existence of
the Lyapunov function guarantees that trajectories of the differential inclusion converge in
a suitably stable sense to Λ. The step size conditions, martingale difference condition, and
boundedness conditions mean that the iterates (θk)

∞
k=0 will closely track the differential

inclusion trajectories, and hence exhibit the same asymptotic behaviour. We can now
give the proof of Theorem 8, first requiring the following proposition, which is proven in
Appendix A.3.

Proposition 15 Under the conditions of Theorem 8, the iterates (θk)
∞
k=0 are bounded al-

most surely.

Proof (Proof of Theorem 8) We see that for the QTD sequence (θk)
∞
k=0 and the QTD

DI and QDP invariant set Λ = {θ̂πλ : λ ∈ [0, 1]X×[m]}, the conditions of Theorem 14 are
satisfied, except perhaps for the boundedness of (θk)

∞
k=0, and the existence of the Lyapunov

function. The fact that the sequence (θk)
∞
k=0 is bounded almost surely is Proposition 15;

its proof is somewhat technical, and given in the appendix. The construction of a valid
Lyapunov function is given in Proposition 18 below, which completes the proof.

Remark 16 What makes the relaxation to the differential inclusion work in this analysis?
We have already seen that some kind of relaxation of the dynamics is required in order to
define a valid continuous-time dynamical system; the original ODE may not have solutions
in general. If we relax the dynamics too much (an extreme example would be the differential
inclusion ϑt(x, i) ∈ R), what goes wrong? The answer is that there are too many resulting
solutions, which do not exhibit the desired asymptotic behaviour. Thus, the differential
inclusion in Equation (17) is in some sense just the right level of relaxation of the differential
equation we started with, since trajectories of the QTD DI are still guaranteed to converge
to the QDP fixed points.

5.6 A Lyapunov Function for the QDP Fixed Points

In this section, we prove the existence of a Lyapunov function required in order to use
Theorem 14 to prove Theorem 8. We treat the case when Assumption 9 holds separately
as the proof is instructive, and considerably simpler than the general case. Under this
assumption, note that all projections Πλ behave identically on the image of T π, since all
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resulting CDFs are strictly increasing. We therefore introduce the notation Π to refer to
any such projection in this case, and the notation θ̂πm to refer to the unique fixed point of
ΠT π.

Proposition 17 Consider the ODE in Equation (16), and suppose Assumption 9 holds. A
Lyapunov function for the equilibrium point θ̂πm is given by

L(θ) = max
x∈X

max
i=1,...,m

|θ(x, i)− θ̂πm(x, i)| .

Proof We immediately observe that L is continuous, non-negative, and takes on the value
0 only at θ̂πm. To show that L(ϑt) is decreasing, where (ϑt)t≥0 is an ODE trajectory, suppose
(x, i) is a state-index pair attaining the maximum in L(ϑt). It is sufficient to show that
ϑt(x, i) is moving towards θ̂πm(x, i), or expressed mathematically,

∂tϑt(x, i)
S
= θ̂πm(x, i)− ϑt(x, i) ,

where we use a
S
= b as shorthand for equality of signs sign(a) = sign(b), where

sign(z) =


1 if z > 0 ,

0 if z = 0 ,

−1 if z < 0 .

Now note that

∂tϑt(x, i) = τi − F(T πϑt)(x)(ϑt(x, i))

S
= F−1

(T πϑt)(x)(τi)− F
−1
(T πϑt)(x)(F(T πϑt)(x)(ϑt(x, i)))

= (ΠT πϑt)(x, i)− ϑt(x, i) ,

where the sign equality follows from Assumption 9; since all reward CDFs are strictly
increasing, so too is F(T πϑt)(x), and so F−1

(T πϑt)(x) is strictly monotonic. Additionally, from

the contractivity of ΠT π with respect to w∞ (see Proposition 7), we have

|(ΠT πϑt)(x, i)− θ̂πm(x, i)| ≤ w∞(ΠT πϑt,ΠT π θ̂πm)

≤ γmax
y∈X

max
j=1,...,m

|ϑt(y, j)− θ̂πm(y, j)|

= γ|ϑt(x, i)− θ̂πm(x, i)| ; (19)

the equality follows since we selected (x, i) attain the maximum in the definition of L(ϑt).
From this, we deduce

(ΠT πϑt)(x, i)− ϑt(x, i)
S
= θ̂πm(x, i)− ϑt(x, i) ;

which follows by considering the three cases for the sign of θ̂πm(x, i) − ϑt(x, i). If the sign
equals zero, then since (x, i) was chosen to be maximal in the definition of L(ϑt), we have
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ϑt = θ̂πm, and hence ΠT πϑt = θ̂πm, and the claim follows; both sides are equal to 0. For the
case θ̂πm(x, i)− ϑt(x, i) < 0, then note we have

(ΠT πϑt)(x, i)− ϑt(x, i) ≤ θ̂πm(x, i) + γ(ϑt(x, i)− θ̂πm(x, i))− ϑt(x, i)
= (1− γ)(θ̂πm(x, i)− ϑt(x, i)) < 0 ,

as required, with the inequality above following from Equation (19). The case θ̂πm(x, i) −
ϑt(x, i) > 0 follow similarly. We therefore have

∂tϑt(x, i)
S
= θ̂πm(x, i)− ϑt(x, i) .

We therefore have that L(ϑt) is decreasing at t, strictly so if ϑt 6= θ̂πm, as required to estab-
lish the result.

The proof of Proposition 17 also sheds further light on the mechanisms underlying the QTD
algorithm. A key step in the argument is to show that for the state-index pairs (x, i) such
that ϑt(x, i) is maximally distant from the fixed point θπm(x, i), the expected update under
QTD moves this coordinate of the estimate in the same direction as gradient descent on a
squared loss from the fixed point. However, the fact that it is only the sign of the update
that has this property, and not its magnitude, means that the empirical rate of convergence
and stability of QTD can be expected to be somewhat different from methods based on an
L2 loss, such as classical TD.

We now state the Lyapunov result in the general case; the proof is somewhat more involved,
and is given in Appendix A.4.

Proposition 18 The function

L(θ) = min
λ∈[0,1]X×[m]

max
(x,i)
|θ(x, i)− θ̂πλ(x, i)| (20)

is a Lyapunov function for the differential inclusion in Equation (17) and the set of fixed
points {θ̂πλ : λ ∈ [0, 1]X×[m]}.

5.7 Extension to Asynchronous QTD

Our convergence results have focused on the synchronous case of QTD. However, in practice,
it is often of interest to implement asynchronous versions of TD algorithms, in which only a
single state is updated at a time. More formally, an asynchronous version of QTD computes
the sequence (θk)k≥0 defined by an initial estimate θ ∈ RX×[m], a sequence of transitions
(Xk, Rk, X

′
k)k≥0, and the update rule

θk+1(x, i) = θk(x, i) + βx,k
1

m

m∑
j=1

(τi − 1{Rk + γθk(X
′
k, j) < θk(x, i)})

for x = Xk, and θk+1(x, i) = θk(x, i) otherwise. Here, the step size βx,k depends on both x
and k, and is typically selected so that each state individually makes use of a fixed step size
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sequence (αk)
∞
k=0, by taking βx,k = α∑k

l=0 1{Xl=x}
. This models the online situation where

a stream of experience (Xk, Rk)k≥0 is generated by interacting with the environment using
the policy π, and updates are performed setting X ′k = Xk+1, and also the setting in which
the tuples (Xk, Rk, X

′
k)k≥0 are sampled i.i.d. from a replay buffer, among others.

