Network Working Group R. Fielding
Request for Comments. 2616 UC Irvine
Obsol etes. 2068 J. Gettys
Category: Standards Track Compag/W3C
J. Mogul

Compaq

H. Frystyk

W3C/MIT

L. Masinter

Xerox

P. Leach

Microsoft

T. Berners-Lee

W3C/MIT

June 1999

Hypertext Transfer Protocol -- HTTP/1.1

Status of thisMemo

This document specifies an Internet standards track protocol for the Internet community, and requests
discussion and suggestions for improvements. Please refer to the current edition of the “Internet Official
Protocol Standards’ (STD 1) for the standardization state and status of this protocol. Distribution of this memo
is unlimited.

Copyright Notice
Copyright © The Internet Society (1999). All Rights Reserved.

Abstract

The Hypertext Transfer Protocol (HTTP) is an application-level protocol for distributed, collaborative,
hypermedia information systems. It is a generic, stateless, protocol which can be used for many tasks beyond
its use for hypertext, such as name servers and distributed object management systems, through extension of
its request methods, error codes and headers [47]. A feature of HTTP is the typing and negotiation of data
representation, allowing systems to be built independently of the data being transferred.

HTTP has been in use by the World-Wide Web global information initiative since 1990. This specification
defines the protocol referred to as"HTTP/1.1", and is an update to RFC 2068 [33].

#RFC2068

RFC 2616 HTTP/1.1 June 1999

Table of Contents

I oo 11 ot o o 1O OSSOSO 9
L1 PUIPOSE. ..ttt ettt ettt sttt a bt e bt h e R Rt Rt R R e AR SR e R e R e R e e R e e R e E R £ AR AR AR e AR AR R e R e nR e nR e R e e e e e nennen e eneas 9
O = o (U1 (= 107 0| USSR 9
R B =5 1111 To [| U RO PO 9
O @ V= = | @] o 1= - 1o O 11
2 Notational Conventions and GENEriC GraMIMAccooirererereereereee st stese st sesbesesteseeseseesesessens 14
21 AUIMENTEA BINF ..ottt b e a e bt bt b e b s e e bt s e eb e s e eb e se e bt s b e bt sb e st st ene et e e ebe e ebe e 14
2.2 BASIC RUIES.......ee ettt ettt et a e a e e ae bt ekt Rt e Re e Ae R e A e £ e £ e e et e Rt et e aeeReeReaReebeebeseesaenean 15
3 ProtOCOI Par @MELENS.......c.iiiitiitiitesieete ettt b bbbt b e b e e b e e e e e e e st e aeeheeh e e be s bt ebesbesbesb et et e se et ene et eneeneenas 17
130 A o I I Y= £ o] o OSSR 17
3.2 Uniform RESOUICE [UENEIFIEIS......ueeerereeeeieeeeeie st ese e resteseeseenteseesaeaen s e e e e esensensensenes 17
R R €= o S = OSSOSO PR STTOUPST 17
T 11 o TN 1 SRR 18
323 URI COMPAITSON. ...ttt sttt sttt sttt st s b s e b s e e bt s e bt s et s b e st s b et s b et ket e b et et e st e b e neebe s e e bt nbebe st nenbne 18
T T D - (= T 4= 000 S 18
G 5 U I =TSRSS 18
BT B 1 | = B oo LSS 19
R O = = = USSR 19
341 MISSING CRAISEL.cueiectiieetereet ettt ettt b e b e bt e st b et b e b e e b e st e b e seeb e se bt se ekt seeb e s e e st e R e nenr e e nre e 20
T Oo 01 = 0| B O |1 o TP U PP 20
G TN I =1 = 0o (1 0T 21
3.6.1 Chunked Transfer COOING........ccciiiiiiiiierieiistesesesteseeseeseeee e s e sse e e s tesaestesteseessessessesseseeseesseseesessesaestenteseessenses 21
G |V = o = T I 1= 22
3.7.1 Canonicalization and TeXt DEfAUILS.........ceoiiriiieie e nes 23
L 7 |V 10 o= A 1Y 0= 23
38 T = £ [F o A I = 1 23
3.9 QUEIITY VBIUES......cueieeieieieeteee ettt ettt bbb e bt e b e bt e b b h b e R b e b e e e b et b e bbbt e bt e e 24
310 LANQUAGOE TGS, . ettt sttt r bt e r e e s b e et R e R R R R R e R n e et nns 24
T80 R 011 2 I o L PSSRSO 24
TN o - 0 T U] T (SRS 25
O I I =S T = S 26
R Y 1= T Y= OSSR PR PRP 26
4.2 IMESSAGE HEAUEYS. ...ttt a et h e b et et eebe e eese e e et et e meeaeeaeeaeebeebeseeebeabeseeseensanse e eneeneenin 26
4.3 IMESSAGE BOY... ittt ettt h e b e R bR e b Ao R e bR e A e b et e e ReeRe e Rt e Rt eb e benaeerenras 27
OV === L= = 0 | 1 S 27
A5 GENEral HEBOEr FTEIS... ..ottt ettt sttt sttt et ettt 28
T = 0 [PSPPI 29
TN =0 1S T = TR 29

Fielding, et al. Standards Track [Page 2]

RFC 2616 HTTP/1.1 June 1999

L0 00 V= 1 o SRS 29
LT 2 (=011 U OSSR 29
5.2 The Resource ldentified By @ REQUESL..........cceieieieeceeeeceses e st r e re s e es 30
5.3 REQUESE HEAE! FIEIUS......c.eiiiiiieiiteeete ettt b et b e s bbb bbbt e e bt et e et e neebe e 31
B RESPDONSE......eitete ettt et r e e e e e R e R R R e R R e SRR R ARt eE R R e e e e e et R e Rt Rt e Rt R e s Rt nreerenrenrenn 32
L0 R = UL T OO 32
6.1.1 Status Code and REASON PHIBSE........coueieeeeeieireee ettt e e et e et ae b e besaeebesbesbeseesbenbeseens 32
(S 2 == oo 1S =l == o =l Y= Lo [34
0 =111 1725 S 35
7.1 ENLtY HEAOEE FIEUS. ..ottt b e e b e bbb bt b st b et bt b et et e st eb e e b e neebenrene s 35
T2 ENULY BOOY......ciitiiitiiet ittt b e bbb e b e bt s st bt b e b e bR bR bR Rt R et n s 35
2% R Y/ o< TP RUPR RS 35
722 ENHLY LONGEN....oti et b bbbt b et bt b e e b e b e bt e b e nenn e 36
LR Oo g1 T o1 (o] £SO PP 37
8.1 PerSIStENt CONNECLIONS......cuiiieuirietirieiirteeeteeete sttt te st st seebese et e se e st st e st st et et e e et e st ek e st ebeseebeseebeseeseseenestenenbenenteneas 37
0 O O . U 001U 37
L B @ = = | B @< 1o o 37
S R0 G T o 10 S Y S 38
8.1.4 PractiCal CONSIAEIALIONS........ceiieetireetereetereete sttt sttt st sttt s et e se et e seebeseebeseebesaesesbesesbenesbeneebeseebesenbeseas 38
8.2 Message TranSmiSSiON REQUIFEMENTS.......cciueuirieirieirieisieesteseste st st se et st et se et sbe sttt se b e seebeseebeseebeseenens 39
8.21 Persistent Connections and FIOW CONLIOL........cceiueieeririeieise e e e e ere e e sreseeseeseens 39
8.22 Monitoring Connections for Error StatuS MESSAJES........ccccererierieierieiereetesieie sttt sbesesbeseebeseeneseas 39
8.2.3 Use of the 100 (CONLINUE) SEALUS........cvruirerririeiirieiesieiesie it ae sttt et ne e a e bbb sbene 39
8.2.4 Client Behavior if Server Prematurely ClOSES CONNECHION.......cccieirieririererieseseseste sttt 40
O MELNOU DEfINITIONS......eeee ettt st e e et et e st e st eseeseeseeseeaesbeseeseesbeseeseensenseneenseneeneeneanens 41
9.1 Safe and 1dempPOtent MELNOGS..........ccoiiirierer e bbb bbbt e e e e e e s enis 41
.11 SAFE MENOUS.....c.ei ettt he bbbt b et se e e e b et et ae et e Rt ebeebe Rt eaenbenbeneen 41
9.1.2 1dEMPOLENE MELNOGS. ... ettt ae bbbt bt e e e e b et et e ae e st e aeebeebesbesbesbesbeseans 41
LS @ | = I 1@ S TSSO 41
LS T €1 OSSR 42
LS 1 A 5 S 42
LSS . 11 ISR 42
LS LG T 1 N TS RSTRSTRSN 43
LS A I = I PSPPSRSO 44
SRS N I = 7 G TSRS 44
LSS O\ N = SRS 44
10 StAtUS COUE DEfINMITIONS.....c.eeiieeieeeiesesesere ettt st see st te st see e s te st e sentesee e eseeseeneesessessesnesseseeseensenseseensensn 45
O e R 101 o 7= Lo 0= TR 45
FO.1.1 100 CONMINUE.....cueeueeterueeteatesteseeeeesteseeseeeeaeeeeseesesseaaeesessesseasesseseeasansansaneansaseantaseebesseseeaseseeseesansessensaneeneaneasens 45
10.1.2 101 SWItChING PrOtOCOIS.......ceiuieeeirietiriet sttt ettt bbb b 45
FO.2 SUCCESSFUI 2XXu.ueueeueeueeieetietisie sttt sttt sttt se et se et e e e st ebe e bt s heehe e b e s bese e b e b se e s e m b e e e e eneeheeae e st ebeebesbeebesbeseeseenras 45

Fielding, et al. Standards Track [Page 3]

RFC 2616 HTTP/1.1 June 1999

02 D 00 N | SO SRSS 45
O O R O = (= SRS 45
02 T 2 oo o <o SRRSO 46
10.2.4 203 NON-Authoritative INFOIMELION.coveueuiriisieieereris s 46
10.2.5 204 INO CONEENL....cvieeteeetesieteseeesieteseeseseesesteeste st et e sesbesesbeseebeseebeseeseseesessesessesesseneebe e ebeneebesenbeseebeseeseseesessnnens 46
10.2.6 205 RESEL COMENL.....cueeetireetirieiirieiestesesteestesestesestesesseseeteseeseseesessesessesessesessesesseseetesesteseesesenseseesessesessesessanens 46
10.2.7 206 Partial CONENL.......ccceereererieririesiriesesteesteesteessesesteseesessesessesessesessasessesessensssessesessesessesessesessesessensssensssenes 46
10.3 REGIFECHION 3XXuutvvreuirerrereuiesssresiiesesses s st s e se s s et s b et e st e e b es s e R bt s e R b et e e bt eerer e e s 47
0 50 R 0 I 1Y o] F= @ oo P 47
O (0 1V o V=0 N = =T 011 2SS 47
O T T 0 2 o TF o ST SO PP 48
O B A IS = C Y @ 1 1 PSPPSR 48
10.3.5 304 NOU MOGITIEA.ceiveieeirireereirese ettt b st r et r e en e 48
FO.3.6 305 USE PrOXY...ueiieeeieieeeiesieesiesteeiesseestesseastesseesseesesseassesseensesseesesseessesssessesseensessennsenssesseesssssnensesseessessennsens 49
O A 0GR (0 0= o) TSRS 49
10.3.8 307 TEMPOrary REAIFECL........ccoviiiiisieiesiereseseeee ettt st te e st e e e e e e e e seeseeaesseeressesaenresteseenaensenen 49
O O T o1 o 5SSO 49
10.4.1 400 Ba REGUESL.......ccueuiiteuiiteisteeetestete st e te st eteseetesaesesaesestesestesesteseste e abe s eteseesessetessesessesessesessesestensstenestenesens 49
O 0 R 1 T= 011 = S 49
10.4.3 402 Payment REQUITEM.......c..cviuiirieiiiereeie ettt st sttt sttt ettt sttt st b e b e e bbbt sttt b et 50
O B T o1 (o[S 50
O 0 7 o B o T o S 50
10.4.6 405 MethOd NOt AHTOWE........ceeeeeeeieieceste ettt see st teseeste et e e e e eneeseeneesensennesrenes 50
10.4.7 406 NOE ACCEPLADIE.....c.ecuiecteeet et b ettt b et b e b e se et se et e e b e sa b e sbesenteneas 50
10.4.8 407 Proxy AUthentication REQUITEM...........oouiiriririeirieisiese et 50
10.4.9 408 REGUESE TIMEOUL......cueitetirieiirteierieisteeete et st et st et se bttt e et b et b et e b e st ebe s e ebeseebeseebeseebesbebesaenesbenesbeneas 50
00t T 1 1o o) o R 51
0 R 0 N o =TSSP 51
10.4.12 421 Length REGUITEM.c.oiiiirieiirieieriee ettt st s sttt st sttt et 51
10.4.13 412 PrecOndition FaIEU........ccoieieieeeeseeeeeee sttt se e ere s snesresteseesneneenaeneens 51
10.4.14 413 ReqUESEt ENLItY TOO LBIGE.....ciiieuirieiiriei ittt 51
10.4.15 414 ReQUESE-URI TOO LONG.....ciuiiiiriiieriisieiesieseeeee ettt sr e e enennennesnennennenneanas 51
10.4.16 415 UNSUPPOITED MEAIA TYPE...c.ecvireetirietirieierieiesteie sttt bbbt b bbbt e bt b b eneneens 52
10.4.17 416 Requested Range NOt SatiSfIalle.........coiiriirirircree s 52
10.4.18 417 EXPECLAiON FAIlEU........coiuiiriiicieeete ettt st 52
LTS = oY g g (0] G) o GO ORI 52
10.5.1 500 INEEINGlI SEIVEN EFTON....ceiieeeeeieeeeeeteste st e e seesees e seeseeaeee e eseesessessessessessesaesteseeseesenseseesenseneensesessessenns 52
10.5.2 501 NOU IMPIEMENTEM.......ccuiiitiiiteieeie ettt b e e b e e bt et e et b et b et b et st ebeseebeseebenees 52
10.5.3 502 Ba GALEWAY......cccueiieeeirieestesietesesteseetessetessesesaesessesessasestassssassssaseesessasessesessesessesessesessasessensssassssessasesens 52
10.5.4 503 Service UNaVailahle........cccoiiiiiiiiieee et st et ae b ne bt see et s 52
1055 504 GAEWEY TIMIEOUL.......cueiueuireeierteirteeetetetesseseseeseseesereeseseesessesesseseeb e e ese s ebesses e s s eseseeseseeseseenesbenesbeneesenenn 53
10.5.6 505 HTTP Version NOt SUPPOITEQ.......c.ciueuerieierieirieirieesie st se sttt seese et e e sb et e st se st seebeseene e 53
11 ACCESS AULNENTICALION. ...ttt ettt b e bbb be s be st et e e e se e e e me e e e aeeaeebeeaeebesbesbesbesbeneeseanean 54
A @a a1 1= a1 N [=e o1 = 14 o o 55
121 Server-Ariven NEQOLIBIION.......c.cci ettt et et st sttt b e bbb e e b ettt e 55
122 AQENE-AriVEN NEGOUGLON.ieitieieiietiiet ettt bbb bbbt bbb 55
12.3 TranSParent NEGOLIBLION.........coueeeieeeeieeeee ettt ettt se et e e e e e e e seeseeaeeaesaesaesaeebesbeseeasebeseeasenseneeneeneeneanen 56
G T = Yo 11 0o T T 0 T o I =PSRRI 57

Fielding, et al. Standards Track [Page 4]

RFC 2616 HTTP/1.1 June 1999

35 SRS 57
T O A @ S O g 1= o= TSSOSO 57
G T30 7V =14 1 g RSP TTS 58
13.1.3 Cache-CONtrol MEChANISIMIS.......cuciiiiiiiiieieriee ettt ettt st b e e bbb b e s et e s ene b e e sseenns 58
13.1.4 EXPliCit USEr AQENt WaIMINGS......ccoiiiuiiieiieieesieieseeseeeesesesestessessestestesaessessessessssssssssessessessessessessessessensessens 59
13.1.5 Exceptions to the RUIES @Nd WaININGS........ccciviiiiiiiiieiesiese et eseeee et s e e sre e saesreste st sresaessesaenssneessesens 59
13.1.6 Client-Controlled BENAVION...........ciiiiiiiiiisinses ettt et se b naes 59

T o1 = (o TN 1Y/ oo = RSP 59
1321 Server-SPeCified EXPITaliON......ccccciiieieriseresteeeeeseeeeeese s e s st e s e srestestesaeaeseesae e esaeseenseseesessessesreseeseessensesen 59
T o 1= W F Lo {01 (o) 60
13.2.3 AQE CAlCUIBLIONS......eeueeeeeeeeeeie st sieste s e ste st e e te st et e ee e e e eseesesseese et essessestesbesae st e teeeseansenseneeneasenseanensensesaenrens 60
13.24 EXPIration CalCUIBLIONS.........cccueueiiiieieistesesiesteteseeseeeeseeseeseesessessesrestessessessesseseessessessensessesessessensessessensensenes 62
13.25 Disambiguating EXPIiration VAIUES........cccceieriiieierieiisisesesteieaeseeeeseseee e ssessestes e stessessessesesssssassessessenses 62
13.26 Disambiguating MUItiple RESPONSES.........cccviiiietireiisisesiesteseeseeseeese s srestesresrestestesaesaesseseseeseesesneeseesenses 62

GG T Y T = 1o T 1Y/ oo = S 63
T 5t R == Y, oo 1= I - = 63
13.3.2 Entity Tag Cache VAlIUAIOIS.......c.civeuiiieirieierieeries ettt sttt st b e sttt se b e b e 63
13.3.3 Weak and SIroNg VaAIGBLOIS.ceiuiiriiieiiieieseiesie sttt 64
13.3.4 Rulesfor When to Use Entity Tags and Last-Modified DateS.........coeoereerrerieinieeneeseesesesre s 65
13.3.5 Non-validating CoNGitiONAIS........c.ciueuiriririiirierese ettt st st st e b seebe e 66

134 ReSPONSE CAChEADITILY.....ccveiiieiiteeete bbbt e bbbt st b et b s 66

135 Constructing RESPONSES FIOM CACES..........coiiiiriiiriiirieiei ettt nn e 67
13.5.1 End-to-end and HOp-by-hop HEAOEXS. ..o s 67
1352 NON-MOifiahle HEAOEIS........ooueieeeiee ettt ettt e e et ae b be e b e beseeseeeenes 67
13.5.3 COmMDINING HEAOEIS......c.octiieeiirieiiie ettt ettt bbbt e bt e bt e bt e s b e e b e s e b 68
1354 COMDINING BYLE RENGES.......coiuiieiirietirietirieisie ettt b et b e b ettt b et bt e b e 68

13.6 Caching Negotiated RESPONSES..........ciuirtiriirieierie ettt ettt sttt s b et st se e b e bese e e e e e e et eneeseeaeeaesbesbesaesbenbas 69

13.7 Shared and NON-Shared CaChES...........cciveiiiiiese ettt sttt ne s 69

13.8 Errors or Incomplete Response Cache BENAVIOL...........ccvieiiiieieseeiceeseees et 70

13.9 Side Effects Of GET aN0 HEAD.......cooi ittt st se et eeseesessesnestessesenseensenes 70

13.10 Invaidation After Updates OF DEIELIONS........ccoiriririeiirieririeiereeerie st 70

1311 WIIte-THrOUGN MaNGBIONYc.eieeviieeiirietiieeiest ettt ettt b et b ettt b et b et b e se b se b e seebeseebesnebennenea 71

1312 CaChe REPIGCEMENL.oouiiieeeitere ettt b et s b e b b e e b e b se e e et e e e e e neese e st eaenbeebesaesbenras 71

30 T o TE o] Y I 1 £SO 71

14 Header FIeld DEfiNitiONS......ccoiiiiiereeereee ettt b ettt b et b et be st b et enentenes 72

N ool o TSP PP PP UT PP PURRRRSO 72

A N o= ol O g == SR 73

7 G T N oo = ol = oo o [o To OO USSR 73

N ol o =00 = e SO TSP 74

TA5 ACCEPI-REANGES..... oottt ittt sttt et s b e e be e s b et e bt e sbe e e s be e saeesabe e sheeeabe e ebeeeabe e bt e e beenaeenabeenaeeenreenaes 75

R N o = PP PR PP PP 75

I 1 1 o OSSOSO 76

I R 110 o g 12 (o) OSSR 76

T4.9 CACRE-CONLIOL.....cuitiieitee ettt ettt e e et e et s e e a e e ae e b e e b e s bt ebeeb e s beseeeb e beseene e e et e e eneenennis 77

Fielding, et al. Standards Track [Page 5]

RFC 2616 HTTP/1.1 June 1999

14.9.1 WHhat 1S CAChEADIE.......ccuiicieieecte ettt sttt s et et et st e et e e be e nbenentenees 78

14.9.2 What May be Stored Dy CaChEs........ccciiiiiiiiiiese ettt sttt e e resbesaesrenras 78

14.9.3 Modifications of the Basic Expiration MeChaniSM.........ccooeireiieiieniecrrese e s 79

14.9.4 Cache Revalidation and ReEl0ad CONLIOIS.........ccouiieiiiieirieirieisicisis et 80

1495 NO-TranSfOrM DIFECHIVE.....ccceiirierieie ettt sttt st sttt st et be st e s s be s s be e s be s be e be e nte e es 81

14.9.6 CaChe CONtrol EXLENSIONS.....c.cieiiieieierieieseetesestesesieseete sttt ste e s be e be st be e sbesesbeseebeseesestesesbenesbenesbenentens 82
I O T @ g 1= o 1o o S RTTSTPTSOTSSTRRRN 82
I R o g = g 1 = oo] o OSSOSO 83
1412 CONENE-LANGUATE.eeeeeeeeeeieeeiee ettt st b bt b e Rt e et b b ne e e e s e e e e s e s e st e neerenresreer e re s 83
L1413 CONENE-LENGEN. ..ottt bbbt bbb bt b e bbbt b st b ettt b et b 84
I A o 1 = |l 0o o] o IO TP USSR 84
I T @ g1 =01 1Y 1 DL TSSOSO 85
G O 1= g =10 =R 85
I O g 1= o | el Y o= OSSOSO PRSPPI 87
I T I - = SRR 87