Convergence of QTD in such asynchronous settings can also be proven; Perkins and Leslie
(2013) extend the analysis of Benäım (1999) and Benäım et al. (2005), incorporating the
approach of Borkar (1998), to obtain convergence guarantees for asynchronous stochastic
approximation algorithms approximating differential inclusions. In the interest of space, we
do not provide the full details of the proof here, but instead sketch the key differences that
arise in the analysis in Appendix C.

6. Analysis of the QTD Limit Points

In general, the limiting points η̂πλ for QTD/QDP will not be the same as the true return-
distribution function ηπ. On the one hand, this is clear; each return-distribution function
η̂πλ is in the image of the projection Πλ, so each constituent probability distribution must
be of the form 1

m

∑m
i=1 δzi , whereas the true return distributions need not take on this

form. In addition, the magnitude of this approximation error is not immediately clear.
Each application of the projection Πλ in the dynamic programming process causes some
loss of information, and the quality of the fixed point η̂πλ is affected by the build up of these
approximations over time.

Measuring approximation error in w̄∞ typically turns out to be uninformative, as w̄∞ is
a particularly strict notion of distance between probability distributions, as discussed in
the context of distributional RL by Rowland et al. (2019) and Bellemare et al. (2023). In
particular, fixed points η̂πλ that intuitively provide a good approximation to ηπ may have
high w̄∞-distance, and the w̄∞-distance generally does not decrease withm (Bellemare et al.,
2023). Instead, we use the Wasserstein-1 metric, and its extension to return-distribution
functions, defined by

w1(ν, ν ′) =

∫ 1

0
|F−1
ν (t)− F−1

ν′ (t)| dt , w̄1(η, η′) = max
x∈X

w1(η(x), η′(x)) ,

for all ν, ν ′ ∈P(R), and η, η′ ∈P(R)X . The following result improves on the analysis given
by Bellemare et al. (2023) for the case of λ ≡ 0, establishing an upper bound on the w1

distance between η̂πλ and ηπ for any λ, essentially by showing that the errors accumulated
in dynamic programming can be made arbitrarily small by increasing m, which controls the
richness of the distribution representation.

Proposition 19 For any λ ∈ [0, 1]X×[m], if all reward distributions are supported on
[Rmin, Rmax], then we have

w̄1(η̂πλ , η
π) ≤ Vmax − Vmin

2m(1− γ)
,

where Vmax = Rmax/(1− γ), and similarly Vmin = Rmin/(1− γ).
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Remark 20 This bound also provides motivation for the specific values of (τi)
m
i=1 that

QTD uses. A similar convergence analysis and fixed-point analysis can be straightfor-
wardly carried out for a version of the QTD algorithm with other values for (τi)

m
i=1; by

tracing through the proof of Proposition 19, it can be seen that the bound is proportional to
max(τ1,max((τi+1 − τi)/2 : i = 2, . . . ,m − 1), 1 − τm), which is minimised precisely by the
choice of (τi)

m
i=1 used by QTD.

6.1 Instance-Dependent Bounds

The result above implicitly assumes the worst-case projection error is incurred at all states
with each application of the Bellman operator. In environments where this is not the case,
the fixed point can be shown to be of considerably better quality. We describe an example
of an instance-dependent quality bound here.

Proposition 21 Consider an MDP such that for any trajectory, after k time steps all
encountered transition distributions and reward distributions are Dirac deltas. If all reward
distributions in the MDP are supported on [Rmin, Rmax], then for any λ ∈ [0, 1]X×[m], we
have

w̄1(η̂πλ , η
π) ≤ (Vmax − Vmin)(1− γk)

2m(1− γ)
.

Remark 22 One particular upshot of this bound for practitioners is that for agents in
near-deterministic environments using near-deterministic policies, it may be possible to use
m = o((1−γ)−1) quantiles and still obtain accurate approximations to the return-distribution
function via QTD and/or QDP. It is interesting to contrast this result for quantile-based
distributional reinforcement learning against the case when using categorical distribution
representations (Bellemare et al., 2017; Rowland et al., 2018; Bellemare et al., 2023). In
this latter case, fixed point error continues to be accumulated even when the environment
has solely deterministic transitions and rewards, due to the well-documented phenomenon
of the approximate distribution ‘spreading its mass out’ under the Cramér projection (Belle-
mare et al., 2017; Rowland et al., 2018; Bellemare et al., 2023). Our observation here leads
to immediate practical advice for practitioners (in environments with mostly deterministic
transitions, a quantile representation may be preferred to a categorical representation, lead-
ing to less approximation error), and raises a general question that warrants further study:
how can we use prior knowledge about the structure of the environment to select a good
distribution representation?

We conclude this section by noting that many variants of Proposition 21 are possible; one
can for example modify the assumption that rewards are deterministic to an assumption
that rewards distributions are supported on a ‘small’ interval, and still obtain a fixed-point
bound that improves over the instance-independent bound of Proposition 19. There are a
wide variety of such modifications that could be imagined, and we believe this to be an
interesting direction for future research and applications.
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6.2 Qualitative Analysis of QDP Fixed Points

The analysis in the previous section establishes quantitative upper bounds on the quality
of the fixed point learnt by QTD, and guarantees that with enough atoms an arbitrarily
accurate approximation of the return-distribution function (as measured by w1) can be
learnt. We now take a closer look at the way in which approximation errors may manifest
in QTD and QDP.

Example 23 Consider the two-state Markov decision process (with a single action) whose
transition probabilities are specified by the left-hand side of Figure 5, such that a determin-
istic reward of 2 is obtained in state x1, and −1 in state x2; further, let us take a discount
factor γ = 0.9. The centre panel of this figure shows various estimates of the CDF for the
return distribution at state x1. The ground truth estimate in black is obtained from Monte
Carlo sampling. The CDFs in purple, blue, green, and orange are the points of convergence
for QDP with m = 2, 5, 10, 100, respectively. For m = 100, a very close fit to the true re-
turn distribution is obtained. However, for small m in particular, the distribution is heavily
skewed to the right. In the case of m = 2, half of the probability mass is placed on the
greatest possible return in this MDP—namely 20—even though with probability 1 the true
return is less than this value. What is the cause of this behaviour from QDP? This question
is answered by investigating the dynamic programming update itself in more detail.

In this MDP, the result of the QDP operator applied to the fixed point θ is to update each
particle location with a ‘backed-up’ particle appearing in the distributions T πθ. When such
settings arise, tracking which backed-up particles are allocated to which other particles helps
us to understand the behaviour of QDP, and the nature of the approximation incurred. We
also gain intuition about the situation, since the QDP operator is behaving like a an affine
policy evaluation operator on X × [m] locally around the fixed point. We can visualise which
particles are assigned to one another by a QDP operator application through local quantile
back-up diagrams; the right-hand side of Figure 5 shows the local quantile back-up diagram
for particular MDP. We observe that θ(x1, 2) backs up from itself, and hence learns a value
that corresponds to observing a self-transition at every state, with a reward of 2; under
the discount factor of 0.9, this corresponds to a return of 20. This is the source of the
drastic over-estimation of returns in the approximation obtained with m = 2, and the fact
that all other state-quantile pairs implicitly bootstrap from this estimate leads to the over-
estimation leaking out into all quantiles estimated in this case. As m increases, we observe
from the CDF plot that there is always one particle that learns this maximal return of 20,
but that this has less effect on the other quantiles; indeed in the orange curve, we obtain a
very good approximation (in w1) to the true return distribution despite this particle with a
maximal value of 20 remaining present. We can interpret the increase in m as preventing
pathological self-loops/small cycles in the quantile backup diagram from “leaking out” and
degrading the quality of other quantile estimates; this provides a complementary perspective
on the approximation artefacts that occur in QDP/QTD fixed points to the quantitative
upper bounds in the previous section.

We expect the local quantile back-up diagram introduced in Example 23 to be a useful tool
for developing intuition, as well as further analysis, of QDP and QTD. As described in the
example itself, being able to define the local back-up diagram depends on the structure
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Figure 5: Left: An example MDP. Centre: The fixed point return distribution estimates for
state x1 obtained by QDP for m = 2, 5, 20, 100 (solid purple, dotted blue, dashed
green, and dash-dotted orange, respectively) compared to ground truth in solid
black. Right: The corresponding local quantile backup diagram at the fixed point
for m = 2, illustrating potential approximation artefacts in QDP fixed points.

of the MDP being such that the QDP operator obtains each new coordinate value from a
single backed-up particle location. It is an interesting question as to how the definition of
such local back-up diagrams could be generalised to apply in situations where this does not
hold, such as with absolutely continuous reward distributions.

7. Related Work

Stochastic approximation theory with differential inclusions. The ODE method was intro-
duced by Ljung (1977) as a means of analysing stochastic approximation algorithms, and
was subsequently extended and refined by Kushner and Clark (1978); standard references
on the subject include Kushner and Yin (2003); Borkar (2008); Benveniste et al. (2012); see
also Meyn (2022) for an overview in the context of reinforcement learning. The framework
we follow in this paper is set out by Benäım (1999), and was extended by Benäım et al.
(2005) to allow for differential inclusions. Perkins and Leslie (2013) later extended this
analysis further to allow for asynchronous algorithms, building on the approach introduced
by Borkar (1998), and extended, with particular application to reinforcement learning, by
Borkar and Meyn (2000).

Differential inclusion theory. Differential inclusions have found application across a wide
variety of fields, including control theory (Wazewski, 1961), economics (Aubin, 1991) dif-
ferential game theory (Krasovskii and Subbotin, 1988), and mechanics (Monteiro Marques,
2013). The approach to modelling differential equations with discontinuous right-hand sides
via differential inclusions was introduced by Filippov (1960). Standard references on the
theory of differential inclusions include Aubin and Cellina (1984); Clarke et al. (1998);
Smirnov (2002); see also Bernardo et al. (2008) on the related field of piecewise-smooth
dynamical systems. Joseph and Bhatnagar (2019) also use tools combining stochastic ap-
proximation and differential inclusions from Benäım et al. (2005) to analyse (sub-)gradient
descent as a means of estimating quantiles of fixed distributions. Within reinforcement
learning and related fields more specifically, differential inclusions have played a key role in
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the analysis of game-theoretic algorithms based on fictitious play (Brown, 1951; Robinson,
1951); see Benäım et al. (2006); Leslie and Collins (2006); Benäım and Faure (2013) for ex-
amples. More recently, Gopalan and Thoppe (2023) used differential inclusions to analyse
TD algorithms for control with linear function approximation.

Quantile regression. Quantile regression as a methodology for statistical inference was
introduced by Koenker and Bassett (1978). Koenker (2005) and Koenker et al. (2017)
provide detailed surveys of the field. Quantile temporal-difference learning may be viewed
as fusing quantile regression with the bootstrapping approach (learning a guess from a
guess, as Sutton and Barto (2018) express it) that is core to much of the reinforcement
learning methodology.

Quantiles in reinforcement learning. The approach to distributional reinforcement learning
based on quantiles was introduced by Dabney et al. (2018b). A variety of modifications
and extensions were then considered in the deep reinforcement learning setting (Dabney
et al., 2018a; Yang et al., 2019; Zhou et al., 2020; Luo et al., 2021), as well as further
developments on the theoretical side (Lhéritier and Bondoux, 2022). A summary of the
approach is presented by Bellemare et al. (2023). Gilbert and Weng (2016) study the
problem of optimising quantile criteria in end-state MDPs. Li et al. (2022) consider the
risk-sensitive control problem of optimising particular quantiles of the return distribution,
and derive a dynamic programming algorithm that maintains a value function over state
and the “target quantile-to-go”.

8. Conclusion

We have provided the first convergence analysis for QTD, a popular and effective distri-
butional reinforcement learning algorithm. In contrast to the analysis of many classical
temporal-difference learning algorithms, this has required the use of tools from the field
of differential inclusions and branches of stochastic approximation theory that deal with
the associated dynamical systems. Due to the structure of the QTD algorithm, such as
its bounded-magnitude updates, these convergence guarantees hold under weaker condi-
tions than are generally used in the analysis of TD algorithms. These results establish the
soundness of QTD, representing an important step towards understanding its efficacy and
practical successes, and we expect the theoretical tools used here to be useful in further
analyses of (distributional) reinforcement learning algorithms.

There are several natural directions for further work building on this analysis. One such
direction is to establish finite-sample bounds for the convergence of QTD predictions to
the set of QDP fixed points. This is a central theoretical question for developing our un-
derstanding of QTD, and may also shed further light on the recently observed empirical
phenomenon in which tabular QTD can outperform TD in stochastic environments as a
means of value estimation (Rowland et al., 2023). Related to this point, the Lyapunov
analysis conducted in this paper provides further intuition for why QTD works in general,
and we expect this to inform the design of further variants of QTD, for example incorpo-
rating multi-step bootstrapping (Watkins, 1989), or Ruppert-Polyak averaging (Ruppert,
1988; Polyak and Juditsky, 1992). Another important direction is to analyse more complex
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variants of the QTD algorithm, incorporating more aspects of the large-scale systems in
which it has found application. Examples include incorporating function approximation, or
control variants of the algorithm based on Q-learning. We believe further research into the
theory, practice and applications of QTD, at a variety of scales, are important directions
for foundational reinforcement learning research.
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Appendix A. Proofs

In this section, we provide proofs for results which are not proven in the main text.