14.18.1 ClOcKIEsS OFigin SErVEr OPEIaLiON.......coucuirietereeterieieseeiertee st sttt ere e ebe e b seese e eseseesesaenesbe e sbeneebeneereseas 88
I I o SRS RS 88
I O T (o= o SO S S ST 88
77 R o o= 89
N (o o R TP O USRS SSUSTURURURIN 90
I T T SRR 90
I | BV - o o TSRS 90
ST oo [1= o S oSSR 91
I T A\ [0 T V= (o OSSOSO RPRURR 92
I | B =g OSSR 93
14.28 [F-UNMOOITIEO-SINCE. ... cctieeie ettt ettt st st s b et sttt ettt st e e b e e se e 93
e T I 1 oo =" OSSPSR 94
72 T 1o o o] o %!
I R Y = v o 47 o S 94
Y =0 [0 T OO PP P PP UPTPORPPR 95
14.33 PrOXY-AUINENIICALE. ... c.citieiteieieieieseete ettt ettt b e e s e e e s e b e s b e e be e e b e e e b et ebensebeneeneneenes 95
77 R = (o) YT AN 1110 17 (o T 96
T4.35 RBNGE. ... e cueeeeieeteeterit ettt sttt e et et s e e st st Rt e b e AR e AR e R e AR e 1R e R e e e e e R e R e SR e SR e eR e AR AR R e AR Rt R e R e e e e e e e e neenenne e 96

T4.35.1 BYIE RAINQES......eieeueeeeuieieeeeteet sttt sttt se e e et s e b e s st e bt e E e e b e ARt eE e b e e e ne e s e e e e e Re e R e e Re Rt eR e Rt s Reer e r e renrenen 96

14.35.2 RaNQE REMEVEA REQUESES.......couiiiieiitiietirete sttt ettt b et sb sttt bbb e e bt enas 97
T = = == SRS 97
A = 1 Y N 1= SRS 98
S S = ST STRPRR 98
I 1 I OSSR 98
o I] = SOOI 99

Fielding, et al. Standards Track [Page 6]

RFC 2616 HTTP/1.1 June 1999

I R I = S =t T [T 99
I U o | = o SRS 100
B U N[0| F T TP SRRV PR PP 100
I 1 TSSO 101
I Y T SRS 101
LR VAV = 31 o OSSRV PTURO 102
TA47 WWWW-AULNENTICALE.e.eeveeeieieetiieeiesieie ettt sttt se e see st ese st et et e e e be e ebeseebeseebeseebenaesesennensnnens 104
15 SECUTItY CONSIOEN GLIONS.......iieieirtistesieserieteseeeeseeesesrestesaestestesteseeseestesseneeseeseeseesessesaessestesseseenseseseensansenennnanens 105
TN R = = 6S'e 0= 1) o 0 7= 1 o TP 105
15.1.1 Abuse of Server LOg INFOrMELTON.ccuiiiiiirieiireete sttt b e s b e s b e e sneneas 105
15.1.2 Transfer of Sensitive INFOrMELTON........ccvoiiiii e e e s s sneereneas 105
15.1.3 Encoding Sensitive INformation iN URI'S.......cooiiiereieieese et sre e sen 105
15.1.4 Privacy Issues Connected t0 ACCEPE HEBHENS.... ..o e 106
15.2 Attacks Based On File and Path NaIMES.........ccoiiiiiiieeeeeee et sae s 106
15.3 DINS SPOOFING: teeeeeuteueeeeieeiere ettt sttt st be e s et et e s e e ae e st shesbe s et ebeebeseesE e beee s e msenseneeaeebeeReeReebeebesbeshenbeneeneennan 106
15.4 Location Headers and SPOOFING.......ccieiiiiiieiierieieieieeie et sttt sae st e sa e e esa e e e s eneesessesrestestesrenteneees 107
155 Content-DiSPOSITION ISSUES.......ccueieieeieiereetestesesteste e seestetesaesaeseeseeseesessessessestessessessesessessensensenseneesenseesessenses 107
15.6 Authentication CredentialS and [dle ClIENES........cociiiiiiireere bbb 107
157 ProXieS and CAChING........couiiririirieierieeret sttt b et b et bbb bbbt b e nn s 107
15.7.1 Denia oOf Service AtACKS ON PrOXIES........cciieririeieieeieeieese st e st te e s saeae e e s e ssesseseesseseesteseeseenean 108
16 ACKNOWIBAGMENTS. ...ttt et sttt a et he e b e bt sa e eb e s b seese et e e e eeeneeneeneeneebe s st eneebesbeseeseeeas 109
A L = 1= g TSSO 111
18 AULNOIS A UGN ESSES. ..o cueeeieeeeeeteetese sttt e e s e e e e et et es e s seeseeteseeseeseesteseeseensenseneeneeneeneeneeseesensesaentenseseensensenen 113
S I o] o 1< o Lot SRRSO 114
19.1 Internet Media Type message/http and application/http...........ccceiiieieresicrcce e s 114
19.2 Internet Media Type MUItipart/DYIEraNgES.cceieiverierereeeeeee e sttt s e e e e e s ssesresresresaesreneas 114
19.3 TOIErant APPIICELIONS.....c..cuerieeireeiirieerteee ettt ettt st st se ettt b et b et b e st e b e se ke seebeseebesaebeseebesbe st sbenesbenea 115
19.4 Differences Between HTTP Entities and RFC 2045 ENtiti€S.......ccooveieirerinine e 116
S R V1 Y = = o TSRS 116
19.4.2 Conversion t0 CanOniCal FOMMN........cciiiiriererieieieseeeeeeese ettt te e seeste e see e enee e e e eneesesseesesressessesrenees 116
19.4.3 CONVErsion Of DaE FOMIBES.......ccoueeririeierierie i iesieseeseesee e e ese e e s e erestesseseesbeseeseesenseneeneeseeneeneesessessessenses 116
19.4.4 Introduction of CONtENt-ENCOTING........ccertriiireririerireree ettt 116
19.45 N0 Content-Transfer-ENCOTING........ccvirririeireirierie et es 117
19.4.6 Introduction of Transfer-ENCOTING.........coeireiriiiirieiriirere e 117
19.47 MHTML and Line Length Limitations..........ccoeireireerieiieerieesieese ettt 117
195 AdAItiONAl FEALUIES.... ... ittt ettt sttt e et et e e e e e e e e e aeeaeeae e st eaeebesbeseeebeabeseeseensaneensensaneeneeneaneas 117
1951 CONENt-DISPOSITION. .. .cuereiirteiirtei sttt ettt ettt ettt b et b et b se b e se b e seebese bt seebeseenennenesbe e e b eneereea 118
19.6 Compatibility With PrevioUS VEIrSIONS........c.coiiieieirereetire sttt sttt e se e et be b b sae b b seesne b s 118
19.6.1 Changes fromM HT TP/L.0. ...ttt bbbt bbb e e s et e e et e e e eneenes 118
19.6.2 Compatibility with HTTP/1.0 Persistent CONNECLIONS..........cceererirrirerierieniesieseereeeesesessesese e e seeseeseas 119
19.6.3 Changes from RFC 20688..........cccceiririeierieiie ettt st ettt esesbesae bt sbesbesee st et seeseete s e e eneeae e e eneenesnes 119

Fielding, et al. Standards Track [Page 7]

RFC 2616 HTTP/1.1 June 1999

20 INOEX. ettt b bt e bkt E bR AR b £ e R R e SRR SR E R bR AR R R R e R bRt E R bRt e e b n s 122
0T ST 123
Intellectual Property and Copyright SEAtEMENTS.........ccoiiiiirieeeree e 129

Fielding, et al. Standards Track [Page §]

RFC 2616 HTTP/1.1 June 1999

1. Introduction

1.1. Purpose

The Hypertext Transfer Protocol (HTTP) is an application-level protocol for distributed, collaborative,
hypermediainformation systems. HTTP has been in use by the World-Wide Web global information initiative
since 1990. Thefirst version of HTTP, referred to as HTTP/0.9, was a simple protocol for raw data transfer
across the Internet. HTTP/1.0, as defined by RFC 1945 [6], improved the protocol by allowing messages to be
in the format of MIME-like messages, containing metainformation about the data transferred and modifiers on
the request/response semantics. However, HTTP/1.0 does not sufficiently take into consideration the effects of
hierarchical proxies, caching, the need for persistent connections, or virtual hosts. In addition, the proliferation
of incompl etely-implemented applications calling themselves "HTTP/1.0" has necessitated a protocol version
change in order for two communicating applications to determine each other's true capabilities.

This specification defines the protocol referred to as"HTTP/1.1". This protocol includes more stringent
requirements than HTTP/1.0 in order to ensure reliable implementation of its features.

Practical information systems require more functionality than simple retrieval, including search, front-end
update, and annotation. HTTP allows an open-ended set of methods and headers that indicate the purpose of
arequest [47]. It builds on the discipline of reference provided by the Uniform Resource Identifier (URI) [3],
asalocation (URL) [4] or name (URN) [20], for indicating the resource to which a method is to be applied.
Messages are passed in aformat similar to that used by Internet mail [9] as defined by the Multipurpose
Internet Mail Extensions (MIME) [7].

HTTPisaso used as a generic protocol for communication between user agents and proxies/gateways to
other Internet systems, including those supported by the SMTP[16], NNTP [13], FTP [18], Gopher [2], and
WAIS[10] protocoals. In thisway, HTTP alows basic hypermedia access to resources available from diverse
applications.

1.2. Requirements

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in
RFC 2119[34].

An implementation is not compliant if it fails to satisfy one or more of the MUST or REQUIRED level
requirements for the protocols it implements. An implementation that satisfies all the MUST or REQUIRED
level and all the SHOULD level requirements for its protocolsis said to be "unconditionally compliant”; one
that satisfies al the MUST level requirements but not all the SHOULD level requirements for its protocolsis
said to be "conditionally compliant."

1.3. Terminology

This specification uses a number of terms to refer to the roles played by participantsin, and objects of, the
HTTP communication.
connection
A transport layer virtual circuit established between two programs for the purpose of communication.
message
The basic unit of HTTP communication, consisting of a structured sequence of octets matching the syntax
defined in Section 4 and transmitted via the connection.

request
An HTTP request message, as defined in Section 5.

response
An HTTP response message, as defined in Section 6.

Fielding, et al. Standards Track [Page 9]

RFC 2616 HTTP/1.1 June 1999

resource
A network data object or service that can beidentified by a URI, as defined in Section 3.2. Resources may
be available in multiple representations (e.g. multiple languages, data formats, size, and resolutions) or
vary in other ways.
entity
Theinformation transferred as the payload of arequest or response. An entity consists of metainformation
in the form of entity-header fields and content in the form of an entity-body, as described in Section 7.
representation
An entity included with aresponse that is subject to content negotiation, as described in Section 12. There
may exist multiple representations associated with a particular response status.
content negotiation
The mechanism for selecting the appropriate representation when servicing a request, as described in
Section 12. The representation of entitiesin any response can be negotiated (including error responses).
variant

A resource may have one, or more than one, representation(s) associated with it at any given instant. Each
of these representations is termed a “varriant'. Use of the term “variant' does not necessarily imply that the
resource is subject to content negotiation.

client
A program that establishes connections for the purpose of sending requests.

user agent

The client which initiates a request. These are often browsers, editors, spiders (web-traversing robots), or
other end user tools.

server

An application program that accepts connections in order to service requests by sending back responses.
Any given program may be capable of being both a client and a server; our use of these termsrefers
only to the role being performed by the program for a particular connection, rather than to the program's
capabilitiesin general. Likewise, any server may act as an origin server, proxy, gateway, or tunnel,
switching behavior based on the nature of each request.

origin server
The server on which a given resource resides or is to be created.

proxy
An intermediary program which acts as both a server and a client for the purpose of making requests on
behalf of other clients. Requests are serviced internally or by passing them on, with possible trandation,
to other servers. A proxy MUST implement both the client and server requirements of this specification.
A "transparent proxy" is aproxy that does not modify the request or response beyond what is reguired for
proxy authentication and identification. A "non-transparent proxy" is a proxy that modifies the request
or response in order to provide some added service to the user agent, such as group annotation services,
media type transformation, protocol reduction, or anonymity filtering. Except where either transparent or
non-transparent behavior is explicitly stated, the HTTP proxy requirements apply to both types of proxies.

gateway

A server which acts as an intermediary for some other server. Unlike a proxy, a gateway receives requests
asif it were the origin server for the requested resource; the requesting client may not be aware that it is
communicating with a gateway.

tunnel

Fielding, et al. Standards Track [Page 10]

RFC 2616 HTTP/1.1 June 1999

Anintermediary program which is acting as a blind relay between two connections. Once active, a tunnel
is not considered a party to the HTTP communication, though the tunnel may have been initiated by an
HTTP request. The tunnel ceases to exist when both ends of the relayed connections are closed.

cache

A program'slocal store of response messages and the subsystem that controls its message storage,
retrieval, and deletion. A cache stores cacheable responses in order to reduce the response time and
network bandwidth consumption on future, equivalent requests. Any client or server may include a cache,
though a cache cannot be used by a server that is acting as atunnel.

cacheable

A response is cacheable if a cacheis alowed to store a copy of the response message for use in answering
subsequent requests. The rules for determining the cacheability of HTTP responses are defined in Section
13. Evenif aresourceis cacheable, there may be additional constraints on whether a cache can use the
cached copy for a particular request.

first-hand

A responseisfirst-hand if it comes directly and without unnecessary delay from the origin server, perhaps
viaone or more proxies. A response is also first-hand if its validity has just been checked directly with the
origin server.
explicit expiration time
The time at which the origin server intends that an entity should no longer be returned by a cache without
further validation.
heuristic expiration time
An expiration time assigned by a cache when no explicit expiration time is available.
age
The age of aresponseisthe time since it was sent by, or successfully validated with, the origin server.
freshness lifetime
The length of time between the generation of aresponse and its expiration time.

fresh
A responseisfresh if its age has not yet exceeded its freshness lifetime.

stale
A responseis staleif its age has passed its freshness lifetime.

semantically transparent
A cache behavesin a"semantically transparent” manner, with respect to a particular response, when its
use affects neither the requesting client nor the origin server, except to improve performance. When a
cacheis semantically transparent, the client receives exactly the same response (except for hop-by-hop
headers) that it would have received had its request been handled directly by the origin server.

validator
A protocol element (e.g., an entity tag or a Last-Modified time) that is used to find out whether a cache
entry isan equivaent copy of an entity.

upstreanm/downstream
Upstream and downstream describe the flow of a message: all messages flow from upstream to
downstream.

inbound/outbound

Inbound and outbound refer to the request and response paths for messages: "inbound” means "traveling
toward the origin server”, and "outbound” means "traveling toward the user agent”

Fielding, et al. Standards Track [Page 11]

RFC 2616 HTTP/1.1 June 1999

1.4. Overall Operation

The HTTP protocol is arequest/response protocol. A client sends arequest to the server in the form of arequest
method, URI, and protocol version, followed by a MIME-like message containing request modifiers, client
information, and possible body content over a connection with a server. The server responds with a status

line, including the message's protocol version and a success or error code, followed by a MIME-like message
containing server information, entity metainformation, and possible entity-body content. The relationship
between HTTP and MIME is described in Appendix 19.4.

Most HTTP communication isinitiated by a user agent and consists of arequest to be applied to aresource on
some origin server. In the simplest case, this may be accomplished via a single connection (v) between the user
agent (UA) and the origin server (O).

request chain -----------------------. >
UA ------ o - e T)
S R response chain

A more complicated situation occurs when one or more intermediaries are present in the request/response
chain. There are three common forms of intermediary: proxy, gateway, and tunnel. A proxy isaforwarding
agent, receiving requests for aURI in its absolute form, rewriting all or part of the message, and forwarding the
reformatted request toward the server identified by the URI. A gateway is areceiving agent, acting as alayer
above some other server(s) and, if necessary, trand ating the requests to the underlying server's protocol. A
tunnel acts as arelay point between two connections without changing the messages; tunnels are used when the
communication needs to pass through an intermediary (such as afirewall) even when the intermediary cannot
understand the contents of the messages.

request chain ---------------commo >
UA ----- V----- A----- V----- B ----- V----- C----- V----- @)

The figure above shows three intermediaries (A, B, and C) between the user agent and origin server. A request
or response message that travels the whole chain will pass through four separate connections. This distinction
isimportant because some HT TP communication options may apply only to the connection with the nearest,
non-tunnel neighbor, only to the end-points of the chain, or to al connections along the chain. Although the
diagram is linear, each participant may be engaged in multiple, simultaneous communications. For example, B
may be receiving requests from many clients other than A, and/or forwarding requests to servers other than C,
at the sametime that it is handling A's request.

Any party to the communication which is not acting as atunnel may employ an internal cache for handling
requests. The effect of a cache isthat the request/response chain is shortened if one of the participants along the
chain has a cached response applicable to that request. The following illustrates the resulting chain if B has a
cached copy of an earlier response from O (via C) for arequest which has not been cached by UA or A.

request chain ---------- >
UA ----- V----- A----- V----- B------ C- - - - - - O
<mmmmmmm - response chain

Not all responses are usefully cacheable, and some requests may contain modifiers which place special
reguirements on cache behavior. HTTP requirements for cache behavior and cacheable responses are defined in
Section 13.

In fact, there are awide variety of architectures and configurations of caches and proxies currently being
experimented with or deployed across the World Wide Web. These systems include national hierarchies of
proxy caches to save transoceanic bandwidth, systems that broadcast or multicast cache entries, organizations
that distribute subsets of cached data via CD-ROM, and so on. HTTP systems are used in corporate intranets
over high-bandwidth links, and for access via PDAs with low-power radio links and intermittent connectivity.
The goal of HTTP/1.1 isto support the wide diversity of configurations already deployed while introducing

Fielding, et al. Standards Track [Page 12]

RFC 2616 HTTP/1.1 June 1999

protocol constructs that meet the needs of those who build web applications that require high reliability and,
failing that, at least reliable indications of failure.

HTTP communication usually takes place over TCP/IP connections. The default port is TCP 80 [19], but other
ports can be used. This does not preclude HT TP from being implemented on top of any other protocol on

the Internet, or on other networks. HTTP only presumes a reliable transport; any protocol that provides such
guarantees can be used; the mapping of the HTTP/1.1 request and response structures onto the transport data
units of the protocol in question is outside the scope of this specification.

In HTTP/1.0, most implementations used a new connection for each request/response exchange. INnHTTP/1.1, a
connection may be used for one or more request/response exchanges, although connections may be closed for a
variety of reasons (see Section 8.1).

Fielding, et al. Standards Track [Page 13]

RFC 2616 HTTP/1.1 June 1999

2. Notational Conventions and Generic Grammar

2.1. Augmented BNF

All of the mechanisms specified in this document are described in both prose and an augmented Backus-Naur
Form (BNF) similar to that used by RFC 822 [9]. Implementors will need to be familiar with the notationin
order to understand this specification. The augmented BNF includes the following constructs:

name = definition
The name of arule is simply the name itself (without any enclosing "<" and ">") and is separated
from its definition by the equal "=" character. White space is only significant in that indentation of
continuation lines is used to indicate a rule definition that spans more than one line. Certain basic rules

arein uppercase, such as SP, LWS, HT, CRLF, DIGIT, ALPHA, etc. Angle brackets are used within
definitions whenever their presence will facilitate discerning the use of rule names.

"literal"

Quotation marks surround literal text. Unless stated otherwise, the text is case-insensitive.
rulel | rule2

Elements separated by a bar ('[") are alternatives, e.g., "yes| no" will accept yes or no.
(rulel rule2)

Elements enclosed in parentheses are treated as a single element. Thus, "(elem (foo | bar) elem)" alows
the token sequences "elem foo elem” and "elem bar elem".

*rule

The character "*" preceding an element indicates repetition. The full form is"<n>*<m>element”
indicating at least <n> and at most <m> occurrences of element. Default values are 0 and infinity so that
"* (element)" alows any number, including zero; "1*element” requires at least one; and "1* 2element”
allows one or two.

[rulg]
Square brackets enclose optional elements; "[foo bar]" is equivalent to "*1(foo bar)".
N rule
Specific repetition: "<n>(element)" is equivaent to "<n>*<n>(element)"; that is, exactly <n> occurrences
of (element). Thus 2DIGIT isa2-digit number, and 3ALPHA isastring of three a phabetic characters.
#rule

A construct "#" is defined, similar to "*", for defining lists of elements. The full formis
"<n>#<m>element” indicating at least <n> and at most <m> elements, each separated by one or more

commas (",") and OPTIONAL linear white space (LWS). This makes the usual form of lists very easy; a
rule such as

(*LW5 el enent *(*LWs "," *LW5 el enent))

can be shown as

1#el emrent

Wherever this construct is used, null elements are allowed, but do not contribute to the count of elements
present. That is, "(element), , (element) " is permitted, but counts as only two elements. Therefore, where
at least one element isrequired, at least one non-null element MUST be present. Default values are 0 and
infinity so that "#element" allows any number, including zero; " 1#element” requires at least one; and
"1#2element” alows one or two.

; comment

Fielding, et al. Standards Track [Page 14]

RFC 2616 HTTP/1.1 June 1999

A semi-colon, set off some distance to the right of rule text, starts acomment that continues to the end of
line. Thisisasimple way of including useful notesin parallel with the specifications.

implied *LWS
The grammar described by this specification is word-based. Except where noted otherwise, linear white
space (LWS) can be included between any two adjacent words (token or quoted-string), and between
adjacent words and separators, without changing the interpretation of afield. At least one delimiter (LWS

and/or separators) MUST exist between any two tokens (for the definition of "token" below), since they
would otherwise be interpreted as a single token.

2.2. Basic Rules

The following rules are used throughout this specification to describe basic parsing constructs. The US-ASCII
coded character set is defined by ANSI X3.4-1986 [21].