A.1 Proof of Proposition 6

Let η, η′ ∈P(R). We have∣∣∣ ((1− λ(x, i))F−1
η(x)(τi) + λ(x, i)F̄−1

η(x)(τi)
)
−
(

(1− λ(x, i))F−1
η′(x)(τi) + λ(x, i)F̄−1

η′(x)(τi)
) ∣∣∣

≤ (1− λ(x, i))|F−1
η(x)(τi)− F

−1
η′(x)(τi)|+ λ(x, i)|F̄−1

η(x)(τi)− F̄
−1
η′(x)(τi)| .

Clearly

|F−1
η(x)(τi)− F

−1
η′(x)(τi)| ≤ w̄∞(η, η′) .

Additionally, we have

|F̄−1
η(x)(τi)− F̄

−1
η′(x)(τi)| = | lims↓τi

F−1
η(x)(s)− lim

s↓τi
F−1
η′(x)(s)|

= lim
s↓τi
|F−1
η(x)(s)− F

−1
η′(x)(s)|

≤ w̄∞(η, η′) .

Putting this together, we obtain∣∣∣ ((1− λ(x, i))F−1
η(x)(τi) + λ(x, i)F̄−1

η(x)(τi)
)
−
(

(1− λ(x, i))F−1
η′(x)(τi) + λ(x, i)F̄−1

η′(x)(τi)
) ∣∣∣

≤ w̄∞(η, η′) ,

as required.

30



An Analysis of Quantile Temporal-Difference Learning

A.2 Proof of Theorem 14

Theorem 14 is essentially a special case of the general results presented in Benäım et al.
(2005), in the form needed for the proof of convergence of QTD. To explain how to obtain
Theorem 14 from the results of Benäım et al. (2005), first, we associate a continuous-
time path (θ̄(t))t≥0 with the iterates (θk)

∞
k=0 by linear interpolation, in particular defining

θ̄(
∑s

k=0 αk) = θs, and linearly interpolating in between. The continuous-time path (θ̄(t))t≥0

satisfies the definition of a perturbed solution of the Marchaud differential inclusion with
probability 1, as defined by Definition II of Benäım et al. (2005), since: (i) θ̄ is piecewise
linear, hence absolutely continuous; (ii) the difference ‖θk+1 − θk‖∞ is O(αk), due to the
growth condition on H and since θ̄ is bounded by assumption; and (iii) the lim-sup condition
holds with probability 1 thanks to the boundedness of the martingale difference sequence
(wk)

∞
k=0 and Proposition 1.4 of Benäım et al. (2005); see also Theorem 5.3.3 of Kushner

and Yin (2003).

Next, since we assume θ̄ is bounded, Theorem 4.2 of Benäım et al. (2005) applies so that we
deduce that it is an asymptotic pseudotrajectory of the differential inclusion (w.p.1). We
then have that (θ̄(t))t≥0 is a bounded asymptotic pseudotrajectory (w.p.1), so Theorem 4.3
of Benäım et al. (2005) applies, and we deduce that the set of limit points of (θ̄(t))t≥0 is
internally chain transitive (w.p.1). But now by Proposition 3.27 of Benäım et al. (2005)
applied to the Lyapunov function L and the set Λ, all internally chain transitive sets are
contained within Λ. Since (θ̄(t))t≥0 is bounded, we deduce that it converges to Λ (w.p.1).
It therefore follows that the discrete sequence (θk)

∞
k=0 converges to Λ with probability 1, as

required.

A.3 Proof of Proposition 15

Roughly, the intuition of the proof is that the structure of the QTD differential inclusion
means that when ‖θk‖∞ is sufficiently large, the coordinates of θk furthest from the origin
are moved back towards the origin by the differential inclusion. We then argue that the
martingale noise cannot cause divergence, which completes the argument.

Differential inclusion update direction. To begin with the analysis of the differential inclu-
sion, fix δ > 0 such that 1 − δ > γ, and let M > 0 be such that for all (x, a) ∈ X × A, we
have

FPR(x,a)((1− δ − γ)M) > 1− 1/(4m) , FPR(x,a)(−(1− δ − γ)M) < 1/(4m) .

We then introduce the events

I+
k (x, i) = {‖θk‖∞ > M , θk(x, i) > (1− δ)‖θk‖∞} ,
I−k (x, i) = {‖θk‖∞ > M , θk(x, i) < −(1− δ)‖θk‖∞} .

which, roughly speaking, hold when θk has at least one large coordinate (in absolute value),
and θk(x, i) is a positive (respectively, negative) coordinate close to the maximum value.
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When I+
k (x, i) holds, we have

τi − F(T πθk)(x)(θk(x, i)−) (21)

= τi −
∑
x′∈X

P (x′|x, a)π(a|x)
1

m

m∑
j=1

lim
s↑0

FR(x,a)(θk(x, i)− γθk(x′, j) + s)

(a)

≤ τi −
∑
x′∈X

P (x′|x, a)π(a|x)
1

m

m∑
j=1

(1− 1/(4m))

≤ (1− 1/(2m))− (1− (1/(4m))

≤ −1/(4m) , (22)

and hence the differential inclusion moves θk(x, i) towards the origin. Inequality (a) follows
since on I+

k (x, i), we have

θk(x, i)− γθk(x′, j) ≥ (1− δ)‖θk‖∞ − γ‖θk‖∞ ≥ (1− δ − γ)M .

Analogously, we conclude that on I−k (x, i), we have

τi − F(T πθk)(x)(θk(x, i)) ≥ 1/(4m) ,

and so the differential inclusion moves θk(x, i) towards the origin in this case too.

Chaining updates and reasoning about noise. To describe the relationship between successive
iterates in the sequence (θk)k≥0, we introduce the notation θk+1 = θk +αkgk +αkwk, where
wj is martingale difference noise, and hence gj is an expected update direction, from the
right-hand side of the QTD differential inclusion. By boundedness of the update noise and
the step size assumptions, we have from Proposition 1.4 of Benäım et al. (2005) (see also
Theorem 5.3.3 of Kushner and Yin (2003)) that

lim
k

sup
{∥∥ k+l∑

j=k

αjwj
∥∥
∞ : l ≥ 0 and

k+l∑
j=k

αj ≤ 8m+ 1
}

= 0 ,

almost surely. In particular, letting ε ∈ (0, 1), there almost-surely exists K (which depends
on the realisation of the martingale noise) such that

sup
{∥∥ k+l∑

j=k

αjwj
∥∥
∞ : l ≥ 0 and

k+l∑
j=k

αj ≤ 8m+ 1
}
< ε

for all k ≥ K, and further such that αk < 1 for all k ≥ K.

Let us additionally take M̄ ≥ M such that δM̄ ≥ 4(8m + 1). Suppose that for some
k ≥ K, ‖θk‖∞ ≥ M̄ + (8m+ 1). Let l be minimal such that

∑k+l
j=k αj > 8m. Then we have

‖θk+j − θk‖∞ ≤ 8m+ 1 for all 0 ≤ j ≤ l, and so ‖θk+j‖∞ ≥ M̄ for all 0 ≤ j ≤ l. Further, if

32



An Analysis of Quantile Temporal-Difference Learning

θk(x, i) satisfies θk(x, i) > ‖θk‖∞(1− δ) + 2(8m+ 1), then we have

θk+j(x, i)

≥ θk(x, i)− (8m+ 1)

≥ (1− δ)‖θk‖∞ + (8m+ 1)

≥ (1− δ)(‖θk+j‖∞ − (8m+ 1)) + (8m+ 1)

= (1− δ)‖θk+j‖∞ ,

so I+
k+j(x, i) holds for all 0 ≤ j ≤ l, and hence

|θk+l+1(x, i)| ≤ ‖θk‖∞ −
k+l∑
j=k

αj × 1/(4m) + ‖
k+l∑
j=k

αjwj‖∞ < ‖θk‖∞ − 2 + ε < ‖θk‖ − 1 .

(23)

Similarly, if θk(x, i) < −‖θk‖∞(1 − δ) − 2(8m + 1), I−k+j(x, i) holds for all 0 ≤ j ≤ l, and
we reach the same conclusion as in Equation (23). Finally, if |θk(x, i)| ≤ ‖θk‖∞(1 − δ) +
2(8m + 1), then since δ‖θk‖∞ > δM̄ , we have |θk(x, i)| ≤ ‖θk‖∞ − 2(8m + 1), and hence
|θk+l+1(x, i)| ≤ ‖θk‖∞ − (8m+ 1). Putting these components together, we have

‖θk+l+1‖∞ < ‖θk‖∞ + 1 , and max
0≤j≤l

‖θk+j‖∞ ≤ ‖θk‖∞ + (8m+ 1) ,

as required to establish boundedness.

A.4 Proof of Proposition 18

We first state and prove a useful lemma that allows us to compare QDP fixed points for
different values of λ. Throughout this section, we will adopt the shorthand θλ for θ̂πλ .

Lemma 24 Let λ, λ′ ∈ [0, 1]X×[m]. Then we have

‖θλ − θλ′‖∞ ≤ C‖λ− λ′‖∞ ,

where C is a constant depending only on the reward distributions of the MDP and γ.

Proof By the triangle inequality, we have

‖θλ − θλ′‖∞ ≤ ‖θλ −Πλ′T πθλ‖∞ + ‖Πλ′T πθλ − θλ′‖∞
= ‖ΠλT πθλ −Πλ′T πθλ‖∞ + ‖Πλ′T πθλ −Πλ′T πθλ′‖∞
≤ ‖(Πλ −Πλ′)T πθλ‖∞ + γ‖θλ − θλ′‖∞

=⇒ ‖θλ − θλ′‖∞ ≤
1

1− γ
‖(Πλ −Πλ′)T πθλ‖∞ .

Now we aim to bound ‖θλ‖∞, and hence the term on the right-hand side above. Note that
in general for a mixture distribution ν =

∑n
i=1 piνi, we have F−1

ν (τ) ≥ min{F−1
νi (τ) : i =
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1, . . . , n}, since

PZ∼ν(Z ≤ min{F−1
νi (τn) : i = 1, . . . , n}) =

n∑
i=1

piPZi∼νi(Zi ≤ min{F−1
νi (τ) : i = 1, . . . , n})

≤
n∑
i=1

piPZi∼νi(Zi ≤ F−1
νi (τ))

≤ τ .

Thus, it follows that the 1/2m quantile of T πθλ(x) is at least as great as

min
x
F−1
Rπ(x)(

1/2m)− γ‖θλ‖∞ .

By analogous reasoning, we obtain that F̄−1
(T πθλ)(x)

(2m−1/2m) is no greater than

max
x

F̄−1
Rπ(x)(

2m−1/2m) + γ‖θλ‖∞ .

From these facts, it follows that

‖θλ‖∞ ≤
1

1− γ
max

(
|min

x
F−1
Rπ(x)(

1/2m)|, |max
x

F̄−1
Rπ(x)(

2m−1/2m)|
)
,

and hence

‖(Πλ −Πλ′)T πθλ‖∞ ≤ C‖λ− λ′‖∞ ,

as required for the statement of the result.

We now turn to the proof of Proposition 18. First, we observe that the infimum over λ in
Equation (20) is attained, since Lemma 24 establishes that λ 7→ θλ is continuous (in fact
Lipschitz), and [0, 1]X×[m] is compact. We therefore have that L is continuous, non-negative,
and takes on the value 0 only on the set of fixed points {θλ : λ ∈ [0, 1]X×[m]}.

For the decreasing property, let (ϑt)t≥0 be a solution to the differential inclusion in Equa-
tion (17), and as in Definition 11, let g : [0,∞)→ RX×[m] satisfy

ϑt =

∫ t

0
gs ds , (24)

with gt(x, i) ∈ Hπ
x,i(ϑt) for all (x, i), and for almost all t ≥ 0, where we have introduced the

notation

Hπ
x,i(θ) = [τi − F(T πθ)(x)(θ(x, i)), τi − F(T πθ)(x)(θ(x, i)−)] .

As in the proof of Proposition 17, we will show that L(ϑt) is locally decreasing outside of the
fixed point set, which is enough for the global decreasing property. Further, by continuity
of L(ϑt), it is enough to show this property for almost all t ≥ 0. We will therefore consider
a value of t ≥ 0 at which the above inclusion for gt holds.
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Let λ attain the minimum in the definition of L(ϑt). Write θλ for the corresponding fixed
point for conciseness, and let (x, i) be a λ-argmax index with respect to ϑt; a state-particle

pair achieving the maximum in the definition of the norm ‖ϑt−θλ‖∞. First, we consider the
cases where Hπ

x,i(ϑt) is not a singleton. Now, if 0 ∈ Hπ
x,i(ϑt), then we have (ΠλT πϑt)(x, i) =

ϑt(x, i), and with the same logic as above, we have ϑt = θλ, and hence ϑt is in the fixed
point set, and L(ϑt) is constant. If 0 6∈ Hπ

x,i(ϑt), then as in the proof of Proposition 17, it
can be shown that any element of Hπ

x,i(ϑt) has the same sign as

(ΠλT πϑt)(x, i)− ϑt(x, i) . (25)

In the case of Proposition 17, continuity of the derivative then allowed us to deduce that
|ϑt(x, i)− θλ(x, i)| is locally decreasing. Here, we require a related concept of continuity for
the set-valued map θ 7→ Hπ

x,i(θ), namely that it is upper semicontinuous (see, for example,

Smirnov, 2002); for a given θ ∈ RX×[m] and any given ε > 0, there exists δ > 0 such that if
‖θ′ − θ‖∞ < δ, then Hπ

x,i(θ
′) ⊆ {h+ v : h ∈ Hπ

x,i(θ) , |v| < ε}. From this, it follows that any
element of Hπ

x,i(ϑt+s), for sufficiently small positive s, has the same sign as the expression

in Equation (25), and so from Equation (24), we have that |ϑt(x, i) − θλ(x, i)| is locally
decreasing, as required.