OCTET = <any 8-bit sequence of data>
CHAR = <any US-ASCI| character (octets 0 - 127)>
UPALPHA = <any US-ASCl| uppercase letter "A".."Z">
LOALPHA = <any US-ASCI| |owercase letter "a".."z">
ALPHA = UPALPHA | LQOALPHA
DAT = <any US-ASClII digit "0".."9">
CTL = <any US-ASCII| control character
(octets 0 - 31) and DEL (127)>
CR = <US-ASCIl CR, carriage return (13)>
LF = <US-ASCI| LF, linefeed (10)>
SP = <US-ASCI| SP, space (32)>
HT = <US-ASCI| HT, horizontal-tab (9)>
<"> = <US- ASClI | doubl e-quote nmark (34)>

HTTP/1.1 defines the sequence CR LF as the end-of-line marker for all protocol elements except the entity-
body (see Appendix 19.3 for tolerant applications). The end-of-line marker within an entity-body is defined by
its associated mediatype, as described in Section 3.7.

CRLF = CR LF

HTTP/1.1 header field values can be folded onto multiple linesif the continuation line begins with a space
or horizontal tab. All linear white space, including folding, has the same semantics as SP. A recipient MAY
replace any linear white space with a single SP before interpreting the field value or forwarding the message
downstream.

LV = [CRLF] 1*(SP | HT)

The TEXT ruleis only used for descriptive field contents and values that are not intended to be interpreted by
the message parser. Words of * TEXT MAY contain characters from character sets other than 1SO-8859-1 [22]
only when encoded according to the rules of RFC 2047 [14].

TEXT = <any OCTET except CILs,
but including LWs>

A CRLF isalowed in the definition of TEXT only as part of a header field continuation. It is expected that the
folding LWS will be replaced with a single SP before interpretation of the TEXT value.

Hexadecimal numeric characters are used in several protocol elements.

HEX ="A"| "B | "C | "D | "E'"| "F"
| "a" | "b" | "c" | "d" | "e" | "f" | DAT

Fielding, et al. Standards Track [Page 15]

RFC 2616 HTTP/1.1 June 1999

Many HTTP/1.1 header field values consist of words separated by LWS or special characters. These special
characters MUST be in a quoted string to be used within a parameter value (as defined in Section 3.6).

t oken = 1*<any CHAR except CTLs or separators>
separators ="Myt "@

I R B A S

A I S 0 R B B

| {1yl SP | oHT

Comments can be included in some HTTP header fields by surrounding the comment text with parentheses.
Comments are only allowed in fields containing "comment” as part of their field value definition. In all other
fields, parentheses are considered part of the field value.

conment
ct ext

"(" *(ctext | quoted-pair | comment) ")"
<any TEXT excluding "(" and ")">

A string of text is parsed as asingle word if it is quoted using double-quote marks.

(<"> *(qdtext | quoted-pair) <">)
<any TEXT except <">>

quot ed-string
gdt ext

The backdlash character ("\") MAY be used as a single-character quoting mechanism only within quoted-string
and comment constructs.

quot ed- pai r = "\" CHAR

Fielding, et al. Standards Track [Page 16]

RFC 2616 HTTP/1.1 June 1999

3. Protocol Parameters

3.1. HTTP Version

HTTP uses a"<major>.<minor>" numbering scheme to indicate versions of the protocol. The protocol
versioning policy isintended to allow the sender to indicate the format of a message and its capacity for
understanding further HTTP communication, rather than the features obtained via that communication.

No change is made to the version number for the addition of message components which do not affect
communication behavior or which only add to extensible field values. The <minor> number is incremented
when the changes made to the protocol add features which do not change the general message parsing
algorithm, but which may add to the message semantics and imply additional capabilities of the sender. The
<major> number isincremented when the format of a message within the protocol is changed. See RFC 2145
[36] for afuller explanation.

The version of an HTTP message isindicated by an HTTP-Version field in the first line of the message.
HTTP- Ver si on = "HrTP* "/" 1*DIAT "." 1*DIAT

Note that the major and minor numbers MUST be treated as separate integers and that each MAY be
incremented higher than asingle digit. Thus, HTTP/2.4 isalower version than HTTP/2.13, whichinturnis
lower than HTTP/12.3. Leading zeros MUST be ignored by recipients and MUST NOT be sent.

An application that sends a request or response message that includes HTTP-Version of "HTTP/1.1" MUST be
at least conditionally compliant with this specification. Applications that are at |east conditionally compliant
with this specification SHOULD use an HTTP-Version of "HTTP/1.1" in their messages, and MUST do so for
any message that is not compatible with HTTP/1.0. For more details on when to send specific HTTP-Version
values, see RFC 2145 [36].

The HTTP version of an application isthe highest HTTP version for which the application is at least
conditionally compliant.

Proxy and gateway applications need to be careful when forwarding messages in protocol versions different
from that of the application. Since the protocol version indicates the protocol capability of the sender, a proxy/
gateway MUST NOT send a message with aversion indicator which is greater than its actual version. If a
higher version request is received, the proxy/gateway MUST either downgrade the request version, or respond
with an error, or switch to tunnel behavior.

Due to interoperability problemswith HTTP/1.0 proxies discovered since the publication of RFC 2068 [33],
caching proxies MUST, gateways MAY, and tunnels MUST NOT upgrade the request to the highest version
they support. The proxy/gateway's response to that request MUST be in the same major version as the request.

Note: Converting between versions of HTTP may involve modification of header fields required or
forbidden by the versionsinvolved.

3.2. Uniform Resource | dentifiers

URIs have been known by many names: WWW addresses, Universal Document Identifiers, Universal
Resource Identifiers[3], and finally the combination of Uniform Resource Locators (URL) [4] and Names
(URN) [20]. Asfar asHTTP s concerned, Uniform Resource Identifiers are simply formatted strings which
identify--via name, location, or any other characteristic--a resource.

3.2.1. General Syntax

URIsin HTTP can be represented in absolute form or relative to some known base URI [11], depending
upon the context of their use. The two forms are differentiated by the fact that absolute URIs always begin
with a scheme name followed by a colon. For definitive information on URL syntax and semantics, see
"Uniform Resource ldentifiers (URI): Generic Syntax and Semantics,” RFC 2396 [42] (which replaces RFCs

Fielding, et al. Standards Track [Page 17]

RFC 2616 HTTP/1.1 June 1999

1738 [4] and RFC 1808 [11]). This specification adopts the definitions of "URI-reference”, "absoluteURI",
"relativeURI", "port", "host","abs path", "rel_path", and "authority" from that specification.

The HTTP protocol does not place any apriori limit on the length of a URI. Servers MUST be able to handle
the URI of any resource they serve, and SHOULD be able to handle URIs of unbounded length if they provide
GET-based forms that could generate such URIs. A server SHOULD return 414 (Request-URI Too Long)
status if a URI islonger than the server can handle (see Section 10.4.15).

Note: Serversought to be cautious about depending on URI Iengths above 255 bytes, because some ol der
client or proxy implementations might not properly support these lengths.

3.2.2. http URL

The "http" scheme is used to locate network resources viathe HTTP protocol. This section defines the scheme-
specific syntax and semantics for http URLSs.

http_URL = "http:" "//" host [":" port] [abs_path ["?" query]]

If the port is empty or not given, port 80 is assumed. The semantics are that the identified resource is located

at the server listening for TCP connections on that port of that host, and the Request-URI for the resourceis
abs path (Section 5.1.2). The use of IP addressesin URLs SHOULD be avoided whenever possible (see RFC
1900 [24]). If the abs pathis not present in the URL, it MUST be given as"/" when used as a Request-URI for
aresource (Section 5.1.2). If aproxy receives a host name which is not afully qualified domain name, it MAY
add its domain to the host name it received. If a proxy receives afully qualified domain name, the proxy MUST
NOT change the host name.

3.2.3. URI Comparison
When comparing two URIsto decide if they match or not, a client SHOULD use a case-sensitive octet-by-octet
comparison of the entire URIs, with these exceptions:
e A port that is empty or not given is equivalent to the default port for that URI-reference;
e Comparisons of host names MUST be case-insensitive;
e Comparisons of scheme names MUST be case-insensitive;
e Anempty abs pathisequivalent to an abs path of "/".
Characters other than those in the "reserved" and "unsafe” sets (see RFC 2396 [42]) are equivalent to their "" %"
HEX HEX" encoding.

For example, the following three URIs are equivalent:

http://abc. com 80/ ~sm t h/ hone. ht n
http://ABC. conf %YEsni t h/ hone. ht n
http://ABC. com /% esm t h/ hone. ht n

3.3. Date/Time Formats

3.3.1. Full Date
HTTP applications have historically allowed three different formats for the representation of date/time stamps:

Sun, 06 Nov 1994 08:49:37 GMI' ; RFC 822, updated by RFC 1123
Sunday, 06-Nov-94 08:49:37 GMI ; RFC 850, obsoleted by RFC 1036
Sun Nov 6 08:49:37 1994 ; ANSI C s asctine() format

Thefirst format is preferred as an Internet standard and represents a fixed-length subset of that defined by RFC
1123 [8] (an update to RFC 822 [9]). The second format isin common use, but is based on the obsolete RFC
850 [12] date format and lacks a four-digit year. HTTP/1.1 clients and servers that parse the date value MUST

Fielding, et al. Standards Track [Page 18]

RFC 2616 HTTP/1.1 June 1999

accept all three formats (for compatibility with HTTP/1.0), though they MUST only generate the RFC 1123
format for representing HTTP-date values in header fields. See Appendix 19.3 for further information.

Note: Recipients of date values are encouraged to be robust in accepting date values that may have been
sent by non-HTTP applications, as is sometimes the case when retrieving or posting messages via proxies/
gatewaysto SMTP or NNTP.

All HTTP date/time stamps MUST be represented in Greenwich Mean Time (GMT), without exception. For
the purposes of HTTP, GMT is exactly equal to UTC (Coordinated Universal Time). Thisisindicated in the
first two formats by theinclusion of "GMT" as the three-letter abbreviation for time zone, and MUST be
assumed when reading the asctime format. HTTP-date is case sensitive and MUST NOT include additional
LWS beyond that specifically included as SP in the grammar.

asctinme-date = wkday SP date3 SP tine SP 4DIGA T

HTTP- dat e = rfcll23-date | rfc850-date | asctine-date
rfcll23-date = wkday "," SP datel SP tinme SP "GMVI"
rfc850-date = weekday "," SP date2 SP tine SP "GMI"
datel =2DIAT SP nonth SP 4DIA T
; day nmonth year (e.g., 02 Jun 1982)
dat e2 =2DIAT "-" month "-" 2DIAT
; day-nmonth-year (e.g., 02-Jun-82)
dat e3 = nonth SP (2DIGT | (SP 1DIA T))
; month day (e.g., Jun 2)
tinme =2DIGAT ":" 2DIGT ":" 2DIGA T
; 00:00: 00 - 23:59:59
wkday = "Mon" | "Tue" | "Wed"
| "Thu" | "Fri" | "Sat" | "Sun"
weekday = "Monday" | "Tuesday" | "Wednesday"
| "Thursday" | "Friday" | "Saturday" | "Sunday"
nmont h = "Jan" | "Feb" | "Mar" | "Apr"
["“May" | "Jun" | "Jul" | "Aug"
| "Sep" | "Cct" | "Nov" | "Dec"

Note: HTTP requirements for the date/time stamp format apply only to their usage within the protocol stream.
Clients and servers are not required to use these formats for user presentation, request logging, etc.

3.3.2. Delta Seconds

Some HTTP header fields allow atime value to be specified as an integer number of seconds, represented in
decimal, after the time that the message was received.

delta-seconds = 1*DIGA T

3.4. Character Sets

HTTP uses the same definition of the term "character set" as that described for MIME:

The term "character set" is used in this document to refer to a method used with one or more tables to convert
a sequence of octets into a sequence of characters. Note that unconditional conversion in the other direction
isnot required, in that not all characters may be available in a given character set and a character set may
provide more than one sequence of octets to represent a particular character. This definition isintended to
allow various kinds of character encoding, from simple single-table mappings such as US-ASCII to complex
table switching methods such as those that use 1SO-2022's techniques. However, the definition associated with
aMIME character set name MUST fully specify the mapping to be performed from octets to characters. In
particular, use of external profiling information to determine the exact mapping is not permitted.

Fielding, et al. Standards Track [Page 19]

RFC 2616 HTTP/1.1 June 1999

Note: Thisuse of the term "character set" is more commonly referred to as a " character encoding.”
However, since HTTP and MIME share the same registry, it isimportant that the terminology also be
shared.

HTTP character sets are identified by case-insensitive tokens. The complete set of tokensis defined by the
IANA Character Set registry [19].

charset = token

Although HTTP allows an arbitrary token to be used as a charset value, any token that has a predefined
value within the IANA Character Set registry [19] MUST represent the character set defined by that registry.
Applications SHOULD limit their use of character setsto those defined by the IANA registry.

Implementors should be aware of IETF character set requirements [38] [41].

3.4.1. Missing Char set

Some HTTP/1.0 software has interpreted a Content-Type header without charset parameter incorrectly to mean
"recipient should guess." Senders wishing to defeat this behavior MAY include a charset parameter even when
the charset is 1SO-8859-1 and SHOULD do so when it is known that it will not confuse the recipient.

Unfortunately, some older HTTP/1.0 clients did not deal properly with an explicit charset parameter. HTTP/1.1
recipients MUST respect the charset |abel provided by the sender; and those user agents that have a provision
to "guess' acharset MUST use the charset from the content-type field if they support that charset, rather than
the recipient's preference, when initially displaying a document. See Section 3.7.1.

3.5. Content Codings

Content coding values indicate an encoding transformation that has been or can be applied to an entity. Content
codings are primarily used to allow a document to be compressed or otherwise usefully transformed without
losing the identity of its underlying mediatype and without loss of information. Frequently, the entity is stored
in coded form, transmitted directly, and only decoded by the recipient.

cont ent - codi ng = t oken

All content-coding values are case-insensitive. HTTP/1.1 uses content-coding values in the Accept-Encoding
(Section 14.3) and Content-Encoding (Section 14.11) header fields. Although the value describes the content-
coding, what is more important is that it indicates what decoding mechanism will be required to remove the
encoding.

The Internet Assigned Numbers Authority (IANA) acts as aregistry for content-coding value tokens. Initially,
the registry contains the following tokens:

ozip
An encoding format produced by the file compression program "gzip" (GNU zip) as described in RFC
1952 [25]. Thisformat is aLempel-Ziv coding (LZ77) with a 32 hit CRC.

compress
The encoding format produced by the common UNIX file compression program "compress'. This format
is an adaptive Lempel-Ziv-Welch coding (LZW).
Use of program names for the identification of encoding formatsis not desirable and is discouraged for
future encodings. Their use hereis representative of historical practice, not good design. For compatibility
with previous implementations of HTTP, applications SHOULD consider "x-gzip" and "x-compress' to be
equivalent to "gzip" and "compress' respectively.

deflate

The "zlib" format defined in RFC 1950 [31] in combination with the "deflate" compression mechanism
described in RFC 1951 [29].

Fielding, et al. Standards Track [Page 20]

RFC 2616 HTTP/1.1 June 1999

identity
The default (identity) encoding; the use of no transformation whatsoever. This content-coding is used only
in the Accept-Encoding header, and SHOULD NOT be used in the Content-Encoding header.

New content-coding value tokens SHOULD be registered; to allow interoperability between clients and servers,
specifications of the content coding algorithms needed to implement a new value SHOULD be publicly
available and adequate for independent implementation, and conform to the purpose of content coding defined
in this section.

3.6. Transfer Codings

Transfer-coding values are used to indicate an encoding transformation that has been, can be, or may need to
be applied to an entity-body in order to ensure "safe transport” through the network. This differs from a content
coding in that the transfer-coding is a property of the message, not of the original entity.

transfer-codi ng
t ransf er - ext ensi on

"chunked" | transfer-extension
token *(";" paranmeter)

Parameters are in the form of attribute/value pairs.

par anet er = attribute "=" val ue
attribute = t oken
val ue = token | quoted-string

All transfer-coding values are case-insensitive. HTTP/1.1 uses transfer-coding valuesin the TE header field
(Section 14.39) and in the Transfer-Encoding header field (Section 14.41).

Whenever atransfer-coding is applied to a message-body, the set of transfer-codings MUST include
"chunked", unless the message is terminated by closing the connection. When the "chunked" transfer-coding is
used, it MUST be the last transfer-coding applied to the message-body. The "chunked" transfer-coding MUST
NOT be applied more than once to a message-body. These rules allow the recipient to determine the transfer-
length of the message (Section 4.4).

Transfer-codings are analogous to the Content-Transfer-Encoding values of MIME [7], which were designed to
enable safe transport of binary data over a 7-bit transport service. However, safe transport has a different focus
for an 8bit-clean transfer protocol. In HTTP, the only unsafe characteristic of message-bodiesis the difficulty
in determining the exact body length (Section 7.2.2), or the desire to encrypt data over a shared transport.

The Internet Assigned Numbers Authority (IANA) acts as aregistry for transfer-coding value tokens. Initially,
the registry contains the following tokens: "chunked" (Section 3.6.1), "identity" (section 3.6.2), "gzip" (Section
3.5), "compress' (Section 3.5), and "deflate” (Section 3.5).

New transfer-coding value tokens SHOUL D be registered in the same way as new content-coding value tokens
(Section 3.5).

A server which receives an entity-body with atransfer-coding it does not understand SHOULD return 501
(Unimplemented), and close the connection. A server MUST NOT send transfer-codingsto an HTTP/1.0 client.

3.6.1. Chunked Transfer Coding

The chunked encoding modifies the body of a message in order to transfer it as a series of chunks, each with its
own size indicator, followed by an OPTIONAL trailer containing entity-header fields. This alows dynamically
produced content to be transferred along with the information necessary for the recipient to verify that it has
received the full message.

Fielding, et al. Standards Track [Page 21]

RFC 2616 HTTP/1.1 June 1999

Chunked- Body = *chunk
| ast - chunk
trailer
CRLF
chunk = chunk-si ze [chunk-extension] CRLF

chunk-data CRLF

chunk-si ze 1* HEX

| ast - chunk 1*("0") [chunk-extension] CRLF
chunk-extension= *(";" chunk-ext-name ["=" chunk-ext-val])
chunk- ext - nane t oken

chunk- ext - val
chunk- dat a
trailer

token | quoted-string
chunk- si ze(OCTET)
*(entity-header CRLF)

The chunk-sizefield isa string of hex digits indicating the size of the chunk. The chunked encoding is ended by
any chunk whose size is zero, followed by the trailer, which is terminated by an empty line.

Thetrailer alows the sender to include additional HTTP header fields at the end of the message. The Trailer
header field can be used to indicate which header fields are included in atrailer (see Section 14.40).

A server using chunked transfer-coding in aresponse MUST NOT use the trailer for any header fields unless at

least one of the following is true:

1. therequest included a TE header field that indicates "trailers’ is acceptable in the transfer-coding of the
response, as described in Section 14.39; or,

2. theserver istheorigin server for the response, the trailer fields consist entirely of optional metadata, and
the recipient could use the message (in a manner acceptable to the origin server) without receiving this
metadata. In other words, the origin server is willing to accept the possibility that the trailer fields might be
silently discarded along the path to the client.

This requirement prevents an interoperability failure when the message is being received by an HTTP/1.1 (or
later) proxy and forwarded to an HTTP/1.0 recipient. It avoids a situation where compliance with the protocol
would have necessitated a possibly infinite buffer on the proxy.

An example process for decoding a Chunked-Body is presented in Appendix 19.4.6.
AIl HTTP/1.1 applications MUST be able to receive and decode the "chunked" transfer-coding, and MUST

ignore chunk-extension extensions they do not understand.
3.7. Media Types

HTTP uses Internet Media Types [17] in the Content-Type (Section 14.17) and Accept (Section 14.1) header
fieldsin order to provide open and extensible data typing and type negotiation.

medi a-type = type "/" subtype *(";" paraneter)
type = t oken
subt ype = t oken

Parameters MAY follow the type/subtype in the form of attribute/value pairs (as defined in Section 3.6).

The type, subtype, and parameter attribute names are case-insensitive. Parameter values might or might not
be case-sensitive, depending on the semantics of the parameter name. Linear white space (LWS) MUST NOT
be used between the type and subtype, nor between an attribute and its value. The presence or absence of a
parameter might be significant to the processing of a media-type, depending on its definition within the media

type registry.

Fielding, et al. Standards Track [Page 22]

RFC 2616 HTTP/1.1 June 1999

Note that some older HTTP applications do not recognize media type parameters. When sending data to older
HTTP applications, implementations SHOULD only use mediatype parameters when they are required by that
type/subtype definition.

Media-type values are registered with the Internet Assigned Number Authority (IANA [19]). The mediatype
registration processis outlined in RFC 1590 [17]. Use of non-registered mediatypes is discouraged.

3.7.1. Canonicalization and Text Defaults

Internet media types are registered with a canonical form. An entity-body transferred via HTTP messages
MUST be represented in the appropriate canonical form prior to its transmission except for "text" types, as
defined in the next paragraph.

When in canonical form, media subtypes of the "text" type use CRLF asthe text line break. HTTP relaxes this
reguirement and allows the transport of text media with plain CR or LF alone representing aline break when it
is done consistently for an entire entity-body. HTTP applications MUST accept CRLF, bare CR, and bare LF as
being representative of aline break in text mediareceived viaHTTP. In addition, if the text isrepresented in a
character set that does not use octets 13 and 10 for CR and LF respectively, asis the case for some multi-byte
character sets, HTTP alows the use of whatever octet sequences are defined by that character set to represent
the equivalent of CR and LF for line breaks. This flexibility regarding line breaks applies only to text media

in the entity-body; abare CR or LF MUST NOT be substituted for CRLF within any of the HTTP control
structures (such as header fields and multipart boundaries).

If an entity-body is encoded with a content-coding, the underlying data MUST be in aform defined above prior
to being encoded.

The "charset" parameter is used with some media types to define the character set (Section 3.4) of the data.
When no explicit charset parameter is provided by the sender, media subtypes of the "text" type are defined
to have a default charset value of "1SO-8859-1" when received viaHTTP. Datain character sets other than
"ISO-8859-1" or its subsets MUST be labeled with an appropriate charset value. See Section 3.4.1 for
compatibility problems.