Now, when Hπ
x,i(ϑt) is a singleton, if it is non-zero, then by the same argument as in the

proof of Proposition 17, the corresponding element has the same sign as the expression in
Equation (25), and so as above, we conclude that |ϑt(x, i)− θλ(x, i)| is locally decreasing.

Finally, the case where there exists an argmax index (x, i) with Hπ
x,i(ϑt) = {0} requires more

care, and we will need to reason about the effects of perturbing λ to show that the Lyapunov
function is decreasing. For some intuition as to what the problem is, if Hπ

x,i(ϑt+s) = {0}
for small positive s, then the coordinate ϑt+s(x, i) is static, as it lies on the flat region of

the CDF F(T πϑt+s)(x) at level τi, and so the distance |ϑt+s(x, i)− θλ(x, i)| is not decreasing.
We explain how to deal with this case below.

A.4.1 Perturbative Argument

We introduce the notation J0 ⊆ X × [m] for the set of λ-argmax indices with respect to ϑt.

Assuming that ‖ϑt − θλ‖∞ is not locally decreasing, it must be locally constant (it cannot
increase, by the arguments above). Now consider s > 0 sufficiently small so that (i) no
coordinates not in J0 can be a λ-argmax index with respect to ϑt+s, so that J , the set of
λ-argmax indices with respect to ϑt+s, satisfies J ⊆ J0, (ii) all indices (x, i) ∈ J satisfy
Hπ
x,i(ϑt+u) = {0} for all u ∈ [0, 2s].

We will now demonstrate the existence of a parameter λ′ ∈ [0, 1]X×[m] such that ‖ϑt+s −
θλ
′‖∞ < ‖ϑt − θλ‖∞, which establishes the locally decreasing property of the Lyapnuov

function, as required. To do so, we introduce a modification of the fixed point map λ 7→ θλ.
Letting µ ∈ RJ , and defining λ[µ] ∈ RX×[m] to be the replacement of the J coordinates of
λ with the corresponding coordinates of µ, we consider the map

hλ : [0, 1]J → RJ , h(µ) = PJθ
λ[µ] ,
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where PJ : RX×[m] → RJ extracts the J coordinates. At an intuitive level, this map allows
us to study the effect of perturbing the J coordinates of λ on the corresponding coordinates
of the fixed point.

A.4.2 Case 1: λJ is in the Interior of [0, 1]J

We now first consider the case where λJ , the J coordinates of λ, lies in the interior of [0, 1]J ,
that is (0, 1)J . By Lemma 24, hλ is continuous, since it is the composition of the continuous
maps µ 7→ λ[µ], λ 7→ θλ, and θ 7→ PJθ. It is also injective in a neighbourhood of λJ . This

can be seen by noting first that the fixed points θλ[µ] are distinct for distinct values of µ
sufficiently close to λJ ; if µ 6= µ′ are each sufficiently close to λJ , then we have

Πλ[µ′]T πθλ[µ] 6= Πλ[µ]T πθλ[µ] = θλ[µ] ,

where the inequality follows from the fact that since θλ[µ] is continuous in µ, for µ sufficiently
close to J there is a flat region of F

(T πθλ[µ])(x)
at level τi, for any (x, i) ∈ J . To complete the

injectivity argument, we cannot have PJθ
λ[µ′] = PJθ

λ[µ] if θλ[µ′] 6= θλ[µ], as the contraction
maps Πλ[µ]T π and Πλ[µ]T π are equal on coordinates not in J , and these two maps would
therefore have the same fixed point, a contradiction.

We may now appeal to the invariance of domain theorem (Brouwer, 1912) to deduce that
since hλ is a continuous injective map between an open subset of [0, 1]J containing λJ (here
we are using the assumption that λJ lies in the interior of [0, 1]J) and the Euclidean space
RJ of equal dimension, it is an open map on this domain; that is, it maps open sets to
open sets. Hence, we can perturb θλ in the J coordinates in any direction we want by
locally modifying the J coordinates of λ. In particular, we can move all J coordinates of
θλ closer to those of (ϑt+s(x, i) : (x, i) ∈ J). Let λ′ ∈ (0, 1)X×[m] be such a modification of
λ, taken to be close enough to λ so that all coordinates outside J have sufficiently small
perturbations so that they cannot be λ′-argmax indices with respect to ϑt+s. We then have
that ‖ϑt+s − θλ

′‖∞ < ‖ϑt − θλ‖∞, as required.

A.4.3 Case 2: λJ is on the Boundary of [0, 1]J

In the more general case when λJ may lie on the boundary of [0, 1]J , we can apply the same
argument to an extension of the function hλ, by increasing its domain from [0, 1]J to an
open neighbourhood of this domain in RJ . We define this extension simply by extending
the definition of Πλ in Equation (12) to allow coordinates of λ to lie outside the range [0, 1].
We lose the non-expansiveness of Πλ (in L∞) under this extension, but if λmin, λmax are
the minimum and maximum coordinates of λ, respectively, it is easy verified (by modifying
the proof of Proposition 6) that Πλ is max(1 − λmin, λmax)-Lipschitz, and so if we extend
the function to a domain where λmax, 1 − λmin ≤ γ−1/2, the composition ΠλT π is a γ1/2-
contraction in L∞, and hence has a unique fixed point θλ.

By the same arguments as above, the extended map hλ is continuous and injective in a
neighbourhood of λJ on this extended domain, and hence we may again apply the invariance
of domain theorem to obtain that hλ\J is locally surjective around λJ . However, since λJ

lies on the boundary of the original domain, we must additionally check that we can perturb
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λJ to obtain µ in such a way that we obtain the desired perturbation of θλ, without the
parameters µ leaving the set [0, 1]J . To do this, we first rule out λJ lying on certain parts
of the boundary.

Lemma 25 If (x, i) ∈ J and ϑt+s(x, i) < θλ(x, i), then λ(x, i) > 0. Similarly, if ϑt+s(x, i) >

θλ(x, i), then λ(x, i) < 1.

Proof We prove the claim when ϑt+s(x, i) < θλ(x, i); the other case follows analogously.
If λ(x, i) = 0, then since ϑt+s(x, i) corresponds to the flat region at level τi of the CDF

F(T πϑt+s)(x), we must have (ΠλT πϑt+s)(x, i) ≤ ϑt+s(x, i) since λ(x, i) = 0, and so the

chosen quantile at level τi by the projection Πλ is the left-most point of this flat region. We
therefore have

w∞(ΠλT πϑt, θλ) ≥ |(ΠλT πϑt)(x, i)− θλ(x, i)| ≥ |ϑt(x, i)− θλ(x, i)| = w∞(ϑt, θ
λ) ,

contradicting contractivity of ΠλT π around θλ.

We write v = sign((ϑt+s)J − θλJ) ∈ RJ , where the sign mapping is applied elementwise, and
introduce the notation N(v) = {α � v : α ∈ Rn>0} for the (open) orthant containing the

vector v. We are therefore seeking a perturbation µ of λJ such that θ
λ[µ]
J lies in a direction

in N(v) from θλJ , and further such that the perturbation to θλ is sufficiently small that no

index that was not an argmax in ‖ϑt+s − θλ‖∞ can become one in ‖ϑt+s − θλ[µ]‖∞; under

these conditions, we have ‖ϑt+s − θλ[µ]‖∞ < ‖ϑt+s − θλ‖∞, as required. Lemma 25 then
guarantees that a (sufficiently small) perturbation of λJ in any direction in N(v) remains
within [0, 1]J , so it is sufficient to show that a perturbation in such a direction achieves the

desired perturbation of θλ.

Differentiability. Now, if the extended map λ 7→ θλ is differentiable at λ, then differentiating
through the fixed-point equation θλ = G(λ, θλ) (where we write G(λ, θ) = ΠλT πθ for
conciseness) yields

∇λθλ = ∂λG(λ, θλ) + ∂θG(λ, θλ)∇λθλ ;

differentiability of G in θ results from differentiability of the map λ 7→ G(λ, θλ), and contin-
uous differentiability of G in λ. Since θ 7→ G(λ, θ) is contractive in L∞ with factor γ1/2 (on
the extended domain), and by coordinatewise monotonicity of θ 7→ G(λ, θ), it follows that
∂θG(λ, θλ) is non-negative and strictly substochastic, with row L1 norms bounded by γ1/2,
the contraction factor for the extended set of contraction mappings. We remark as a point
of independent interest that this is a kind of Bellman equation for ∇λθλ, with ∂θG(λ, θλ)
taking the role of the transition matrix, and ∂λG(λ, θλ) taking the role of a collection of
cumulants; in fact, the structure of ∂θG(λ, θλ) coincides with the local quantile back-up
diagrams described in Example 23. We therefore have

∇λθλ = (I − ∂θG(λ, θλ))−1∂λG(λ, θλ) .
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By extracting the principal submatrix on the J coordinates, we obtain a derivative for
hλ(λJ). The following lemma is useful in reasoning about the structure of this principal
submatrix.

Lemma 26 Let Q1 ∈ Rn×n be strictly substochastic, and let K ⊆ [n]. Then the principal
submatrix on the K coordinates of (I − Q1)−1 can be expressed as (I − Q2)−1, with Q2 ∈
RK×K strictly substochastic.

Proof We interpret Q1 as the transition matrix of a Markov chain (Zt)t≥0 that includes
a non-zero probability of termination at each state. Each row of the matrix (I − Q1)−1 is
then the pre-termination visitation measure associated with a particular initial state in the
Markov chain. Now let Q2 be the strictly substochastic matrix defined by

Q2(z1, z2) = P((Zt)t≥0 does not terminate before returning to K,

first state on return is z2 | Z0 = z1) .

By construction, the pre-termination visitation distribution (I − Q2)−1 is identical to the
principal submatrix of (I −Q1)−1 on the K coordinates, as required.

From Lemma 26, we therefore obtain that ∇hλ(λJ) has the form

∇hλ(λJ) = (I −Q)−1D ,

with D ∈ RJ×J diagonal, with positive elements on the diagonal (from monotonicity of
λ 7→ G(λ, θ)), with Q ∈ RJ×J strictly substochastic. The derivative is therefore invertible,
and we obtain the derivative of the inverse of the form

∇h−1
λ

(θλJ) = D−1(I −Q) .

From strict substochasticity of Q, and since v ∈ {±1}J , it follows that for the desired
perturbation direction v, we have

∇h−1
λ

(θλJ)v
S
= v ,

and so ∇h−1
λ

(θλJ)v ∈ N(v), where the equality of signs applies elementwise. Therefore, a

perturbation of λJ in a direction in N(v) is achieved by a sufficiently small perturbation of
λJ in a direction in N(v), as required.

Non-differentiability. If λ 7→ θλ is not differentiable at λ, we instead use techniques from
non-smooth analysis to complete the argument. First, since λ 7→ θλ is Lipschitz (by
Lemma 24), it is differentiable almost everywhere by Rademacher’s theorem (Rademacher,
1919). By adapting the argument made by Clarke (1976, Lemma 3), by Fubini’s theorem,
for almost all λ\J ∈ RX×[m]\J , the map λ 7→ θλ is differentiable at (λ\J , µ) for almost all
µ with (λ\J , µ) in the extended domain. The map (λ\J , µ) 7→ (λ\J , hλ\J (µ)) is Lipschitz

and locally injective around λ, and hence maps sufficiently small open neighbourhoods of
λ to open neighbourhoods of (λ\J , hλ\J (λJ)). Further, since each hλ\J is Lipschitz, and so
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absolutely continuous, the inverse map h−1
λ\J

is almost-everywhere differentiable within such

a neighbourhood. Following the analysis of the differentiable case, we therefore deduce

∇h−1
λ\J

(θ)v
S
= v

for almost all λ\J in a ball B around λ\J , and (for each such λ\J) for almost all θ in the

L∞ ball B′ with centre hλ\J (λJ) and radius ρ, for some radius ρ > 0. We further take B

and B′ to be of small enough radii so that this directional derivative is bounded on this set,
so that h−1

λ is locally Lipschitz on B′ for each λ\J ∈ B (and hence absolutely continuous),

and so that for any θ ∈ B′, we have sign(θ− (ϑt+s)J) = sign(θλJ − (ϑt+s)J), and so that for

no µ in the preimage of B′ under hλ\J can have that ‖θ(λ\J ,µ) − ϑt+s‖∞ has new argmax
coordinates outside of J .

Let us consider λ̃ ∈ B at which the almost-everywhere differentiability condition holds. By
applying the same argument with Fubini’s theorem, for almost all θ̄ in B(hλ̃(λJ), ρ/4), the
inverse h−1

λ̃
is differentiable almost everywhere on {θ̄ + uv : u ∈ [0, ρ/2]}.

Now, defining µτ = h−1

λ̃
(θ̄ + τv) for τ ∈ [0, ρ/2], we have

d

dτ
µτ = ∇h−1

λ̃
(θ̄ + τv)v

for almost all τ , and by absolute continuity of h−1

λ̃
, it follows that

µρ/2 = µ0 +

∫ ρ/2

0

d

dτ
µτ dτ .

Hence, µε − µ0 ∈ N(v), and by construction hλ̃(µρ/2) = θ̄ + ρv/2. By continuity of λ 7→ θλ

and its inverse, and since λ̃ and θ̄ can be chosen above to be arbitrarily close to λ\J
and hλ\J (λJ) respectively, we may consider a sequence of these parameters converging to

λ\J and hλ\J (λJ), such that the values of µρ/2 as constructed above also converge (by

compactness), and thus conclude the existence of µ̄ρ/2 such that µ̄ρ/2 − λJ ∈ N(v), and

hλ(µ̄ρ/2) = hλ(λJ) + ρv/2, as required.

A.5 Proof of Proposition 19

We begin with the observation that for any return-distribution function η ∈P([Vmin, Vmax]),
for the projection Πλ onto FQ,m (for any λ ∈ [0, 1]X×[m]), we have

w̄1(Πλη, η) ≤ Vmax − Vmin
2m

.