3.7.2. Multipart Types

MIME provides for anumber of "multipart”" types -- encapsulations of one or more entities within asingle
message-body. All multipart types share a common syntax, as defined in section 5.1.1 of RFC 2046 [40], and
MUST include a boundary parameter as part of the mediatype value. The message body isitself a protocol
element and MUST therefore use only CRLF to represent line breaks between body-parts. Unlike in RFC
2046, the epilogue of any multipart message MUST be empty; HTTP applications MUST NOT transmit the
epilogue (even if the original multipart contains an epilogue). These restrictions exist in order to preserve the
self-delimiting nature of a multipart message-body, wherein the "end" of the message-body is indicated by the
ending multipart boundary.

In general, HTTP treats a multipart message-body no differently than any other mediatype: strictly as payload.
The one exception is the "multipart/byteranges’ type (Appendix 19.2) when it appearsin a 206 (Partial
Content) response, which will be interpreted by some HTTP caching mechanisms as described in sections
13.5.4 and 14.16. In all other cases, an HTTP user agent SHOULD follow the same or similar behavior asa
MIME user agent would upon receipt of a multipart type. The MIME header fields within each body-part of a
multipart message-body do not have any significance to HTTP beyond that defined by their MIME semantics.

In general, an HTTP user agent SHOULD follow the same or similar behavior asa MIME user agent would
upon receipt of amultipart type. If an application receives an unrecognized multipart subtype, the application
MUST treat it as being equivalent to "multipart/mixed".

Note: The "multipart/form-data’ type has been specifically defined for carrying form data suitable for
processing viathe POST request method, as described in RFC 1867 [15].

Fielding, et al. Standards Track [Page 23]

https://www.rfc-editor.org/rfc/rfc2046.html#section-5.1.1

RFC 2616 HTTP/1.1 June 1999

3.8. Product Tokens

Product tokens are used to allow communicating applications to identify themselves by software name
and version. Most fields using product tokens also allow sub-products which form a significant part of the
application to be listed, separated by white space. By convention, the products are listed in order of their
significance for identifying the application.

token ["/" product-version]
t oken

pr oduct
product - ver si on

Examples:

User - Agent : CERN- Li neMode/ 2. 15 |i bww/ 2. 17b3
Server: Apache/0.8.4

Product tokens SHOULD be short and to the point. They MUST NOT be used for advertising or other non-
essential information. Although any token character MAY appear in a product-version, this token SHOULD
only be used for aversion identifier (i.e., successive versions of the same product SHOULD only differ in the
product-version portion of the product value).

3.9. Quality Values

HTTP content negotiation (Section 12) uses short "floating point" numbers to indicate the relative importance
("weight") of various negotiable parameters. A weight is normalized to area number in the range 0 through 1,
where 0 isthe minimum and 1 the maximum value. If a parameter has a quality value of 0, then content with
this parameter is “not acceptable' for the client. HTTP/1.1 applications MUST NOT generate more than three
digits after the decimal point. User configuration of these values SHOULD also be limited in this fashion.

gval ue =("0" ["." 0*3DIGT])
| ("1 ["." 0*3("0")])

"Quality values' is amisnomer, since these values merely represent relative degradation in desired quality.

3.10. Language Tags

A language tag identifies a natural language spoken, written, or otherwise conveyed by human beings for
communication of information to other human beings. Computer languages are explicitly excluded. HTTP uses
language tags within the Accept-Language and Content-L anguage fields.

The syntax and registry of HTTP language tags is the same as that defined by RFC 1766 [1]. In summary, a
language tag is composed of 1 or more parts: A primary language tag and a possibly empty series of subtags:

| anguage-tag = prinmary-tag *("-" subtag)
primary-tag = 1*8ALPHA
subt ag = 1*8ALPHA

White space is not allowed within the tag and all tags are case-insensitive. The hame space of language tagsis
administered by the IANA. Example tags include:

en, en-US, en-cockney, i-cherokee, x-pig-latin

where any two-letter primary-tag is an | SO-639 language abbreviation and any two-letter initial subtag isan
SO-3166 country code. (The last three tags above are not registered tags; all but the last are examples of tags
which could be registered in future.)

Fielding, et al. Standards Track [Page 24]

RFC 2616 HTTP/1.1 June 1999

3.11. Entity Tags

Entity tags are used for comparing two or more entities from the same requested resource. HTTP/1.1 uses
entity tagsin the ETag (Section 14.19), If-Match (Section 14.24), If-None-Match (Section 14.26), and If-
Range (Section 14.27) header fields. The definition of how they are used and compared as cache validatorsisin
Section 13.3.3. An entity tag consists of an opaque quoted string, possibly prefixed by aweakness indicator.

entity-tag
weak
opaque-t ag

[weak] opaque-tag
IIWII
quot ed-string

A "strong entity tag" MAY be shared by two entities of aresource only if they are equivaent by octet equality.

A "weak entity tag," indicated by the "W/" prefix, MAY be shared by two entities of aresource only if the
entities are equivalent and could be substituted for each other with no significant change in semantics. A weak
entity tag can only be used for weak comparison.

An entity tag MUST be unique across all versions of all entities associated with a particular resource. A given
entity tag value MAY be used for entities obtained by requests on different URIs. The use of the same entity
tag value in conjunction with entities obtained by requests on different URIs does not imply the equivalence of
those entities.

3.12. Range Units

HTTP/1.1 allows aclient to request that only part (arange of) the response entity be included within the
response. HTTP/1.1 uses range units in the Range (Section 14.35) and Content-Range (Section 14.16) header
fields. An entity can be broken down into subranges according to various structural units.

range- unit = bytes-unit | other-range-unit
byt es-uni t = "bytes"
ot her-range-unit = token

The only range unit defined by HTTP/1.1 is "bytes'. HTTP/1.1 implementations MAY ignore ranges specified
using other units.

HTTP/1.1 has been designed to allow implementations of applications that do not depend on knowledge of
ranges.

Fielding, et al. Standards Track [Page 25]

RFC 2616 HTTP/1.1 June 1999

4. HTTP Message

4.1. Message Types

HTTP messages consist of requests from client to server and responses from server to client.
HTTP- nessage = Request | Response ; HTTP/ 1.1 messages

Reguest (Section 5) and Response (Section 6) messages use the generic message format of RFC 822 [9] for
transferring entities (the payload of the message). Both types of message consist of a start-line, zero or more
header fields (also known as "headers"), an empty line (i.e., aline with nothing preceding the CRLF) indicating
the end of the header fields, and possibly a message-body.

generi c-nmessage = start-line
*(message- header CRLF)

CRLF
[nessage- body]
start-1line = Request-Line | Status-Line

In the interest of robustness, servers SHOULD ignore any empty line(s) received where a Request-Lineis
expected. In other words, if the server is reading the protocol stream at the beginning of a message and receives
aCRLF first, it should ignore the CRLF.

Certain buggy HTTP/1.0 client implementations generate extra CRLF's after a POST request. To restate what
is explicitly forbidden by the BNF, an HTTP/1.1 client MUST NOT preface or follow a request with an extra
CRLF.

4.2. Message Headers

HTTP header fields, which include general-header (Section 4.5), request-header (Section 5.3), response-header
(Section 6.2), and entity-header (Section 7.1) fields, follow the same generic format as that given in Section

3.1 of RFC 822 [9]. Each header field consists of a name followed by a colon (":") and the field value. Field
names are case-insensitive. The field value MAY be preceded by any amount of LWS, though asingle SPis
preferred. Header fields can be extended over multiple lines by preceding each extraline with at least one SP
or HT. Applications ought to follow "common form", where one is known or indicated, when generating HTTP
constructs, since there might exist some implementations that fail to accept anything beyond the common

forms.
nmessage- header field-nane ":" [field-value]
field-nane t oken

field-val ue
field-content

*(field-content | LWS)

<the OCTETs naki ng up the field-val ue

and consisting of either *TEXT or conbinations
of token, separators, and quoted-string>

The field-content does not include any leading or trailing LWS: linear white space occurring before the first
non-whitespace character of the field-value or after the last non-whitespace character of the field-value. Such
leading or trailing LWS MAY be removed without changing the semantics of the field value. Any LWS

that occurs between field-content MAY be replaced with a single SP before interpreting the field value or
forwarding the message downstream.

The order in which header fields with differing field names are received is not significant. However, it is"good
practice" to send general-header fields first, followed by request-header or response-header fields, and ending
with the entity-header fields.

Fielding, et al. Standards Track [Page 26]

https://www.rfc-editor.org/rfc/rfc822.html#section-3.1
https://www.rfc-editor.org/rfc/rfc822.html#section-3.1

RFC 2616 HTTP/1.1 June 1999

Multiple message-header fields with the same field-name MAY be present in amessage if and only if the entire
field-value for that header field is defined as a comma-separated list [i.e., #(values)]. It MUST be possible to
combine the multiple header fieldsinto one "field-name: field-value" pair, without changing the semantics of
the message, by appending each subsequent field-value to the first, each separated by a comma. The order in
which header fields with the same field-name are received is therefore significant to the interpretation of the
combined field value, and thus a proxy MUST NOT change the order of these field values when amessage is
forwarded.

4.3. Message Body

The message-body (if any) of an HTTP message is used to carry the entity-body associated with the request
or response. The message-body differs from the entity-body only when atransfer-coding has been applied, as
indicated by the Transfer-Encoding header field (Section 14.41).

message- body = entity-body
| <entity-body encoded as per Transfer-Encodi ng>

Transfer-Encoding MUST be used to indicate any transfer-codings applied by an application to ensure safe
and proper transfer of the message. Transfer-Encoding is a property of the message, not of the entity, and thus
MAY be added or removed by any application along the request/response chain. (However, Section 3.6 places
restrictions on when certain transfer-codings may be used.)

The rules for when a message-body is allowed in a message differ for requests and responses.

The presence of amessage-body in arequest is signaled by the inclusion of a Content-Length or Transfer-
Encoding header field in the request's message-headers. A message-body MUST NOT be included in arequest
if the specification of the request method (Section 5.1.1) does not allow sending an entity-body in requests.

A server SHOULD read and forward a message-body on any request; if the request method does not include
defined semantics for an entity-body, then the message-body SHOULD be ignored when handling the request.

For response messages, whether or not a message-body is included with a message is dependent on both the
reguest method and the response status code (Section 6.1.1). All responses to the HEAD request method MUST
NOT include a message-body, even though the presence of entity-header fields might lead one to believe

they do. All 1xx (informational), 204 (no content), and 304 (not modified) responses MUST NOT include a
message-body. All other responses do include a message-body, athough it MAY be of zero length.

4.4. Message Length

The transfer-length of a message is the length of the message-body as it appears in the message; that is, after
any transfer-codings have been applied. When a message-body is included with a message, the transfer-length
of that body is determined by one of the following (in order of precedence):

1. Any response message which "MUST NOT" include a message-body (such as the 1xx, 204, and 304
responses and any response to a HEAD request) is always terminated by the first empty line after the header
fields, regardless of the entity-header fields present in the message.

2. If aTransfer-Encoding header field (Section 14.41) is present and has any value other than "identity", then
the transfer-length is defined by use of the "chunked" transfer-coding (Section 3.6), unless the messageis
terminated by closing the connection.

3. If aContent-Length header field (Section 14.13) is present, its decimal value in OCTETs represents both
the entity-length and the transfer-length. The Content-Length header field MUST NOT be sent if these two
lengths are different (i.e., if a Transfer-Encoding header field is present). If a message is received with both
a Transfer-Encoding header field and a Content-Length header field, the latter MUST be ignored.

4. If the message uses the mediatype "multipart/byteranges’, and the ransfer-length is not otherwise specified,
then this self-elimiting media type defines the transfer-length. This mediatype UST NOT be used unless
the sender knows that the recipient can arse it; the presence in arequest of a Range header with ultiple byte-
range specifiers from a 1.1 client implies that the lient can parse multipart/byteranges responses.

Fielding, et al. Standards Track [Page 27]

RFC 2616 HTTP/1.1 June 1999

A range header might be forwarded by a 1.0 proxy that does not understand multipart/byteranges; in
this case the server MUST delimit the message using methods defined in items 1, 3 or 5 of this section.

5. By the server closing the connection. (Closing the connection cannot be used to indicate the end of a
request body, since that would leave no possihility for the server to send back a response.)

For compatibility with HTTP/1.0 applications, HTTP/1.1 requests containing a message-body MUST include
avalid Content-Length header field unless the server is known to be HTTP/1.1 compliant. If arequest contains
amessage-body and a Content-Length is not given, the server SHOULD respond with 400 (bad request) if it
cannot determine the length of the message, or with 411 (length required) if it wishesto insist on receiving a
valid Content-L ength.

All HTTP/1.1 applications that receive entities MUST accept the "chunked" transfer-coding (Section 3.6), thus
alowing this mechanism to be used for messages when the message length cannot be determined in advance.

Messages MUST NOT include both a Content-L ength header field and a non-identity transfer-coding. If the
message does include a non-identity transfer-coding, the Content-Length MUST be ignored.

When a Content-Length is given in a message where a message-body is allowed, its field value MUST exactly
match the number of OCTETs in the message-body. HTTP/1.1 user agents MUST notify the user when an
invalid length is received and detected.

45. General Header Fields

There are afew header fields which have general applicability for both request and response messages,
but which do not apply to the entity being transferred. These header fields apply only to the message being

transmitted.
gener al - header = Cache- Control ; Section 14.9
| Connection ; Section 14.10
| Date ; Section 14.18
| Pragna ; Section 14. 32
| Trailer ; Section 14.40
| Transfer-Encoding ; Section 14.41
| Upgrade ; Section 14.42
| Via ; Section 14. 45
| Warni ng ; Section 14. 46

General-header field names can be extended reliably only in combination with a change in the protocol version.
However, new or experimental header fields may be given the semantics of general header fields if all parties
in the communication recognize them to be general-header fields. Unrecognized header fields are treated as
entity-header fields.

Fielding, et al. Standards Track [Page 28]

RFC 2616 HTTP/1.1 June 1999

5. Request

A request message from a client to a server includes, within the first line of that message, the method to be
applied to the resource, the identifier of the resource, and the protocol version in use.

Request = Request-Li ne ; Section 5.1
*((general - header ; Section 4.5
| request-header ; Section 5.3
| entity-header) CRLF) ; Section 7.1
CRLF
[nessage- body] ; Section 4.3

5.1. Request-Line

The Request-Line begins with a method token, followed by the Request-URI and the protocol version, and
ending with CRLF. The elements are separated by SP characters. No CR or LF is allowed except in the fina
CRLF segquence.

Request - Li ne = Method SP Request-URI SP HTTP-Version CRLF

5.1.1. Method

The Method token indicates the method to be performed on the resource identified by the Request-URI. The
method is case-sensitive.

Met hod = "OPTI ONS" ; Section 9.2
| "CGET" ; Section 9.3
| "HEAD' ; Section 9.4
| "POST" ; Section 9.5
| "PUT" ; Section 9.6
| "DELETE" ; Section 9.7
| " TRACE" ; Section 9.8
| " CONNECT" ; Section 9.9
|

ext ensi on- net hod
ext ensi on- net hod = token

The list of methods allowed by a resource can be specified in an Allow header field (Section 14.7). The return
code of the response always notifies the client whether amethod is currently allowed on aresource, since the
set of allowed methods can change dynamically. An origin server SHOULD return the status code 405 (Method
Not Allowed) if the method is known by the origin server but not allowed for the requested resource, and 501
(Not Implemented) if the method is unrecognized or not implemented by the origin server. The methods GET
and HEAD MUST be supported by all general-purpose servers. All other methods are OPTIONAL ; however, if
the above methods are implemented, they MUST be implemented with the same semantics as those specified in
Section 9.

5.1.2. Request-URI

The Request-URI is a Uniform Resource I dentifier (Section 3.2) and identifies the resource upon which to
apply the request.

Request - URI = "*" | absoluteURl | abs _path | authority

The four options for Request-URI are dependent on the nature of the request. The asterisk "*" means that the
reguest does not apply to a particular resource, but to the server itself, and is only alowed when the method
used does not necessarily apply to aresource. One example would be

Fielding, et al. Standards Track [Page 29]

RFC 2616 HTTP/1.1 June 1999

OPTIONS * HTTP/ 1.1

The absoluteURI form is REQUIRED when the request is being made to a proxy. The proxy is requested to
forward the request or service it from avalid cache, and return the response. Note that the proxy MAY forward
the request on to another proxy or directly to the server specified by the absoluteURI. In order to avoid request
loops, aproxy MUST be able to recognize all of its server names, including any aliases, local variations, and
the numeric I P address. An example Request-Line would be:

CET http://ww. w3. or g/ pub/ WMV TheProject. htm HITP/ 1.1

To alow for transition to absoluteURIsin all requestsin future versions of HTTP, all HTTP/1.1 servers MUST
accept the absoluteURI form in requests, even though HTTP/1.1 clients will only generate them in requests to
proxies.

The authority form is only used by the CONNECT method (Section 9.9).

The most common form of Request-URI is that used to identify aresource on an origin server or gateway. In
this case the absolute path of the URI MUST be transmitted (see Section 3.2.1, abs path) as the Request-URI,
and the network location of the URI (authority) MUST be transmitted in a Host header field. For example, a
client wishing to retrieve the resource above directly from the origin server would create a TCP connection to
port 80 of the host "www.w3.0rg" and send the lines:

CET / pub/ WMV TheProj ect.htm HTTP/ 1.1
Host: www. wW3. or g

followed by the remainder of the Request. Note that the absolute path cannot be empty; if noneis present in the
original URI, it MUST be given as"/" (the server root).

The Request-URI is transmitted in the format specified in Section 3.2.1. If the Request-URI is encoded using
the "% HEX HEX" encoding [42], the origin server MUST decode the Request-URI in order to properly
interpret the request. Servers SHOULD respond to invalid Request-URIs with an appropriate status code.

A transparent proxy MUST NOT rewrite the "abs path" part of the received Request-URI when forwarding it
to the next inbound server, except as noted above to replace anull abs _path with "/".

Note: The "no rewrite" rule prevents the proxy from changing the meaning of the request when the origin
server isimproperly using a non-reserved URI character for areserved purpose. |mplementors should be
aware that some pre-HTTP/1.1 proxies have been known to rewrite the Request-URI.

5.2. TheResource Identified by a Request

The exact resource identified by an Internet request is determined by examining both the Request-URI and the
Host header field.

An origin server that does not allow resources to differ by the requested host MAY ignore the Host header field
value when determining the resource identified by an HTTP/1.1 request. (But see Appendix 19.6.1.1 for other
reguirements on Host support in HTTP/1.1.)

An origin server that does differentiate resources based on the host requested (sometimes referred to as virtual
hosts or vanity host names) MUST use the following rules for determining the requested resource on an
HTTP/1.1 request:

1. If Request-URI is an absoluteURI, the host is part of the Request-URI. Any Host header field value in the
request MUST be ignored.

2. If the Request-URI is not an absoluteURI, and the request includes a Host header field, the host is
determined by the Host header field value.

3. If the host as determined by rule 1 or 2 is not avalid host on the server, the response MUST be a 400 (Bad
Request) error message.

Fielding, et al. Standards Track [Page 30]

RFC 2616 HTTP/1.1 June 1999

Recipients of an HTTP/1.0 request that lacks a Host header field MAY attempt to use heuristics (e.g.,
examination of the URI path for something unique to a particular host) in order to determine what exact
resource is being requested.

5.3. Request Header Fields

The request-header fields allow the client to pass additional information about the request, and about the client
itself, to the server. These fields act as request modifiers, with semantics equivalent to the parameterson a
programming language method invocation.

request - header = Accept ; Section 14.1
| Accept - Char set ; Section 14.2
| Accept-Encodi ng ; Section 14.3
| Accept-Language ; Section 14.4
| Authorization ; Section 14.8
| Expect ; Section 14.20
| From ; Section 14.22
| Host ; Section 14.23
| I'f-Match ; Section 14.24
| If-Mdified-Since ; Section 14.25
| If-None-Match ; Section 14.26
| If-Range ; Section 14.27
| If-Unnodified-Since ; Section 14.28
| Max- Forwar ds ; Section 14. 31
| Proxy-Authorization ; Section 14.34
| Range ; Section 14.35
| Referer ; Section 14. 36
| TE ; Section 14.39
| User- Agent ; Section 14.43

Request-header field names can be extended reliably only in combination with a change in the protocol version.
However, new or experimental header fields MAY be given the semantics of request-header fields if all parties
in the communication recognize them to be request-header fields. Unrecognized header fields are treated as
entity-header fields.

Fielding, et al. Standards Track [Page 31]

RFC 2616 HTTP/1.1 June 1999

6. Response

After receiving and interpreting a request message, a server responds with an HT TP response message.
Response = Status-Line ; Section 6.1
*((general - header ; Section 4.5
| response-header ; Section 6.2
| entity-header) CRLF) ; Section 7.1
CRLF
[nessage- body] ; Section 7.2

6.1. Status-Line

Thefirst line of a Response message is the Status-Line, consisting of the protocol version followed by a
numeric status code and its associated textual phrase, with each element separated by SP characters. No CR or
LFisallowed except in the final CRLF sequence.

St at us- Li ne = HTTP- Versi on SP St at us- Code SP Reason- Phrase CRLF

6.1.1. Status Code and Reason Phrase

The Status-Code element is a 3-digit integer result code of the attempt to understand and satisfy the request.
These codes are fully defined in Section 10. The Reason-Phrase isintended to give a short textual description
of the Status-Code. The Status-Code is intended for use by automata and the Reason-Phrase is intended for the
human user. The client is not required to examine or display the Reason-Phrase.

Thefirst digit of the Status-Code defines the class of response. The last two digits do not have any
categorization role. There are 5 values for the first digit:

Ixx: Informational - Request received, continuing process

2xx: Success - The action was successfully received, understood, and accepted
3xx: Redirection - Further action must be taken in order to complete the request
4xx: Client Error - The request contains bad syntax or cannot be fulfilled

5xx: Server Error - The server failed to fulfill an apparently valid request

The individual values of the numeric status codes defined for HTTP/1.1, and an example set of corresponding
Reason-Phrase's, are presented below. The reason phrases listed here are only recommendations -- they MAY
be replaced by local equivalents without affecting the protocol.

Fielding, et al. Standards Track [Page 32]

RFC 2616

St at us- Code
"100"
| "101"
| "200"
| "201"
| "202"
| "203"
| "204"
| "205"
| "206"
| "300"
| "301"
| "302"
| "303"
| "304"
| "305"
| "307"
| "400"
| "401"
| "402"
| "403"
| "404"
| "405"
| "406"
| "407"
| "408"
| "409"
| "410"
| "411"
| "412"
| "413"
| "414"
| "415"
| "416"
| "417"
| "500"
| "501"
| "502"
| "503"
| "504"
| "505"
| extensi

ext ensi on- code

Reason- Phr ase

on- code

Secti
Secti
Secti
Secti
Secti
Secti
Secti
Secti
Secti
Secti
Secti
Secti
Secti
Secti
Secti
Secti
Secti
Secti
Secti
Secti
Secti
Secti
Secti
Secti
Secti
Secti
Sect i
Sect i
Sect i
Sect i
Sect i
Sect i
Sect i
Sect i
Sect i
Sect i
Sect i
Sect i
Sect i
Sect i

on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on
on

3DA T
*<TEXT, excluding CR LF>

10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.
10.

oo bbbbbbbbbbbAEARARPOOOWWWWNNNNNNNER

HTTP/1.1 June 1999

CONQQURLUNROURLONRENOORWONENE

Cont i nue

Swi t ching Protocols

XK

Creat ed

Accept ed

Non- Aut horitative I nformation
No Cont ent

Reset Content

Partial Content

Mul ti pl e Choi ces

Moved Pernmanently

Found

See O her

Not Mbdi fi ed

Use Proxy

Tenporary Redirect

Bad Request

Unaut hori zed

Paynent Required

For bi dden

Not Found

Met hod Not All owed

Not Acceptable

Proxy Aut hentication Required
Request Ti nme- out

Conflict

Gone
Length Required
Precondi tion Fail ed
Request Entity Too Large
Request - URI Too Large
Unsupported Media Type
Request ed range not satisfiable
Expectation Fail ed
Internal Server Error

Not | npl enent ed

Bad Gat eway

Servi ce Unavail abl e

Gat eway Ti me-out

HTTP Versi on not supported

HTTP status codes are extensible. HTTP applications are not required to understand the meaning of all
registered status codes, though such understanding is obviously desirable. However, applications MUST
understand the class of any status code, as indicated by the first digit, and treat any unrecognized response as
being equivalent to the x00 status code of that class, with the exception that an unrecognized response MUST
NOT be cached. For example, if an unrecognized status code of 431 isreceived by the client, it can safely
assume that there was something wrong with its request and treat the response asiif it had received a 400 status

Fielding, et al.

Standards Track [Page 33]

RFC 2616

HTTP/1.1

June 1999

code. In such cases, user agents SHOUL D present to the user the entity returned with the response, since that

entity islikely to include human-readable information which will explain the unusual status.

6.2. Response Header Fields

The response-header fields allow the server to pass additional information about the response which cannot be
placed in the Status-Line. These header fields give information about the server and about further accessto the
resource identified by the Request-URI.

response- header =

Accept - Ranges

Age

ETag

Locati on

Pr oxy- Aut henti cat e
Retry-After

Server

Vary

WANM Aut hent i cat e

Secti
Secti
Secti
Secti
Secti
Secti
Secti
Secti
Secti

on
on
on
on
on
on
on
on
on

14.
14.
14.
14.
14.
14.
14.
14.
14.

5
6

19
30
33
37
38
44
47

Response-header field names can be extended reliably only in combination with a change in the protocol
version. However, new or experimental header fields MAY be given the semantics of response-header fields if
all partiesin the communication recognize them to be response-header fields. Unrecognized header fields are

treated as entity-header fields.

Fielding, et al.

Standards Track

[Page 34]

RFC 2616 HTTP/1.1 June 1999

7. Entity

Request and Response messages MAY transfer an entity if not otherwise restricted by the request method or
response status code. An entity consists of entity-header fields and an entity-body, although some responses
will only include the entity-headers.

In this section, both sender and recipient refer to either the client or the server, depending on who sends and
who receives the entity.

7.1. Entity Header Fields

Entity-header fields define metainformation about the entity-body or, if no body is present, about the resource
identified by the request. Some of this metainformation is OPTIONAL ; some might be REQUIRED by
portions of this specification.

entity-header = Allow ; Section 14.7

| Content-Encodi ng ; Section 14.11
| Content-Language ; Section 14.12
| Content-Length ; Section 14.13
| Content-Location ; Section 14. 14
| Content-M5 ; Section 14.15
| Content - Range ; Section 14.16
| Content-Type ; Section 14.17
| Expires ; Section 14.21
| Last-Modified ; Section 14.29
|

ext ensi on- header

ext ensi on- header = nessage- header

The extension-header mechanism allows additional entity-header fields to be defined without changing the
protocol, but these fields cannot be assumed to be recognizable by the recipient. Unrecognized header fields
SHOULD beignored by the recipient and MUST be forwarded by transparent proxies.

7.2. Entity Body

The entity-body (if any) sent with an HTTP request or responseisin aformat and encoding defined by the
entity-header fields.

entity-body = *OCTET

An entity-body is only present in a message when a message-body is present, as described in Section 4.3. The
entity-body is obtained from the message-body by decoding any Transfer-Encoding that might have been
applied to ensure safe and proper transfer of the message.

7.2.1. Type

When an entity-body isincluded with a message, the data type of that body is determined via the header fields
Content-Type and Content-Encoding. These define atwo-layer, ordered encoding model:

entity-body := Content-Encodi ng(Content-Type(data))

Content-Type specifies the media type of the underlying data. Content-Encoding may be used to indicate any
additional content codings applied to the data, usually for the purpose of data compression, that are a property
of the requested resource. There is no default encoding.

Any HTTP/1.1 message containing an entity-body SHOULD include a Content-Type header field defining the
media type of that body. If and only if the mediatype is not given by a Content-Type field, the recipient MAY

Fielding, et al. Standards Track [Page 35]

RFC 2616 HTTP/1.1 June 1999

attempt to guess the media type viainspection of its content and/or the name extension(s) of the URI used to
identify the resource. If the media type remains unknown, the recipient SHOULD treat it as type "application/
octet-stream”.

7.2.2. Entity Length

The entity-length of a message is the length of the message-body before any transfer-codings have been
applied. Section 4.4 defines how the transfer-length of a message-body is determined.

Fielding, et al. Standards Track [Page 36]

RFC 2616 HTTP/1.1 June 1999

8. Connections

8.1. Persistent Connections

8.1.1. Purpose

Prior to persistent connections, a separate TCP connection was established to fetch each URL, increasing
the load on HTTP servers and causing congestion on the Internet. The use of inline images and other

associated data often require a client to make multiple requests of the same server in a short amount of time.
Analysis of these performance problems and results from a prototype implementation are available [26] [30].
Implementation experience and measurements of actual HTTP/1.1 (RFC 2068) implementations show good

results [39]. Alternatives have also been explored, for example, T/TCP [27].

Persistent HTTP connections have a number of advantages:

By opening and closing fewer TCP connections, CPU time is saved in routers and hosts (clients, servers,
proxies, gateways, tunnels, or caches), and memory used for TCP protocol control blocks can be saved in
hosts.

HTTP requests and responses can be pipelined on a connection. Pipelining allows a client to make multiple
requests without waiting for each response, allowing a single TCP connection to be used much more
efficiently, with much lower elapsed time.

Network congestion is reduced by reducing the number of packets caused by TCP opens, and by allowing
TCP sufficient time to determine the congestion state of the network.

Latency on subsequent requests is reduced since there is no time spent in TCP's connection opening
handshake.

HTTP can evolve more gracefully, since errors can be reported without the penalty of closing the

TCP connection. Clients using future versions of HTTP might optimistically try a new feature, but if
communicating with an older server, retry with old semantics after an error is reported.

HTTP implementations SHOULD implement persistent connections.

8.1.2. Overall Operation

A significant difference between HTTP/1.1 and earlier versions of HTTP is that persistent connections are the
default behavior of any HTTP connection. That is, unless otherwise indicated, the client SHOULD assume that
the server will maintain a persistent connection, even after error responses from the server.

Persistent connections provide a mechanism by which a client and a server can signal the close of aTCP
connection. This signaling takes place using the Connection header field (Section 14.10). Once a close has been
signaled, the client MUST NOT send any more requests on that connection.

8.1.2.1. Negotiation

AnHTTP/1.1 server MAY assumethat aHTTP/1.1 client intends to maintain a persistent connection unless a
Connection header including the connection-token "close" was sent in the request. If the server chooses to close
the connection immediately after sending the response, it SHOULD send a Connection header including the
connection-token close.

AnHTTP/1.1 client MAY expect a connection to remain open, but would decide to keep it open based on
whether the response from a server contains a Connection header with the connection-token close. In case the
client does not want to maintain a connection for more than that request, it SHOUL D send a Connection header
including the connection-token close.

If either the client or the server sends the close token in the Connection header, that request becomes the last
one for the connection.

Fielding, et al. Standards Track [Page 37]

RFC 2616 HTTP/1.1 June 1999

Clients and servers SHOULD NOT assume that a persistent connection is maintained for HTTP versions less
than 1.1 unlessit is explicitly signaled. See Appendix 19.6.2 for more information on backward compatibility
with HTTP/1.0 clients.

In order to remain persistent, all messages on the connection MUST have a self-defined message length (i.e.,
one not defined by closure of the connection), as described in Section 4.4.

8.1.2.2. Pipelining

A client that supports persistent connections MAY "pipeline” its requests (i.e., send multiple requests without
waiting for each response). A server MUST send its responses to those requests in the same order that the
requests were received.

Clients which assume persistent connections and pipeline immediately after connection establishment
SHOULD be prepared to retry their connection if the first pipelined attempt fails. If a client does such aretry,
it MUST NOT pipeline before it knows the connection is persistent. Clients MUST also be prepared to resend
their requests if the server closes the connection before sending all of the corresponding responses.

Clients SHOULD NOT pipeline requests using non-idempotent methods or non-idempotent sequences of
methods (see Section 9.1.2). Otherwise, a premature termination of the transport connection could lead to
indeterminate results. A client wishing to send a non-idempotent request SHOUL D wait to send that request
until it has received the response status for the previous request.

8.1.3. Proxy Servers

It is especially important that proxies correctly implement the properties of the Connection header field as
specified in Section 14.10.

The proxy server MUST signal persistent connections separately with its clients and the origin servers (or other
proxy servers) that it connects to. Each persistent connection applies to only one transport link.

A proxy server MUST NOT establish aHTTP/1.1 persistent connection with an HTTP/1.0 client (but see RFC
2068 [33] for information and discussion of the problems with the Keep-Alive header implemented by many
HTTP/1.0 clients).

8.1.4. Practical Considerations

Serverswill usually have some time-out value beyond which they will no longer maintain an inactive
connection. Proxy servers might make this a higher value sinceit islikely that the client will be making more
connections through the same server. The use of persistent connections places no reguirements on the length (or
existence) of thistime-out for either the client or the server.

When aclient or server wishes to time-out it SHOULD issue a graceful close on the transport connection.
Clients and servers SHOULD both constantly watch for the other side of the transport close, and respond to it
as appropriate. If aclient or server does not detect the other side's close promptly it could cause unnecessary
resource drain on the network.

A client, server, or proxy MAY close the transport connection at any time. For example, a client might have
started to send a new request at the same time that the server has decided to close the "idle" connection. From
the server's point of view, the connection is being closed while it wasidle, but from the client's point of view, a
reguest isin progress.

This means that clients, servers, and proxies MUST be able to recover from asynchronous close events. Client
software SHOULD reopen the transport connection and retransmit the aborted sequence of requests without
user interaction so long as the request sequence is idempotent (see Section 9.1.2). Non-idempotent methods or
sequences MUST NOT be automatically retried, although user agents MAY offer a human operator the choice
of retrying the request(s). Confirmation by user-agent software with semantic understanding of the application
MAY substitute for user confirmation. The automatic retry SHOULD NOT be repeated if the second sequence
of requestsfails.

Fielding, et al. Standards Track [Page 38]

RFC 2616 HTTP/1.1 June 1999

Servers SHOULD always respond to at least one request per connection, if at al possible. Servers SHOULD
NOT close a connection in the middle of transmitting a response, unless a network or client failure is suspected.

Clients that use persistent connections SHOULD limit the number of simultaneous connections that they
maintain to agiven server. A single-user client SHOULD NOT maintain more than 2 connections with any
server or proxy. A proxy SHOULD use up to 2*N connections to another server or proxy, where N isthe
number of simultaneously active users. These guidelines are intended to improve HTTP response times and
avoid congestion.

8.2. Message Transmission Requirements

8.2.1. Persistent Connections and Flow Control

HTTP/1.1 servers SHOULD maintain persistent connections and use TCP's flow control mechanismsto resolve
temporary overloads, rather than terminating connections with the expectation that clients will retry. The latter
technique can exacerbate network congestion.

8.2.2. Monitoring Connectionsfor Error Status M essages

AnHTTP/1.1 (or later) client sending a message-body SHOULD monitor the network connection for an error
status while it is transmitting the request. If the client sees an error status, it SHOULD immediately cease
transmitting the body. If the body is being sent using a"chunked" encoding (Section 3.6), a zero length chunk
and empty trailer MAY be used to prematurely mark the end of the message. If the body was preceded by a
Content-L ength header, the client MUST close the connection.

8.2.3. Use of the 100 (Continue) Status

The purpose of the 100 (Continue) status (see Section 10.1.1) isto allow aclient that is sending arequest
message with arequest body to determine if the origin server iswilling to accept the request (based on the
request headers) before the client sends the request body. In some cases, it might either be inappropriate or
highly inefficient for the client to send the body if the server will reject the message without looking at the
body.

Requirements for HTTP/1.1 clients:

« If aclient will wait for a 100 (Continue) response before sending the request body, it MUST send an Expect
request-header field (Section 14.20) with the "100-continue” expectation.

* Aclient MUST NOT send an Expect request-header field (Section 14.20) with the "100-continue"
expectation if it does not intend to send a request body.

Because of the presence of older implementations, the protocol allows ambiguous situations in which a client
may send "Expect: 100-continue" without receiving either a 417 (Expectation Failed) status or a 100 (Continue)
status. Therefore, when a client sends this header field to an origin server (possibly via a proxy) from which it
has never seen a 100 (Continue) status, the client SHOULD NOT wait for an indefinite period before sending
the request body.

Requirements for HTTP/1.1 origin servers:

« Upon receiving areguest which includes an Expect request-header field with the "100-continue"
expectation, an origin server MUST either respond with 100 (Continue) status and continue to read from
the input stream, or respond with afinal status code. The origin server MUST NOT wait for the request
body before sending the 100 (Continue) response. If it responds with afinal status code, it MAY close the
transport connection or it MAY continue to read and discard the rest of the request. It MUST NOT perform
the requested method if it returns afinal status code.

e Anorigin server SHOULD NOT send a 100 (Continue) response if the request message does not include an
Expect request-header field with the "100-continue" expectation, and MUST NOT send a 100 (Continue)
response if such arequest comes from an HTTP/1.0 (or earlier) client. There is an exception to thisrule: for
compatibility with RFC 2068, a server MAY send a 100 (Continue) statusin responseto an HTTP/1.1 PUT
or POST request that does not include an Expect request-header field with the " 100-continue" expectation.

Fielding, et al. Standards Track [Page 39]

RFC 2616 HTTP/1.1 June 1999

This exception, the purpose of which isto minimize any client processing delays associated with an
undeclared wait for 100 (Continue) status, applies only to HTTP/1.1 requests, and not to requests with any
other HTTP-version value.

An origin server MAY omit a 100 (Continue) response if it has already received some or all of the request
body for the corresponding request.

An origin server that sends a 100 (Continue) response MUST ultimately send afinal status code, once the
request body is received and processed, unless it terminates the transport connection prematurely.

If an origin server receives arequest that does not include an Expect request-header field with the "100-
continue" expectation, the request includes a request body, and the server responds with afinal status
code before reading the entire request body from the transport connection, then the server SHOULD NOT
close the transport connection until it has read the entire request, or until the client closes the connection.
Otherwise, the client might not reliably receive the response message. However, this requirement is not
be construed as preventing a server from defending itself against denial-of-service attacks, or from badly
broken client implementations.

Requirements for HTTP/1.1 proxies:

If aproxy receives areguest that includes an Expect request-header field with the " 100-continue”
expectation, and the proxy either knows that the next-hop server complies with HTTP/1.1 or higher, or
does not know the HTTP version of the next-hop server, it MUST forward the request, including the Expect
header field.

If the proxy knows that the version of the next-hop server isHTTP/1.0 or lower, it MUST NOT forward the
request, and it MUST respond with a417 (Expectation Failed) status.

Proxies SHOULD maintain a cache recording the HTTP version numbers received from recently-
referenced next-hop servers.

A proxy MUST NOT forward a 100 (Continue) response if the request message was received from an
HTTP/1.0 (or earlier) client and did not include an Expect request-header field with the "100-continue”
expectation. This requirement overrides the general rule for forwarding of 1xx responses (see Section 10.1).

8.2.4. Client Behavior if Server Prematurely Closes Connection

If an HTTP/1.1 client sends a request which includes a request body, but which does not include an Expect
request-header field with the "100-continue" expectation, and if the client is not directly connected to an
HTTP/1.1 origin server, and if the client sees the connection close before receiving any status from the server,
the client SHOULD retry the request. If the client does retry thisrequest, it MAY use the following "binary
exponential backoff" algorithm to be assured of obtaining areliable response:

1
2.
3.

S

Initiate a new connection to the server
Transmit the request-headers

Initialize avariable R to the estimated round-trip time to the server (e.g., based on the time it took to
establish the connection), or to a constant value of 5 seconds if the round-trip time is not available.

Compute T = R * (2**N), where N is the number of previous retries of this request.
Wait either for an error response from the server, or for T seconds (whichever comes first)
If no error response is received, after T seconds transmit the body of the request.

If client sees that the connection is closed prematurely, repeat from step 1 until the request is accepted, an
error response is received, or the user becomes impatient and terminates the retry process.

If at any point an error status is received, the client

SHOULD NOT continue and
SHOULD close the connection if it has not completed sending the request message.

Fielding, et al. Standards Track [Page 40]

RFC 2616 HTTP/1.1 June 1999

9. Method Definitions

The set of common methods for HTTP/1.1 is defined below. Although this set can be expanded, additional
methods cannot be assumed to share the same semantics for separately extended clients and servers.

The Host request-header field (Section 14.23) MUST accompany all HTTP/1.1 requests.

9.1. Safeand Idempotent Methods

9.1.1. Safe Methods

Implementors should be aware that the software represents the user in their interactions over the Internet, and
should be careful to allow the user to be aware of any actions they might take which may have an unexpected
significance to themselves or others.

In particular, the convention has been established that the GET and HEAD methods SHOULD NOT havethe
significance of taking an action other than retrieval. These methods ought to be considered "safe". This allows
user agents to represent other methods, such as POST, PUT and DELETE, in a special way, so that the user is
made aware of the fact that a possibly unsafe action is being requested.

Naturally, it is not possible to ensure that the server does not generate side-effects as aresult of performing a
GET request; in fact, some dynamic resources consider that a feature. The important distinction hereis that the
user did not request the side-effects, so therefore cannot be held accountable for them.

9.1.2. Idempotent Methods

Methods can also have the property of "idempotence” in that (aside from error or expiration issues) the side-
effects of N > O identical requestsis the same as for a single request. The methods GET, HEAD, PUT and
DELETE share this property. Also, the methods OPTIONS and TRACE SHOULD NOT have side effects, and
so are inherently idempotent.

However, it is possible that a sequence of several requests is non-idempotent, even if all of the methods
executed in that sequence are idempotent. (A sequence isidempotent if asingle execution of the entire
sequence always yields aresult that is not changed by a reexecution of all, or part, of that sequence.) For
example, asequenceis non-idempotent if its result depends on avalue that is later modified in the same
sequence.

A sequence that never has side effects is idempotent, by definition (provided that no concurrent operations are
being executed on the same set of resources).

9.2. OPTIONS

The OPTIONS method represents a regquest for information about the communication options available on the
request/response chain identified by the Request-URI. This method allows the client to determine the options
and/or requirements associated with a resource, or the capabilities of a server, without implying a resource
action or initiating aresource retrieval.

Responses to this method are not cacheable.

If the OPTIONS request includes an entity-body (asindicated by the presence of Content-Length or Transfer-
Encoding), then the media type MUST be indicated by a Content-Type field. Although this specification does
not define any use for such a body, future extensions to HT TP might use the OPTIONS body to make more
detailed queries on the server. A server that does not support such an extension MAY discard the request body.

If the Request-URI isan asterisk ("*"), the OPTIONS request is intended to apply to the server in general rather
than to a specific resource. Since a server's communication options typically depend on the resource, the "*"
request isonly useful asa"ping" or "no-op" type of method; it does nothing beyond allowing the client to test
the capabilities of the server. For example, this can be used to test a proxy for HTTP/1.1 compliance (or lack
thereof).

Fielding, et al. Standards Track [Page 41]

RFC 2616 HTTP/1.1 June 1999

If the Request-URI is not an asterisk, the OPTIONS request applies only to the options that are available when
communicating with that resource.

A 200 response SHOUL D include any header fields that indicate optional features implemented by the server
and applicable to that resource (e.g., Allow), possibly including extensions not defined by this specification.
The response body, if any, SHOULD also include information about the communication options. The format
for such abody is not defined by this specification, but might be defined by future extensionsto HTTP.
Content negotiation MAY be used to select the appropriate response format. If no response body is included,
the response MUST include a Content-Length field with a field-value of "0".