Using this observation, we have

w̄1(η̂πλ , η
π)

(a)

≤ w̄1(η̂πλ , T πη̂πλ) + w̄1(T πη̂πλ , ηπ)

(b)
= w̄1(ΠλT πη̂πλ , T πη̂πλ) + w̄1(T πηπ, T πηπ)

(c)

≤ Vmax − Vmin
2m

+ γw̄1(η̂πλ , η
π) .
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Here, (a) follows from the triangle inequality, (b) follows as η̂πλ , ηπ are fixed points of ΠλT π,
T π, respectively, and (c) follows from the application of the inequality at the beginning of
the proof and contractivity of T π. Rearranging then gives the desired result.

A.6 Proof of Proposition 21

From the assumptions of the proposition, we have η̂πλ = (ΠλT π)kηπ. Then observe that
following the argument for the proof of Proposition 19, we have, for any l ∈ {1, . . . , k},

w̄1((ΠλT π)lηπ, ηπ) ≤ γw̄1((ΠλT π)l−1ηπ, ηπ) +
Vmax − Vmin

2m
.

Chaining these inequalities yields the required statement.

Appendix B. Implementations of Quantile Dynamic Programming

Here, we describe two concrete implementations of QDP, which may be of independent
interest to the reader. Algorithm 3 (Bellemare et al., 2023) describes an implementation
when the reward distributions are available as input to the algorithm as a list of outcomes
and probabilities.

Algorithm 3 Quantile dynamic programming (finitely-supported rewards)

Require: Quantile estimates ((θ(x, i)mi=1 : x ∈ X ),
Transition and reward probabilities (P π(x′, r | x) : x, x′ ∈ X ),
Interpolation parameters λ ∈ [0, 1]X×[m].

1: for x ∈ X do
2: Set Targets as empty list {List of outcome/probability pairs}
3: for x′ ∈ X do
4: for r ∈ R do
5: for j = 1, . . . ,m do
6: Append (r + γθ(x′, j), P π(x′, r|x)/m) to Targets

7: end for
8: end for
9: end for

10: Sort Targets ascending according to outcomes.
11: for i = 1, . . . ,m do
12: Find minimal outcome q′ such that cumulative probability is ≥ 2i−1/2m.
13: Set θ′(x, i)← q′.
14: end for
15: end for
16: return ((θ′(x, i)mi=1 : x ∈ X )

Algorithm 4 makes use of a root-finding subroutine (such as scipy.optimize.root scalar),
and can be used when the CDFs of the reward distributions are available as input, and can
be queried at individual points. A common use case for this implementation is the case of
Gaussian rewards. Note that the root-finding subroutine is called on a monotonic scalar
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function, and therefore strong guarantees can be given on the approximate solution returned
when the reward CDFs of the MDP are continuous. Nevertheless, note that Algorithm 4
does not exactly implement the operator ΠλT π due to this root-finding approximation er-
ror. For simplicity, we present the algorithm in the case where the reward and next state
in a transition are conditionally independent given the current state, though the algorithm
can be straightforwardly extended to the general case, by working with CDFs of reward
distributions conditioned on the next state.

Algorithm 4 Quantile dynamic programming (reward CDFs)

Require: Quantile estimates ((θ(x, i)mi=1 : x ∈ X ),
Transition probabilities (P π(x′ | x) : x, x′ ∈ X ),
Reward CDFs (FRπ(x) : x ∈ X ).

1: for x ∈ X do
2: Construct function

φx : t 7→
∑
x′∈X

P π(x′|x)

m∑
j=1

FRπ(x)(t− γθ(x′, j))

3: for i = 1, . . . ,m do
4: Use a scalar root-finding subroutine to find θ′(x, i) approximately satisfying

φx(θ′(x, i)) = τi

5: end for
6: end for
7: return ((θ′(x, i)mi=1 : x ∈ X )

Appendix C. Convergence of Asynchronous QTD Updates

Here, we describe the key considerations in extending our analysis to a proof of convergence
for asynchronous versions of QTD; our discussion follows the approach of Perkins and Leslie
(2013).

Step size restrictions. Typically, more restrictive assumptions on step sizes, beyond the
Robbins-Monro conditions, are required for asynchronous convergence guarantees. See, for
example, Assumption A2 of Perkins and Leslie (2013); note that the typical Robbins-Monro
step size schedule of αk ∝ 1/kρ for ρ ∈ (1/2, 1] satisfies these requirements.

Conditions on the sequence of states (Xk)k≥0 to be updated. Additionally, different states
are required to be updated “comparably often”; assuming that (Xk)k≥0 forms an aperiodic
irreducible time-homogeneous Markov chain is sufficient, and this conditions holds when
either (i) π generates such a Markov chain over the state space of the MDP of interest, or
(ii) when the states to be updated are sampled i.i.d. from a fixed distribution supported on
the entirety of the state space, amongst other settings. See Assumption A4 of Perkins and
Leslie (2013) for further details.
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Modified differential inclusion. The QTD differential inclusion in Equation (17) must be
broadened to account for the possibility of different states being updated with different
frequencies, leading to a differential inclusion of the form

∂tϑt(x, i) ∈ {ωh : ω ∈ (δ, 1] , h ∈ Hπ
x,i(ϑt)} ,

where δ represents a minimum relative update frequency for the state x, derived from the
conditions on (Xk)k≥0 described above. Because of the structure of the Lyapunov function
for the QTD DI in Equation (20), it is readily verified that this remains a valid Lyapunov
function for this broader differential inclusion, for the same invariant set of QDP fixed
points.
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Tetsuro Morimura, Masashi Sugiyama, Hisashi Kashima, Hirotaka Hachiya, and Toshiyuki
Tanaka. Nonparametric return density estimation for reinforcement learning. In Proceed-
ings of the International Conference on Machine Learning, 2010a.

Tetsuro Morimura, Masashi Sugiyama, Hisashi Kashima, Hirotaka Hachiya, and Toshiyuki
Tanaka. Parametric return density estimation for reinforcement learning. In Proceedings
of the Conference on Uncertainty in Artificial Intelligence, 2010b.

Steven Perkins and David S. Leslie. Asynchronous stochastic approximation with differential
inclusions. Stochastic Systems, 2(2):409–446, 2013.

Boris T. Polyak and Anatoli B. Juditsky. Acceleration of stochastic approximation by
averaging. SIAM Journal on Control and Optimization, 30(4):838–855, 1992.

Hans Rademacher. Über partielle und totale Differenzierbarkeit von Funktionen mehrerer
Variabeln und über die Transformation der Doppelintegrale. Mathematische Annalen,
79(4):340–359, 1919.

45



Rowland, Munos, Azar, Tang, Ostrovski, Harutyunyan, Tuyls, Bellemare, Dabney

Julia Robinson. An iterative method of solving a game. Annals of Mathematics, 54(2):
296–301, 1951.

Mark Rowland, Marc G. Bellemare, Will Dabney, Rémi Munos, and Yee Whye Teh. An
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