The Max-Forwards request-header field MAY be used to target a specific proxy in the request chain. When
aproxy receives an OPTIONS reguest on an absoluteURI for which request forwarding is permitted, the
proxy MUST check for a Max-Forwardsfield. If the Max-Forwards field-value is zero ("0"), the proxy MUST
NOT forward the message; instead, the proxy SHOULD respond with its own communication options. If the
Max-Forwards field-value is an integer greater than zero, the proxy MUST decrement the field-value when

it forwards the request. If no Max-Forwards field is present in the request, then the forwarded request MUST
NOT include a Max-Forwards field.

9.3. GET

The GET method means retrieve whatever information (in the form of an entity) isidentified by the Request-
URI. If the Request-URI refers to a data-producing process, it is the produced data which shall be returned as
the entity in the response and not the source text of the process, unless that text happens to be the output of the
process.

The semantics of the GET method change to a " conditional GET" if the request message includes an If-
Modified-Since, If-Unmodified-Since, I1f-Match, 1f-None-Match, or If-Range header field. A conditional GET
method requests that the entity be transferred only under the circumstances described by the conditional header
field(s). The conditional GET method is intended to reduce unnecessary network usage by allowing cached
entities to be refreshed without requiring multiple requests or transferring data already held by the client.

The semantics of the GET method change to a"partial GET" if the request message includes a Range header
field. A partial GET requests that only part of the entity be transferred, as described in Section 14.35. The
partial GET method is intended to reduce unnecessary network usage by allowing partially-retrieved entitiesto
be completed without transferring data already held by the client.

Theresponse to a GET request is cacheable if and only if it meets the requirements for HTTP caching
described in Section 13.

See Section 15.1.3 for security considerations when used for forms.
9.4. HEAD

The HEAD method isidentical to GET except that the server MUST NOT return a message-body in the
response. The metainformation contained in the HTTP headers in response to aHEAD request SHOULD
beidentical to the information sent in response to a GET request. This method can be used for obtaining

metai nformation about the entity implied by the request without transferring the entity-body itself. This method
is often used for testing hypertext links for validity, accessibility, and recent modification.

The response to aHEAD request MAY be cacheable in the sense that the information contained in the response
MAY be used to update a previoudly cached entity from that resource. If the new field values indicate that the
cached entity differs from the current entity (as would be indicated by a change in Content-L ength, Content-
MDS5, ETag or Last-Modified), then the cache MUST treat the cache entry as stale.

9.5. POST

Fielding, et al. Standards Track [Page 42]

RFC 2616 HTTP/1.1 June 1999

The POST method is used to request that the origin server accept the entity enclosed in the request as a new
subordinate of the resource identified by the Request-URI in the Request-Line. POST isdesigned to allow a
uniform method to cover the following functions:

e Annotation of existing resources;

» Posting a message to a bulletin board, newsgroup, mailing list, or similar group of articles;

» Providing ablock of data, such asthe result of submitting aform, to a data-handling process;
» Extending a database through an append operation.

The actual function performed by the POST method is determined by the server and is usually dependent
on the Request-URI. The posted entity is subordinate to that URI in the same way that afile is subordinate
to adirectory containing it, a news article is subordinate to a newsgroup to which it is posted, or arecord is
subordinate to a database.

The action performed by the POST method might not result in aresource that can be identified by aURI. In
this case, either 200 (OK) or 204 (No Content) is the appropriate response status, depending on whether or not
the response includes an entity that describes the result.

If aresource has been created on the origin server, the response SHOULD be 201 (Created) and contain an
entity which describes the status of the request and refers to the new resource, and a L ocation header (see
Section 14.30).

Responses to this method are not cacheable, unless the response includes appropriate Cache-Control or
Expires header fields. However, the 303 (See Other) response can be used to direct the user agent to retrieve a
cacheable resource.

POST requests MUST obey the message transmission requirements set out in Section 8.2.
See Section 15.1.3 for security considerations.

9.6. PUT

The PUT method requests that the enclosed entity be stored under the supplied Request-URI. If the Request-
URI refersto an already existing resource, the enclosed entity SHOULD be considered as a modified version
of the one residing on the origin server. If the Request-URI does not point to an existing resource, and that
URI is capable of being defined as a new resource by the requesting user agent, the origin server can create
the resource with that URI. If anew resource is created, the origin server MUST inform the user agent viathe
201 (Created) response. If an existing resource is modified, either the 200 (OK) or 204 (No Content) response
codes SHOUL D be sent to indicate successful completion of the request. If the resource could not be created
or modified with the Request-URI, an appropriate error response SHOULD be given that reflects the nature of
the problem. The recipient of the entity MUST NOT ignore any Content-* (e.g. Content-Range) headers that it
does not understand or implement and MUST return a 501 (Not Implemented) response in such cases.

If the request passes through a cache and the Request-URI identifies one or more currently cached entities,
those entries SHOULD be treated as stale. Responses to this method are not cacheable.

The fundamental difference between the POST and PUT requestsis reflected in the different meaning of the
Request-URI. The URI in a POST request identifies the resource that will handle the enclosed entity. That
resource might be a data-accepting process, a gateway to some other protocol, or a separate entity that accepts
annotations. In contrast, the URI in a PUT request identifies the entity enclosed with the request -- the user
agent knows what URI isintended and the server MUST NOT attempt to apply the request to some other
resource. If the server desires that the request be applied to adifferent URI, it MUST send a 301 (Moved
Permanently) response; the user agent MAY then make its own decision regarding whether or not to redirect
the request.

A singleresource MAY beidentified by many different URIs. For example, an article might have a URI for
identifying "the current version" which is separate from the URI identifying each particular version. In this
case, aPUT request on ageneral URI might result in several other URIs being defined by the origin server.

Fielding, et al. Standards Track [Page 43]

RFC 2616 HTTP/1.1 June 1999

HTTP/1.1 does not define how a PUT method affects the state of an origin server.
PUT requests MUST obey the message transmission requirements set out in Section 8.2.

Unless otherwise specified for aparticular entity-header, the entity-headersin the PUT request SHOULD be
applied to the resource created or modified by the PUT.

9.7. DELETE

The DELETE method requests that the origin server delete the resource identified by the Request-URI. This
method MAY be overridden by human intervention (or other means) on the origin server. The client cannot

be guaranteed that the operation has been carried out, even if the status code returned from the origin server
indicates that the action has been completed successfully. However, the server SHOULD NOT indicate success
unless, at the time the response is given, it intends to del ete the resource or move it to an inaccessible location.

A successful response SHOULD be 200 (OK) if the response includes an entity describing the status, 202
(Accepted) if the action has not yet been enacted, or 204 (No Content) if the action has been enacted but the
response does not include an entity.

If the request passes through a cache and the Request-URI identifies one or more currently cached entities,
those entries SHOULD be treated as stale. Responses to this method are not cacheable.

9.8. TRACE

The TRACE method is used to invoke aremote, application-layer loop-back of the request message. The final
recipient of the request SHOULD reflect the message received back to the client as the entity-body of a 200
(OK) response. The final recipient is either the origin server or the first proxy or gateway to receive a Max-
Forwards value of zero (0) in the request (see Section 14.31). A TRACE request MUST NOT include an entity.

TRACE allows the client to see what is being received at the other end of the request chain and use that data
for testing or diagnostic information. The value of the Via header field (Section 14.45) is of particular interest,
sinceit acts as atrace of the request chain. Use of the Max-Forwards header field allows the client to limit the

length of the request chain, which is useful for testing a chain of proxies forwarding messagesin an infinite
loop.

If the request is valid, the response SHOULD contain the entire request message in the entity-body, with a
Content-Type of "message/http”. Responses to this method MUST NOT be cached.

9.9. CONNECT

This specification reserves the method name CONNECT for use with a proxy that can dynamically switch to
being atunnel (e.g. SSL tunneling [44]).

Fielding, et al. Standards Track [Page 44]

RFC 2616 HTTP/1.1 June 1999

10. Status Code Definitions

Each Status-Code is described below, including a description of which method(s) it can follow and any
metainformation required in the response.

10.1. Informational 1xx

This class of status code indicates a provisional response, consisting only of the Status-Line and optional
headers, and is terminated by an empty line. There are no required headers for this class of status code. Since
HTTP/1.0 did not define any 1xx status codes, servers MUST NOT send a 1xx response to an HTTP/1.0 client
except under experimental conditions.

A client MUST be prepared to accept one or more 1xx status responses prior to aregular response, even if the
client does not expect a 100 (Continue) status message. Unexpected 1xx status responses MAY beignored by a
user agent.

Proxies MUST forward 1xx responses, unless the connection between the proxy and its client has been closed,
or unless the proxy itself requested the generation of the 1xx response. (For example, if aproxy adds a"Expect:
100-continue" field when it forwards a request, then it need not forward the corresponding 100 (Continue)
response(s).)

10.1.1. 100 Continue

The client SHOULD continue with its request. This interim response is used to inform the client that the initial
part of the request has been received and has not yet been rejected by the server. The client SHOULD continue
by sending the remainder of the request or, if the request has already been completed, ignore this response.
The server MUST send afinal response after the request has been completed. See Section 8.2.3 for detailed
discussion of the use and handling of this status code.

10.1.2. 101 Switching Protocols

The server understands and is willing to comply with the client's request, via the Upgrade message header field
(Section 14.42), for a change in the application protocol being used on this connection. The server will switch
protocols to those defined by the response’'s Upgrade header field immediately after the empty line which
terminates the 101 response.

The protocol SHOULD be switched only when it is advantageous to do so. For example, switching to a newer
version of HTTP is advantageous over older versions, and switching to areal-time, synchronous protocol might
be advantageous when delivering resources that use such features.

10.2. Successful 2xx

This class of status code indicates that the client's request was successfully received, understood, and accepted.

10.2.1. 200 OK

The request has succeeded. The information returned with the response is dependent on the method used in the
reguest, for example:

GET an entity corresponding to the requested resource is sent in the response;

HEAD the entity-header fields corresponding to the requested resource are sent in the response without any
message-body;

POST an entity describing or containing the result of the action;
TRACE an entity containing the request message as received by the end server.

10.2.2. 201 Created

Fielding, et al. Standards Track [Page 45]

RFC 2616 HTTP/1.1 June 1999

The request has been fulfilled and resulted in a new resource being created. The newly created resource can
be referenced by the URI(s) returned in the entity of the response, with the most specific URI for the resource
given by aLocation header field. The response SHOULD include an entity containing alist of resource
characteristics and location(s) from which the user or user agent can choose the one most appropriate. The
entity format is specified by the media type given in the Content-Type header field. The origin server MUST
create the resource before returning the 201 status code. If the action cannot be carried out immediately, the
server SHOULD respond with 202 (Accepted) response instead.

A 201 response MAY contain an ETag response header field indicating the current value of the entity tag for
the requested variant just created, see Section 14.19.

10.2.3. 202 Accepted

The request has been accepted for processing, but the processing has not been completed. The request might or
might not eventually be acted upon, asit might be disallowed when processing actually takes place. Thereisno
facility for re-sending a status code from an asynchronous operation such as this.

The 202 response is intentionally non-committal. Its purpose isto alow a server to accept a request for some
other process (perhaps a batch-oriented process that is only run once per day) without requiring that the user
agent's connection to the server persist until the process is completed. The entity returned with this response
SHOULD include an indication of the request's current status and either a pointer to a status monitor or some
estimate of when the user can expect the request to be fulfilled.

10.2.4. 203 Non-Authoritative I nformation

The returned metainformation in the entity-header is not the definitive set as available from the origin server,
but is gathered from alocal or athird-party copy. The set presented MAY be a subset or superset of the original
version. For example, including local annotation information about the resource might result in a superset

of the metainformation known by the origin server. Use of this response codeis not required and is only
appropriate when the response would otherwise be 200 (OK).

10.2.5. 204 No Content

The server has fulfilled the request but does not need to return an entity-body, and might want to return updated
metainformation. The response MAY include new or updated metainformation in the form of entity-headers,
which if present SHOULD be associated with the requested variant.

If the client isauser agent, it SHOULD NOT change its document view from that which caused the request to
be sent. Thisresponseis primarily intended to allow input for actions to take place without causing a change to
the user agent's active document view, although any new or updated metainformation SHOULD be applied to
the document currently in the user agent's active view.

The 204 response MUST NOT include a message-body, and thus is always terminated by the first empty line
after the header fields.

10.2.6. 205 Reset Content

The server has fulfilled the request and the user agent SHOULD reset the document view which caused the
request to be sent. Thisresponseis primarily intended to allow input for actions to take place via user input,
followed by a clearing of the form in which the input is given so that the user can easily initiate another input
action. The response MUST NOT include an entity.

10.2.7. 206 Partial Content

The server has fulfilled the partial GET request for the resource. The request MUST have included a Range
header field (Section 14.35) indicating the desired range, and MAY have included an If-Range header field
(Section 14.27) to make the request conditional .

Fielding, et al. Standards Track [Page 46]

RFC 2616 HTTP/1.1 June 1999

The response MUST include the following header fields:

» Either a Content-Range header field (Section 14.16) indicating the range included with this response, or
amultipart/byteranges Content-Type including Content-Range fields for each part. If a Content-Length
header field is present in the response, its value MUST match the actual number of OCTETs transmitted in
the message-body.

+ Date
« ETag and/or Content-Location, if the header would have been sent in a 200 response to the same request

» Expires, Cache-Control, and/or Vary, if the field-value might differ from that sent in any previous response
for the same variant

If the 206 response is the result of an If-Range request that used a strong cache validator (see Section 13.3.3),
the response SHOULD NOT include other entity-headers. If the response is the result of an If-Range request
that used aweak validator, the response MUST NOT include other entity-headers; this prevents inconsistencies
between cached entity-bodies and updated headers. Otherwise, the response MUST include all of the entity-
headers that would have been returned with a 200 (OK) response to the same request.

A cache MUST NOT combine a 206 response with other previously cached content if the ETag or Last-
Modified headers do not match exactly, see 13.5.4.

A cache that does not support the Range and Content-Range headers MUST NOT cache 206 (Partial)
responses.

10.3. Redirection 3xx

This class of status code indicates that further action needs to be taken by the user agent in order to fulfill the
reguest. The action required MAY be carried out by the user agent without interaction with the user if and only
if the method used in the second request is GET or HEAD. A client SHOULD detect infinite redirection loops,
since such loops generate network traffic for each redirection.

Note: previous versions of this specification recommended a maximum of five redirections. Content
devel opers should be aware that there might be clients that implement such a fixed limitation.

10.3.1. 300 Multiple Choices

The requested resource corresponds to any one of a set of representations, each with its own specific location,
and agent-driven negotiation information (Section 12) is being provided so that the user (or user agent) can
select a preferred representation and redirect its request to that location.

Unlessit was a HEAD request, the response SHOULD include an entity containing alist of resource
characteristics and location(s) from which the user or user agent can choose the one most appropriate. The
entity format is specified by the media type given in the Content-Type header field. Depending upon the
format and the capabilities of the user agent, selection of the most appropriate choice MAY be performed
automatically. However, this specification does not define any standard for such automatic selection.

If the server has a preferred choice of representation, it SHOULD include the specific URI for that
representation in the Location field; user agents MAY use the Location field value for automatic redirection.
This response is cacheable unless indicated otherwise.

10.3.2. 301 Moved Permanently

The requested resource has been assighed a new permanent URI and any future references to this resource
SHOULD use one of the returned URIs. Clients with link editing capabilities ought to automatically re-link
references to the Request-URI to one or more of the new references returned by the server, where possible.
This response is cacheable unless indicated otherwise.

The new permanent URI SHOULD be given by the Location field in the response. Unless the request method
was HEAD, the entity of the response SHOULD contain a short hypertext note with a hyperlink to the new
URI(S).

Fielding, et al. Standards Track [Page 47]

RFC 2616 HTTP/1.1 June 1999

If the 301 status code is received in response to arequest other than GET or HEAD, the user agent MUST NOT
automatically redirect the request unless it can be confirmed by the user, since this might change the conditions
under which the request was issued.
Note: When automatically redirecting a POST request after receiving a 301 status code, some existing
HTTP/1.0 user agents will erroneously change it into a GET request.

10.3.3. 302 Found

The requested resource resides temporarily under a different URI. Since the redirection might be altered on
occasion, the client SHOULD continue to use the Request-URI for future requests. This response isonly
cacheableif indicated by a Cache-Control or Expires header field.

The temporary URI SHOULD be given by the Location field in the response. Unless the request method was
HEAD, the entity of the response SHOULD contain a short hypertext note with a hyperlink to the new URI(S).

If the 302 status code is received in response to arequest other than GET or HEAD, the user agent MUST NOT
automatically redirect the request unless it can be confirmed by the user, since this might change the conditions
under which the request was issued.
Note: RFC 1945 and RFC 2068 specify that the client is not allowed to change the method on the
redirected request. However, most existing user agent implementations treat 302 asiif it were a 303
response, performing a GET on the Location field-value regardless of the original request method. The
status codes 303 and 307 have been added for servers that wish to make unambiguously clear which kind
of reaction is expected of the client.

10.3.4. 303 See Other

The response to the request can be found under a different URI and SHOULD be retrieved using a GET
method on that resource. This method exists primarily to allow the output of a POST-activated script to redirect
the user agent to a selected resource. The new URI is not a substitute reference for the originally requested
resource. The 303 response MUST NOT be cached, but the response to the second (redirected) request might
be cacheable.

The different URI SHOULD be given by the Location field in the response. Unless the request method was
HEAD, the entity of the response SHOULD contain a short hypertext note with a hyperlink to the new URI(S).

Note: Many pre-HTTP/1.1 user agents do not understand the 303 status. When interoperability with
such clientsis a concern, the 302 status code may be used instead, since most user agents react to a 302
response as described here for 303.

10.3.5. 304 Not Modified

If the client has performed a conditional GET request and access is allowed, but the document has not been

modified, the server SHOULD respond with this status code. The 304 response MUST NOT contain a

message-body, and thus is always terminated by the first empty line after the header fields.

The response MUST include the following header fields:

» Date, unlessitsomission isrequired by Section 14.18.1

If aclockless origin server obeys these rules, and proxies and clients add their own Date to any response

received without one (as already specified by [RFC 2068], section 14.19), caches will operate correctly.

« ETag and/or Content-Location, if the header would have been sent in a 200 response to the same request

» Expires, Cache-Control, and/or Vary, if the field-value might differ from that sent in any previous response
for the same variant

If the conditional GET used a strong cache validator (see Section 13.3.3), the response SHOULD NOT include
other entity-headers. Otherwise (i.e., the conditional GET used aweak validator), the response MUST NOT
include other entity-headers; this prevents inconsistencies between cached entity-bodies and updated headers.

Fielding, et al. Standards Track [Page 48]

https://www.rfc-editor.org/rfc/rfc2068.html#section-14.19

RFC 2616 HTTP/1.1 June 1999

If @304 response indicates an entity not currently cached, then the cache MUST disregard the response and
repeat the request without the conditional.

If a cache uses areceived 304 response to update a cache entry, the cache MUST update the entry to reflect any
new field values given in the response.

10.3.6. 305 Use Proxy

The requested resource MUST be accessed through the proxy given by the Location field. The Location field
givesthe URI of the proxy. The recipient is expected to repeat this single request via the proxy. 305 responses
MUST only be generated by origin servers.

Note: RFC 2068 was not clear that 305 was intended to redirect a single request, and to be generated by
origin serversonly. Not observing these limitations has significant security consequences.

10.3.7. 306 (Unused)

The 306 status code was used in a previous version of the specification, is no longer used, and the code is
reserved.

10.3.8. 307 Temporary Redirect

The requested resource resides temporarily under a different URI. Since the redirection MAY be atered on
occasion, the client SHOULD continue to use the Request-URI for future requests. This responseis only
cacheable if indicated by a Cache-Control or Expires header field.

The temporary URI SHOULD be given by the Location field in the response. Unless the request method was
HEAD, the entity of the response SHOULD contain a short hypertext note with a hyperlink to the new URI(s) ,
since many pre-HTTP/1.1 user agents do not understand the 307 status. Therefore, the note SHOULD contain
the information necessary for a user to repeat the original request on the new URI.

If the 307 status code is received in response to arequest other than GET or HEAD, the user agent MUST NOT
automatically redirect the request unless it can be confirmed by the user, since this might change the conditions
under which the request was issued.

10.4. Client Error 4xx

The 4xx class of status code isintended for cases in which the client seems to have erred. Except when
responding to a HEAD request, the server SHOULD include an entity containing an explanation of the error
situation, and whether it is atemporary or permanent condition. These status codes are applicable to any
reguest method. User agents SHOUL D display any included entity to the user.

If the client is sending data, a server implementation using TCP SHOULD be careful to ensure that the client
acknowledges receipt of the packet(s) containing the response, before the server closes the input connection. If
the client continues sending data to the server after the close, the server's TCP stack will send areset packet to
the client, which may erase the client's unacknowledged input buffers before they can be read and interpreted
by the HTTP application.

10.4.1. 400 Bad Request

The request could not be understood by the server due to malformed syntax. The client SHOULD NOT repeat
the request without modifications.

10.4.2. 401 Unauthorized

The reguest requires user authentication. The response MUST include a WWW-Authenticate header field
(Section 14.47) containing a challenge applicable to the requested resource. The client MAY repeat the
request with a suitable Authorization header field (Section 14.8). If the request already included Authorization
credentials, then the 401 response indicates that authorization has been refused for those credentials. If the

Fielding, et al. Standards Track [Page 49]

RFC 2616 HTTP/1.1 June 1999

401 response contains the same challenge as the prior response, and the user agent has already attempted
authentication at least once, then the user SHOULD be presented the entity that was given in the response,
since that entity might include relevant diagnostic information. HTTP access authentication is explained in
"HTTP Authentication: Basic and Digest Access Authentication” [43].

10.4.3. 402 Payment Required

This code is reserved for future use.

10.4.4. 403 Forbidden

The server understood the request, but is refusing to fulfill it. Authorization will not help and the request
SHOULD NOT be repested. If the request method was not HEAD and the server wishes to make public why
the request has not been fulfilled, it SHOUL D describe the reason for the refusal in the entity. If the server does
not wish to make thisinformation available to the client, the status code 404 (Not Found) can be used instead.

10.4.5. 404 Not Found

The server has not found anything matching the Request-URI. No indication is given of whether the condition
istemporary or permanent. The 410 (Gone) status code SHOULD be used if the server knows, through some
internally configurable mechanism, that an old resource is permanently unavailable and has no forwarding
address. This status code is commonly used when the server does not wish to reveal exactly why the request
has been refused, or when no other response is applicable.

10.4.6. 405 Method Not Allowed

The method specified in the Request-Line is not allowed for the resource identified by the Request-URI. The
response MUST include an Allow header containing alist of valid methods for the requested resource.

10.4.7. 406 Not Acceptable

The resource identified by the request is only capable of generating response entities which have content
characteristics not acceptable according to the accept headers sent in the request.

Unlessit was a HEAD request, the response SHOULD include an entity containing alist of available entity
characteristics and location(s) from which the user or user agent can choose the one most appropriate. The
entity format is specified by the media type given in the Content-Type header field. Depending upon the
format and the capabilities of the user agent, selection of the most appropriate choice MAY be performed
automatically. However, this specification does not define any standard for such automatic selection.

Note: HTTP/1.1 servers are allowed to return responses which are not acceptabl e according to the accept

headers sent in the request. In some cases, this may even be preferable to sending a 406 response. User
agents are encouraged to inspect the headers of an incoming response to determine if it is acceptable.

If the response could be unacceptable, a user agent SHOUL D temporarily stop receipt of more data and query
the user for a decision on further actions.

10.4.8. 407 Proxy Authentication Required

This codeis similar to 401 (Unauthorized), but indicates that the client must first authenticate itself with the
proxy. The proxy MUST return a Proxy-Authenticate header field (Section 14.33) containing a challenge
applicable to the proxy for the requested resource. The client MAY repeat the request with a suitable Proxy-
Authorization header field (Section 14.34). HTTP access authentication is explained in "HTTP Authentication:
Basic and Digest Access Authentication” [43].

10.4.9. 408 Request Timeout

Fielding, et al. Standards Track [Page 50]

RFC 2616 HTTP/1.1 June 1999

The client did not produce a request within the time that the server was prepared to wait. The client MAY
repeat the request without modifications at any later time.

10.4.10. 409 Conflict

The request could not be completed due to a conflict with the current state of the resource. This codeis only
allowed in situations where it is expected that the user might be able to resolve the conflict and resubmit the
reguest. The response body SHOULD include enough information for the user to recognize the source of the
conflict. Ideally, the response entity would include enough information for the user or user agent to fix the
problem; however, that might not be possible and is not required.

Conflicts are most likely to occur in response to a PUT request. For example, if versioning were being used
and the entity being PUT included changes to a resource which conflict with those made by an earlier (third-
party) request, the server might use the 409 response to indicate that it can't complete the request. In this case,
the response entity would likely contain alist of the differences between the two versions in aformat defined
by the response Content-Type.

10.4.11. 410 Gone

The requested resource is no longer available at the server and no forwarding address is known. This condition
is expected to be considered permanent. Clients with link editing capabilities SHOULD delete references to the
Request-URI after user approval. If the server does not know, or has no facility to determine, whether or not the
condition is permanent, the status code 404 (Not Found) SHOULD be used instead. This response is cacheable
unlessindicated otherwise.

The 410 response is primarily intended to assist the task of web maintenance by notifying the recipient that
the resource isintentionally unavailable and that the server owners desire that remote links to that resource
be removed. Such an event is common for limited-time, promotional services and for resources belonging
toindividuals no longer working at the server's site. It is not necessary to mark all permanently unavailable
resources as "gone" or to keep the mark for any length of time -- that is left to the discretion of the server
owner.

10.4.12. 411 Length Required

The server refuses to accept the request without a defined Content-Length. The client MAY repeat the request
if it adds avalid Content-Length header field containing the length of the message-body in the request message.

10.4.13. 412 Precondition Failed

The precondition given in one or more of the request-header fields evaluated to false when it was tested on the
server. This response code allows the client to place preconditions on the current resource metainformation
(header field data) and thus prevent the requested method from being applied to a resource other than the one
intended.

10.4.14. 413 Request Entity Too Large

The server is refusing to process a request because the request entity is larger than the server iswilling or able
to process. The server MAY close the connection to prevent the client from continuing the reguest.

If the condition is temporary, the server SHOULD include a Retry-After header field to indicate that it is
temporary and after what time the client MAY try again.

10.4.15. 414 Request-URI Too Long

The server is refusing to service the request because the Request-URI islonger than the server iswilling to
interpret. This rare condition isonly likely to occur when a client hasimproperly converted a POST request
to a GET request with long query information, when the client has descended into a URI "black hole" of

Fielding, et al. Standards Track [Page 51]

RFC 2616 HTTP/1.1 June 1999

redirection (e.g., aredirected URI prefix that points to a suffix of itself), or when the server is under attack by
aclient attempting to exploit security holes present in some servers using fixed-length buffers for reading or
mani pulating the Request-URI.

10.4.16. 415 Unsupported Media Type

The server is refusing to service the request because the entity of the request isin aformat not supported by the
reguested resource for the requested method.

10.4.17. 416 Requested Range Not Satisfiable

A server SHOULD return aresponse with this status code if a request included a Range request-header field
(Section 14.35), and none of the range-specifier valuesin this field overlap the current extent of the selected
resource, and the request did not include an If-Range regquest-header field. (For byte-ranges, this means that the
first-byte-pos of all of the byte-range-spec values were greater than the current length of the selected resource.)

When this status code is returned for a byte-range request, the response SHOUL D include a Content-Range
entity-header field specifying the current length of the selected resource (see Section 14.16). This response
MUST NOT use the multipart/byteranges content-type.

10.4.18. 417 Expectation Failed

The expectation given in an Expect request-header field (see Section 14.20) could not be met by this server, or,
if the server is a proxy, the server has unambiguous evidence that the request could not be met by the next-hop
server.

10.5. Server Error 5xx

Response status codes beginning with the digit "5" indicate cases in which the server is aware that it has erred
or isincapable of performing the request. Except when responding to a HEAD request, the server SHOULD
include an entity containing an explanation of the error situation, and whether it is atemporary or permanent
condition. User agents SHOULD display any included entity to the user. These response codes are applicable to
any request method.

10.5.1. 500 Internal Server Error

The server encountered an unexpected condition which prevented it from fulfilling the request.

10.5.2. 501 Not I mplemented

The server does not support the functionality required to fulfill the request. Thisis the appropriate response
when the server does not recognize the request method and is not capable of supporting it for any resource.

10.5.3. 502 Bad Gateway

The server, while acting as a gateway or proxy, received an invalid response from the upstream server it
accessed in attempting to fulfill the request.

10.5.4. 503 Service Unavailable

The server is currently unable to handle the request due to atemporary overloading or maintenance of the
server. Theimplication is that thisis atemporary condition which will be alleviated after some delay. If
known, the length of the delay MAY be indicated in a Retry-After header. If no Retry-After is given, the client
SHOULD handle the response as it would for a 500 response.
Note: The existence of the 503 status code does not imply that a server must use it when becoming
overloaded. Some servers may wish to simply refuse the connection.

Fielding, et al. Standards Track [Page 52]

RFC 2616 HTTP/1.1 June 1999

10.5.5. 504 Gateway Timeout

The server, while acting as a gateway or proxy, did not receive atimely response from the upstream server
specified by the URI (e.g. HTTP, FTP, LDAP) or some other auxiliary server (e.g. DNS) it needed to accessin
attempting to complete the request.

Note: Note to implementors. some deployed proxies are known to return 400 or 500 when DNS |ookups
time out.

10.5.6. 505 HTTP Version Not Supported

The server does not support, or refuses to support, the HTTP protocol version that was used in the request
message. The server isindicating that it is unable or unwilling to complete the request using the same major
version as the client, as described in Section 3.1, other than with this error message. The response SHOULD

contain an entity describing why that version is not supported and what other protocols are supported by that
server.

Fielding, et al. Standards Track [Page 53]

RFC 2616 HTTP/1.1 June 1999

11. Access Authentication

HTTP provides several OPTIONAL challenge-response authentication mechanisms which can be used

by a server to challenge a client request and by a client to provide authentication information. The general
framework for access authentication, and the specification of "basic" and "digest” authentication, are specified
in"HTTP Authentication: Basic and Digest Access Authentication” [43]. This specification adopts the
definitions of "challenge" and "credentials’ from that specification.

Fielding, et al. Standards Track [Page 54]

RFC 2616 HTTP/1.1 June 1999

12. Content Negotiation

Most HTTP responses include an entity which contains information for interpretation by a human user.
Naturally, it is desirable to supply the user with the "best available" entity corresponding to the request.
Unfortunately for servers and caches, not all users have the same preferences for what is "best,” and not al
user agents are equally capable of rendering all entity types. For that reason, HT TP has provisions for several
mechanisms for "content negotiation” -- the process of selecting the best representation for a given response
when there are multiple representations available.

Note: Thisisnot called "format negotiation" because the alternate representations may be of the same
mediatype, but use different capabilities of that type, be in different languages, etc.

Any response containing an entity-body MAY be subject to negotiation, including error responses.

There are two kinds of content negotiation which are possiblein HTTP: server-driven and agent-driven
negotiation. These two kinds of negotiation are orthogonal and thus may be used separately or in combination.
One method of combination, referred to as transparent negotiation, occurs when a cache uses the agent-
driven negotiation information provided by the origin server in order to provide server-driven negotiation for
subsequent requests.

12.1. Server-driven Negotiation

If the selection of the best representation for a response is made by an algorithm located at the server, it

is called server-driven negotiation. Selection is based on the avail able representations of the response (the
dimensions over which it can vary; e.g. language, content-coding, etc.) and the contents of particular header
fieldsin the request message or on other information pertaining to the request (such as the network address of
the client).

Server-driven negotiation is advantageous when the algorithm for selecting from among the available
representations is difficult to describe to the user agent, or when the server desiresto send its "best guess' to
the client along with the first response (hoping to avoid the round-trip delay of a subsequent request if the "best
guess" is good enough for the user). In order to improve the server's guess, the user agent MAY include request
header fields (Accept, Accept-Language, Accept-Encoding, etc.) which describe its preferences for such a
response.

Server-driven negotiation has disadvantages:

1. Itisimpossiblefor the server to accurately determine what might be "best” for any given user, since that
would require complete knowledge of both the capabilities of the user agent and the intended use for the
response (e.g., does the user want to view it on screen or print it on paper?).

2. Having the user agent describe its capabilities in every request can be both very inefficient (given that
only asmall percentage of responses have multiple representations) and a potential violation of the user's
privacy.

3. It complicates the implementation of an origin server and the algorithms for generating responses to a
request.

4. It may limit a public cache's ahility to use the same response for multiple user's requests.

HTTP/1.1 includes the following request-header fields for enabling server-driven negotiation through
description of user agent capabilities and user preferences: Accept (Section 14.1), Accept-Charset (Section
14.2), Accept-Encoding (Section 14.3), Accept-Language (Section 14.4), and User-Agent (Section 14.43).
However, an origin server is not limited to these dimensions and MAY vary the response based on any aspect
of the request, including information outside the request-header fields or within extension header fields not
defined by this specification.

The Vary header field can be used to express the parameters the server usesto select a representation that is
subject to server-driven negotiation. See Section 13.6 for use of the Vary header field by caches and Section
14.44 for use of the Vary header field by servers.

Fielding, et al. Standards Track [Page 55]

RFC 2616 HTTP/1.1 June 1999

12.2. Agent-driven Negotiation

With agent-driven negotiation, selection of the best representation for aresponse is performed by the user
agent after receiving an initial response from the origin server. Selection is based on alist of the available
representations of the response included within the header fields or entity-body of theinitial response, with
each representation identified by its own URI. Selection from among the representations may be performed
automatically (if the user agent is capable of doing so) or manually by the user selecting from a generated
(possibly hypertext) menu.

Agent-driven negotiation is advantageous when the response would vary over commonly-used dimensions
(such as type, language, or encoding), when the origin server is unable to determine a user agent's capabilities
from examining the request, and generally when public caches are used to distribute server load and reduce
network usage.

Agent-driven negotiation suffers from the disadvantage of needing a second request to obtain the best alternate
representation. This second request is only efficient when caching is used. In addition, this specification

does not define any mechanism for supporting automatic selection, though it also does not prevent any such
mechanism from being devel oped as an extension and used within HTTP/1.1.

HTTP/1.1 defines the 300 (Multiple Choices) and 406 (Not Acceptable) status codes for enabling agent-
driven negotiation when the server is unwilling or unable to provide a varying response using server-driven
negotiation.

12.3. Transparent Negotiation

Transparent negotiation is a combination of both server-driven and agent-driven negotiation. When a cache
is supplied with aform of thelist of available representations of the response (as in agent-driven negotiation)
and the dimensions of variance are completely understood by the cache, then the cache becomes capabl e of
performing server-driven negotiation on behalf of the origin server for subsequent requests on that resource.

Transparent negotiation has the advantage of distributing the negotiation work that would otherwise be required
of the origin server and also removing the second request delay of agent-driven negotiation when the cache is
able to correctly guess the right response.

This specification does not define any mechanism for transparent negotiation, though it also does not prevent
any such mechanism from being developed as an extension that could be used within HTTP/1.1.

Fielding, et al. Standards Track [Page 56]

RFC 2616 HTTP/1.1 June 1999

13. Cachingin HTTP

HTTPistypically used for distributed information systems, where performance can be improved by the use
of response caches. The HTTP/1.1 protocol includes a number of elements intended to make caching work as
well as possible. Because these elements are inextricable from other aspects of the protocol, and because they
interact with each other, it is useful to describe the basic caching design of HTTP separately from the detailed
descriptions of methods, headers, response codes, etc.

Caching would be uselessif it did not significantly improve performance. The goal of caching in HTTP/1.1
isto eliminate the need to send requests in many cases, and to eliminate the need to send full responsesin
many other cases. The former reduces the number of network round-trips required for many operations; we
use an "expiration” mechanism for this purpose (see Section 13.2). The latter reduces network bandwidth
regquirements; we use a "validation" mechanism for this purpose (see Section 13.3).

Requirements for performance, availability, and disconnected operation require us to be able to relax the goal
of semantic transparency. The HTTP/1.1 protocol allows origin servers, caches, and clients to explicitly reduce
transparency when necessary. However, because non-transparent operation may confuse non-expert users, and
might be incompatible with certain server applications (such as those for ordering merchandise), the protocol
requires that transparency be relaxed

« only by an explicit protocol-level request when relaxed by client or origin server
« only with an explicit warning to the end user when relaxed by cache or client

Therefore, the HTTP/1.1 protocol provides these important elements:

1. Protocol featuresthat provide full semantic transparency when thisis required by al parties.

2. Protocol features that allow an origin server or user agent to explicitly request and control non-transparent
operation.

3. Protocol features that allow a cache to attach warnings to responses that do not preserve the requested
approximation of semantic transparency.

A basic principleisthat it must be possible for the clients to detect any potential relaxation of semantic
transparency.
Note: The server, cache, or client implementor might be faced with design decisions not explicitly
discussed in this specification. If a decision might affect semantic transparency, the implementor ought
to err on the side of maintaining transparency unless a careful and complete analysis shows significant
benefits in breaking transparency.

13.1.

13.1.1. Cache Correctness

A correct cache MUST respond to a request with the most up-to-date response held by the cache that is
appropriate to the request (see sections 13.2.5, 13.2.6, and 13.12) which meets one of the following conditions:

1. It has been checked for equivalence with what the origin server would have returned by revalidating the
response with the origin server (Section 13.3);

2. Itis"fresh enough" (see Section 13.2). In the default case, this means it meets the least restrictive freshness
requirement of the client, origin server, and cache (see Section 14.9); if the origin server so specifies, it
is the freshness requirement of the origin server alone. If a stored responseis not "fresh enough" by the
most restrictive freshness requirement of both the client and the origin server, in carefully considered
circumstances the cache MAY till return the response with the appropriate Warning header (see section
13.1.5 and 14.46), unless such aresponseis prohibited (e.g., by a"no-store" cache-directive, or by a"no-
cache" cache-request-directive; see Section 14.9).

3. Itisan appropriate 304 (Not Modified), 305 (Proxy Redirect), or error (4xx or 5xx) response message.

Fielding, et al. Standards Track [Page 57]

RFC 2616 HTTP/1.1 June 1999

If the cache can not communicate with the origin server, then a correct cache SHOULD respond as above if the
response can be correctly served from the cache; if not it MUST return an error or warning indicating that there
was a communication failure.

If acache receives aresponse (either an entire response, or a 304 (Not Modified) response) that it would
normally forward to the requesting client, and the received response is no longer fresh, the cache SHOULD
forward it to the requesting client without adding a new Warning (but without removing any existing Warning
headers). A cache SHOULD NOT attempt to revalidate a response simply because that response became stale
in transit; this might lead to an infinite loop. A user agent that receives a stale response without a Warning
MAY display awarning indication to the user.

13.1.2. Warnings

Whenever a cache returns a response that is neither first-hand nor "fresh enough” (in the sense of condition
2in Section 13.1.1), it MUST attach awarning to that effect, using a Warning general-header. The Warning
header and the currently defined warnings are described in Section 14.46. The warning alows clients to take
appropriate action.

Warnings MAY be used for other purposes, both cache-related and otherwise. The use of awarning, rather than
an error status code, distinguish these responses from true failures.

Warnings are assigned three digit warn-codes. The first digit indicates whether the Warning MUST or MUST
NOT be deleted from a stored cache entry after a successful revalidation:

Ixx Warnings that describe the freshness or revalidation status of the response, and so MUST be deleted after
asuccessful revalidation. 1XX warn-codes MAY be generated by a cache only when validating a cached
entry. [t MUST NOT be generated by clients.

2xx Warnings that describe some aspect of the entity body or entity headers that is not rectified by a
revalidation (for example, alossy compression of the entity bodies) and which MUST NOT be del eted
after a successful revalidation.

See Section 14.46 for the definitions of the codes themselves.

HTTP/1.0 caches will cache all Warnings in responses, without deleting the onesin the first category.
Warnings in responses that are passed to HTTP/1.0 caches carry an extrawarning-date field, which prevents a
future HTTP/1.1 recipient from believing an erroneously cached Warning.

Warnings also carry awarning text. The text MAY be in any appropriate natural language (perhaps based on
the client's Accept headers), and include an OPTIONAL indication of what character set is used.

Multiple warnings MAY be attached to a response (either by the origin server or by a cache), including
multiple warnings with the same code number. For example, a server might provide the same warning with
texts in both English and Basque.

When multiple warnings are attached to a response, it might not be practical or reasonable to display all of
them to the user. Thisversion of HTTP does not specify strict priority rules for deciding which warningsto
display and in what order, but does suggest some heuristics.

13.1.3. Cache-control M echanisms

The basic cache mechanismsin HTTP/1.1 (server-specified expiration times and validators) are implicit
directives to caches. In some cases, a server or client might need to provide explicit directivesto the HTTP
caches. We use the Cache-Control header for this purpose.

The Cache-Control header allows aclient or server to transmit avariety of directivesin either requests or
responses. These directives typically override the default caching algorithms. As ageneral rule, if thereis any
apparent conflict between header values, the most restrictive interpretation is applied (that is, the onethat is
most likely to preserve semantic transparency). However, in some cases, cache-control directives are explicitly
specified as weakening the approximation of semantic transparency (for example, "max-stale” or "public").

The cache-control directives are described in detail in Section 14.9.

Fielding, et al. Standards Track [Page 58]

RFC 2616 HTTP/1.1 June 1999

13.1.4. Explicit User Agent Warnings

Many user agents make it possible for usersto override the basic caching mechanisms. For example, the user
agent might allow the user to specify that cached entities (even explicitly stale ones) are never validated. Or the
user agent might habitually add "Cache-Control: max-stale=3600" to every request. The user agent SHOULD
NOT default to either non-transparent behavior, or behavior that results in abnormally ineffective caching, but
MAY be explicitly configured to do so by an explicit action of the user.

If the user has overridden the basic caching mechanisms, the user agent SHOULD explicitly indicate to the user
whenever this results in the display of information that might not meet the server's transparency requirements
(in particular, if the displayed entity is known to be stal€). Since the protocol normally allows the user agent to
determine if responses are stale or not, this indication need only be displayed when this actually happens. The
indication need not be adialog box; it could be an icon (for example, a picture of arotting fish) or some other
indicator.

If the user has overridden the caching mechanismsin away that would abnormally reduce the effectiveness
of caches, the user agent SHOULD continually indicate this state to the user (for example, by a display of a
picture of currency in flames) so that the user does not inadvertently consume excess resources or suffer from
excessive latency.

13.1.5. Exceptionsto the Rulesand Warnings

In some cases, the operator of acache MAY choose to configure it to return stale responses even when not
reguested by clients. This decision ought not be made lightly, but may be necessary for reasons of availability
or performance, especially when the cache is poorly connected to the origin server. Whenever a cache returns a
stale response, it MUST mark it as such (using a Warning header) enabling the client software to alert the user
that there might be a potential problem.

It also allows the user agent to take steps to obtain a first-hand or fresh response. For this reason, a cache
SHOULD NOT return astale response if the client explicitly requests afirst-hand or fresh one, unlessitis
impossible to comply for technical or policy reasons.

13.1.6. Client-controlled Behavior

While the origin server (and to alesser extent, intermediate caches, by their contribution to the age of a
response) are the primary source of expiration information, in some cases the client might need to control a
cache's decision about whether to return a cached response without validating it. Clients do this using severa
directives of the Cache-Control header.

A client'srequest MAY specify the maximum age it iswilling to accept of an unvalidated response; specifying
avalue of zero forces the cache(s) to revalidate al responses. A client MAY also specify the minimum time
remaining before a response expires. Both of these options increase constraints on the behavior of caches, and
so cannot further relax the cache's approximation of semantic transparency.

A client MAY also specify that it will accept stale responses, up to some maximum amount of staleness. This
loosens the constraints on the caches, and so might violate the origin server's specified constraints on semantic
transparency, but might be necessary to support disconnected operation, or high availability in the face of poor
connectivity.

13.2. Expiration Model

13.2.1. Server-Specified Expiration

HTTP caching works best when caches can entirely avoid making requests to the origin server. The primary
mechanism for avoiding requestsis for an origin server to provide an explicit expiration timein the future,
indicating that aresponse MAY be used to satisfy subsequent requests. In other words, a cache can return a
fresh response without first contacting the server.

Fielding, et al. Standards Track [Page 59]

RFC 2616 HTTP/1.1 June 1999

Our expectation isthat servers will assign future explicit expiration times to responses in the belief that the
entity isnot likely to change, in a semantically significant way, before the expiration timeis reached. This
normally preserves semantic transparency, as long as the server's expiration times are carefully chosen.

The expiration mechanism applies only to responses taken from a cache and not to first-hand responses
forwarded immediately to the requesting client.

If an origin server wishes to force a semantically transparent cache to validate every request, it MAY assigh an
explicit expiration time in the past. This means that the response is always stale, and so the cache SHOULD
validate it before using it for subsequent requests. See Section 14.9.4 for amore restrictive way to force
revalidation.

If an origin server wishes to force any HTTP/1.1 cache, no matter how it is configured, to validate every
request, it SHOULD use the "must-revalidate” cache-control directive (see Section 14.9).

Servers specify explicit expiration times using either the Expires header, or the max-age directive of the Cache-
Control header.

An expiration time cannot be used to force a user agent to refresh its display or reload a resource; its semantics
apply only to caching mechanisms, and such mechanisms need only check a resource's expiration status when a
new request for that resource isinitiated. See Section 13.13 for an explanation of the difference between caches
and history mechanisms.

13.2.2. Heuristic Expiration

Since origin servers do not always provide explicit expiration times, HTTP caches typically assign heuristic
expiration times, employing algorithms that use other header values (such as the Last-Modified time) to
estimate a plausible expiration time. The HTTP/1.1 specification does not provide specific algorithms, but does
impose worst-case constraints on their results. Since heuristic expiration times might compromise semantic
transparency, they ought to used cautiously, and we encourage origin servers to provide explicit expiration
times as much as possible.

13.2.3. Age Calculations

In order to know if acached entry is fresh, a cache needs to know if its age exceeds its freshness lifetime.
We discuss how to calculate the latter in Section 13.2.4; this section describes how to calculate the age of a
response or cache entry.

In this discussion, we use the term "now" to mean “the current value of the clock at the host performing the
calculation.” Hosts that use HTTP, but especially hosts running origin servers and caches, SHOULD use NTP
[28] or some similar protocol to synchronize their clocks to a globally accurate time standard.

HTTP/1.1 requires origin serversto send a Date header, if possible, with every response, giving the time at
which the response was generated (see Section 14.18). We use the term "date_value" to denote the value of the
Date header, in aform appropriate for arithmetic operations.

HTTP/1.1 uses the Age response-header to convey the estimated age of the response message when obtained
from acache. The Agefield value is the cache's estimate of the amount of time since the response was
generated or revalidated by the origin server.

In essence, the Age value is the sum of the time that the response has been resident in each of the caches along
the path from the origin server, plus the amount of time it has been in transit along network paths.

We use the term "age_value" to denote the value of the Age header, in aform appropriate for arithmetic
operations.
A response's age can be calculated in two entirely independent ways:

1. now minus date value, if thelocal clock isreasonably well synchronized to the origin server's clock. If the
result is negative, the result is replaced by zero.

2. age value, if all of the caches along the response path implement HTTP/1.1.

Fielding, et al. Standards Track [Page 60]

RFC 2616 HTTP/1.1 June 1999

Given that we have two independent ways to compute the age of aresponse when it is received, we can
combinethese as

corrected_recei ved _age = nax(now - date_val ue, age_ val ue)

and as long as we have either nearly synchronized clocks or all-HTTP/1.1 paths, one gets areliable
(conservative) result.

Because of network-imposed delays, some significant interval might pass between the time that a server
generates aresponse and the time it is received at the next outbound cache or client. If uncorrected, this delay
could result in improperly low ages.

Because the request that resulted in the returned Age value must have been initiated prior to that Age value's
generation, we can correct for delays imposed by the network by recording the time at which the request was
initiated. Then, when an Age value isreceived, it MUST be interpreted relative to the time the request was
initiated, not the time that the response was received. This algorithm results in conservative behavior no matter
how much delay is experienced. So, we compute:

corrected_initial _age = corrected received _age
+ (now - request _tine)

where "request_time" is the time (according to the local clock) when the request that elicited this response was
sent.

Summary of age calculation algorithm, when a cache receives a response:

/
age_val ue
is the value of Age: header received by the cache with
this response.
dat e _val ue
is the value of the origin server's Date: header
request _tine
is the (local) time when the cache nade the request
that resulted in this cached response
response_tine
is the (local) time when the cache received the
response
now
is the current (local) tine

L T T I S

/

apparent _age = max(0, response_tine - date_val ue);
corrected_recei ved_age = nmax(apparent_age, age_val ue);
response_del ay = response_tine - request_tine;

corrected_initial _age = corrected_received_age + response_del ay;
resident _time = now - response_tine;

current _age = corrected_initial_age + resident_tine;

The current_age of a cache entry is calculated by adding the amount of time (in seconds) since the cache entry
was last validated by the origin server to the corrected initial_age. When aresponse is generated from a cache
entry, the cache MUST include a single Age header field in the response with a value equal to the cache entry's
current_age.

The presence of an Age header field in aresponse implies that aresponseis not first-hand. However, the
converseis not true, since the lack of an Age header field in a response does not imply that the responseis first-

Fielding, et al. Standards Track [Page 61]

RFC 2616 HTTP/1.1 June 1999

hand unless all caches along the request path are compliant with HTTP/1.1 (i.e., older HTTP caches did not
implement the Age header field).

13.2.4. Expiration Calculations

In order to decide whether aresponseis fresh or stale, we need to compare its freshness lifetime to its age. The
ageis calculated as described in Section 13.2.3; this section describes how to calculate the freshness lifetime,
and to determineif aresponse has expired. In the discussion below, the values can be represented in any form
appropriate for arithmetic operations.

We use the term "expires value" to denote the value of the Expires header. We use the term "max_age value"
to denote an appropriate value of the number of seconds carried by the "max-age" directive of the Cache-
Control header in aresponse (see Section 14.9.3).

The max-age directive takes priority over Expires, so if max-age is present in aresponse, the calculation is
simply:

freshness_lifetine = max_age_val ue

Otherwise, if Expiresis present in the response, the calculation is:

freshness lifetine = expires_value - date_val ue

Note that neither of these calculationsis vulnerable to clock skew, since all of the information comes from the
origin server.

If none of Expires, Cache-Control: max-age, or Cache-Control: s-maxage (see Section 14.9.3) appearsin the
response, and the response does not include other restrictions on caching, the cache MAY compute a freshness
lifetime using a heuristic. The cache MUST attach Warning 113 to any response whose age is more than 24
hours if such warning has not already been added.

Also, if the response does have a Last-Modified time, the heuristic expiration value SHOULD be no more than
some fraction of the interval since that time. A typical setting of this fraction might be 10%.

The calculation to determine if aresponse has expired is quite smple:

response_is_fresh = (freshness_lifetime > current_age)

13.2.5. Disambiguating Expiration Values

Because expiration values are assigned optimistically, it is possible for two cachesto contain fresh values for
the same resource that are different.

If aclient performing aretrieval receives a non-first-hand response for arequest that was already fresh in its
own cache, and the Date header in its existing cache entry is newer than the Date on the new response, then the
client MAY ignorethe response. If so, it MAY retry the request with a"Cache-Control: max-age=0" directive
(see Section 14.9), to force a check with the origin server.

If a cache has two fresh responses for the same representation with different validators, it MUST use the one
with the more recent Date header. This situation might arise because the cache is pooling responses from other
caches, or because a client has asked for areload or arevalidation of an apparently fresh cache entry.

13.2.6. Disambiguating Multiple Responses

Because a client might be receiving responses via multiple paths, so that some responses flow through one

set of caches and other responses flow through a different set of caches, a client might receive responsesin an
order different from that in which the origin server sent them. We would like the client to use the most recently
generated response, even if older responses are still apparently fresh.

Fielding, et al. Standards Track [Page 62]

RFC 2616 HTTP/1.1 June 1999

Neither the entity tag nor the expiration value can impose an ordering on responses, since it is possible that a
later response intentionally carries an earlier expiration time. The Date values are ordered to a granularity of
one second.

When aclient tries to revalidate a cache entry, and the response it receives contains a Date header that appears
to be older than the one for the existing entry, then the client SHOULD repeat the request unconditionally, and
include

Cache- Control: max-age=0

to force any intermediate cachesto validate their copies directly with the origin server, or

Cache- Control : no-cache

to force any intermediate caches to obtain a new copy from the origin server.

If the Date values are equal, then the client MAY use either response (or MAY,, if it is being extremely prudent,
regquest a new response). Servers MUST NOT depend on clients being able to choose deterministically between
responses generated during the same second, if their expiration times overlap.

13.3. Validation Model

When a cache has a stale entry that it would like to use as aresponse to aclient's request, it first has to check
with the origin server (or possibly an intermediate cache with a fresh response) to seeiif its cached entry is

still usable. We call this"validating" the cache entry. Since we do not want to have to pay the overhead of
retransmitting the full response if the cached entry is good, and we do not want to pay the overhead of an extra
round trip if the cached entry isinvalid, the HTTP/1.1 protocol supports the use of conditional methods.

The key protocol features for supporting conditional methods are those concerned with "cache validators."
When an origin server generates afull response, it attaches some sort of validator to it, which is kept with the
cache entry. When aclient (user agent or proxy cache) makes a conditional request for aresource for which it
has a cache entry, it includes the associated validator in the request.

The server then checks that validator against the current validator for the entity, and, if they match (see Section
13.3.3), it responds with a special status code (usually, 304 (Not Modified)) and no entity-body. Otherwise, it
returns afull response (including entity-body). Thus, we avoid transmitting the full response if the validator
matches, and we avoid an extraround trip if it does not match.

In HTTP/1.1, aconditional request looks exactly the same as anormal request for the same resource, except
that it carries a special header (which includes the validator) that implicitly turns the method (usually, GET)
into a conditional .

The protocol includes both positive and negative senses of cache-validating conditions. That is, it is possible
to request either that a method be performed if and only if avalidator matches or if and only if no validators
match.

Note: aresponse that lacks a validator may still be cached, and served from cache until it expires, unless
thisis explicitly prohibited by a cache-control directive. However, a cache cannot do a conditional
retrieval if it does not have avalidator for the entity, which meansit will not be refreshable after it expires.

13.3.1. Last-Modified Dates

The Last-Modified entity-header field value is often used as a cache validator. In simple terms, acache entry is
considered to be valid if the entity has not been modified since the Last-Modified value.

13.3.2. Entity Tag Cache Validators

The ETag response-header field value, an entity tag, provides for an "opague" cache validator. This might
alow more reliable validation in situations where it is inconvenient to store modification dates, where the one-

Fielding, et al. Standards Track [Page 63]

RFC 2616 HTTP/1.1 June 1999

second resolution of HTTP date values is not sufficient, or where the origin server wishesto avoid certain
paradoxes that might arise from the use of modification dates.

Entity Tags are described in Section 3.11. The headers used with entity tags are described in sections 14.19,
14.24, 14.26 and 14.44.

13.3.3. Weak and Strong Validators

Since both origin servers and caches will compare two validators to decide if they represent the same or
different entities, one normally would expect that if the entity (the entity-body or any entity-headers) changesin
any way, then the associated validator would change as well. If thisis true, then we call this validator a"strong
validator."

However, there might be cases when a server prefers to change the validator only on semantically significant
changes, and not when insignificant aspects of the entity change. A validator that does not always change when
the resource changesis a "weak validator."

Entity tags are normally "strong validators," but the protocol provides a mechanism to tag an entity tag as
"weak." One can think of a strong validator as one that changes whenever the bits of an entity changes, while
aweak value changes whenever the meaning of an entity changes. Alternatively, one can think of a strong
validator as part of an identifier for a specific entity, while aweak validator is part of an identifier for a set of
semantically equivalent entities.
Note: One example of astrong validator is an integer that is incremented in stable storage every time an
entity is changed.
An entity's modification time, if represented with one-second resolution, could be aweak validator, since
it is possible that the resource might be modified twice during a single second.

Support for weak validators is optional. However, weak validators allow for more efficient caching of
equivalent objects; for example, a hit counter on asite is probably good enough if it is updated every few
days or weeks, and any value during that period is likely "good enough" to be equivalent.

A "use" of avalidator is either when a client generates a request and includes the validator in a validating
header field, or when a server compares two validators.

Strong validators are usable in any context. Weak validators are only usable in contexts that do not depend on
exact equality of an entity. For example, either kind is usable for a conditional GET of afull entity. However,
only astrong validator is usable for a sub-range retrieval, since otherwise the client might end up with an
internally inconsistent entity.

Clients MAY issue simple (non-subrange) GET requests with either weak validators or strong validators.
Clients MUST NOT use weak validators in other forms of request.

The only function that the HTTP/1.1 protocol defines on validators is comparison. There are two validator
comparison functions, depending on whether the comparison context allows the use of weak validators or not:

» The strong comparison function: in order to be considered equal, both validators MUST be identical in
every way, and both MUST NOT be weak.

» Theweak comparison function: in order to be considered equal, both validators MUST be identical in every
way, but either or both of them MAY be tagged as "weak" without affecting the result.
An entity tag is strong unless it is explicitly tagged as weak. Section 3.11 gives the syntax for entity tags.

A Last-Modified time, when used as a validator in arequest, isimplicitly weak unlessit is possible to deduce

that it is strong, using the following rules:

e Thevalidator isbeing compared by an origin server to the actual current validator for the entity and,

e That origin server reliably knows that the associated entity did not change twice during the second covered
by the presented validator.

or

Fielding, et al. Standards Track [Page 64]

RFC 2616 HTTP/1.1 June 1999

e Thevalidator is about to be used by aclient in an If-Modified-Since or If-Unmodified-Since header,
because the client has a cache entry for the associated entity, and

* That cache entry includes a Date value, which gives the time when the origin server sent the original

response, and

e The presented Last-Modified timeis at |east 60 seconds before the Date value.

or

« Thevalidator is being compared by an intermediate cache to the validator stored in its cache entry for the
entity, and

» That cache entry includes a Date value, which gives the time when the origin server sent the original
response, and

e The presented Last-Modified timeis at |east 60 seconds before the Date value.

This method relies on the fact that if two different responses were sent by the origin server during the same
second, but both had the same Last-Modified time, then at |east one of those responses would have a Date value
equal to its Last-Modified time. The arbitrary 60-second limit guards against the possibility that the Date and
Last-Modified values are generated from different clocks, or at somewhat different times during the preparation
of the response. An implementation MAY use avalue larger than 60 seconds, if it is believed that 60 secondsis
too short.

If aclient wishes to perform a sub-range retrieval on avalue for which it has only a Last-Modified time and no
opaque validator, it MAY do thisonly if the Last-Modified time is strong in the sense described here.

A cache or origin server receiving a conditional request, other than afull-body GET request, MUST use the
strong comparison function to evaluate the condition.

Theserulesalow HTTP/1.1 caches and clients to safely perform sub-range retrieval s on values that have been
obtained from HTTP/1.0 servers.

13.3.4. Rulesfor When to Use Entity Tags and L ast-M odified Dates

We adopt a set of rules and recommendations for origin servers, clients, and caches regarding when various
validator types ought to be used, and for what purposes.

HTTP/1.1 origin servers:

e SHOULD send an entity tag validator unlessit is not feasible to generate one.

« MAY send aweak entity tag instead of a strong entity tag, if performance considerations support the use of
weak entity tags, or if it is unfeasible to send a strong entity tag.

e SHOULD send aLast-Modified valueif it isfeasible to send one, unless the risk of a breakdown in
semantic transparency that could result from using this date in an If-Modified-Since header would lead to
serious problems.

In other words, the preferred behavior for an HTTP/1.1 origin server isto send both a strong entity tag and a
Last-Modified value.

In order to belegal, a strong entity tag MUST change whenever the associated entity value changesin any way.

A weak entity tag SHOULD change whenever the associated entity changes in a semantically significant way.
Note: in order to provide semantically transparent caching, an origin server must avoid reusing a specific
strong entity tag value for two different entities, or reusing a specific weak entity tag value for two
semantically different entities. Cache entries might persist for arbitrarily long periods, regardless of
expiration times, so it might be inappropriate to expect that a cache will never again attempt to validate an
entry using avalidator that it obtained at some point in the past.

HTTP/1.1 clients:

« If an entity tag has been provided by the origin server, MUST use that entity tag in any cache-conditional
request (using If-Match or If-None-Match).

Fielding, et al. Standards Track [Page 65]

RFC 2616 HTTP/1.1 June 1999

e If only aLast-Modified value has been provided by the origin server, SHOULD use that value in non-
subrange cache-conditional requests (using If-Modified-Since).

» If only aLast-Modified value has been provided by an HTTP/1.0 origin server, MAY usethat valuein
subrange cache-conditional requests (using If-Unmodified-Since:). The user agent SHOULD provide away
to disable this, in case of difficulty.

« If both an entity tag and a Last-Modified value have been provided by the origin server, SHOULD use
both validators in cache-conditional requests. This allows both HTTP/1.0 and HTTP/1.1 caches to respond
appropriately.

AnHTTP/1.1 origin server, upon receiving a conditional regquest that includes both a Last-Modified date (e.g.,

in an If-Modified-Since or If-Unmodified-Since header field) and one or more entity tags (e.g., in an If-Match,

If-None-Match, or If-Range header field) as cache validators, MUST NOT return a response status of 304 (Not

Modified) unless doing so is consistent with all of the conditional header fieldsin the request.

AnHTTP/1.1 caching proxy, upon receiving a conditional request that includes both a Last-Modified date and
one or more entity tags as cache validators, MUST NOT return alocally cached response to the client unless
that cached response is consistent with all of the conditional header fields in the request.

Note: The general principle behind these rulesisthat HTTP/1.1 servers and clients should transmit
as much non-redundant information as is available in their responses and requests. HTTP/1.1 systems
receiving this information will make the most conservative assumptions about the validators they receive.

HTTP/1.0 clients and caches will ignore entity tags. Generally, last-modified values received or used

by these systems will support transparent and efficient caching, and so HTTP/1.1 origin servers should
provide Last-Modified values. In those rare cases where the use of a Last-Modified value as a validator by
an HTTP/1.0 system could result in a serious problem, then HTTP/1.1 origin servers should not provide
one.

13.3.5. Non-validating Conditionals

The principle behind entity tagsis that only the service author knows the semantics of aresource well enough
to select an appropriate cache validation mechanism, and the specification of any validator comparison function
more complex than byte-equality would open up a can of worms. Thus, comparisons of any other headers
(except Last-Modified, for compatibility with HTTP/1.0) are never used for purposes of validating a cache
entry.

13.4. Response Cacheability

Unless specifically constrained by a cache-control (Section 14.9) directive, a caching syssem MAY aways
store a successful response (see Section 13.8) as a cache entry, MAY return it without validation if it isfresh,
and MAY return it after successful validation. If there is neither a cache validator nor an explicit expiration
time associated with a response, we do not expect it to be cached, but certain caches MAY violate this
expectation (for example, when little or no network connectivity is available). A client can usually detect that
such aresponse was taken from a cache by comparing the Date header to the current time.

Note: some HTTP/1.0 caches are known to violate this expectation without providing any Warning.
However, in some cases it might be inappropriate for a cache to retain an entity, or to return it in responseto a
subsequent request. This might be because absolute semantic transparency is deemed necessary by the service
author, or because of security or privacy considerations. Certain cache-control directives are therefore provided
so that the server can indicate that certain resource entities, or portions thereof, are not to be cached regardless
of other considerations.

Note that Section 14.8 normally prevents a shared cache from saving and returning a response to a previous
reguest if that request included an Authorization header.

A response received with a status code of 200, 203, 206, 300, 301 or 410 MAY be stored by a cache and used
in reply to a subsequent request, subject to the expiration mechanism, unless a cache-control directive prohibits

Fielding, et al. Standards Track [Page 66]

RFC 2616 HTTP/1.1 June 1999

caching. However, a cache that does not support the Range and Content-Range headers MUST NOT cache 206
(Partial Content) responses.

A response received with any other status code (e.g. status codes 302 and 307) MUST NOT bereturnedin a
reply to a subsequent request unless there are cache-control directives or another header(s) that explicitly allow
it. For example, these include the following: an Expires header (Section 14.21); a"max-age", "s-maxage”,
"must-revalidate”, "proxy-revalidate”, "public" or "private" cache-control directive (Section 14.9).

13.5. Constructing Responses From Caches

The purpose of an HTTP cache is to store information received in response to requests for use in responding
to future requests. In many cases, a cache simply returns the appropriate parts of a response to the requester.
However, if the cache holds a cache entry based on a previous response, it might have to combine parts of a
new response with what is held in the cache entry.

13.5.1. End-to-end and Hop-by-hop Headers
For the purpose of defining the behavior of caches and non-caching proxies, we divide HTTP headersinto two
categories:
« End-to-end headers, which are transmitted to the ultimate recipient of arequest or response. End-to-end

headers in responses MUST be stored as part of a cache entry and MUST be transmitted in any response
formed from a cache entry.

» Hop-by-hop headers, which are meaningful only for a single transport-level connection, and are not stored
by caches or forwarded by proxies.

The following HTTP/1.1 headers are hop-by-hop headers:

» Connection

e Keep-Alive

* Proxy-Authenticate

e Proxy-Authorization

« TE

o Tralers

e Transfer-Encoding

* Upgrade

All other headers defined by HTTP/1.1 are end-to-end headers.

Other hop-by-hop headers MUST be listed in a Connection header, (Section 14.10) to be introduced into
HTTP/1.1 (or later).

13.5.2. Non-modifiable Headers

Some features of the HTTP/1.1 protocol, such as Digest Authentication, depend on the value of certain end-
to-end headers. A transparent proxy SHOULD NOT modify an end-to-end header unless the definition of that
header requires or specifically allowsthat.

A transparent proxy MUST NOT modify any of the following fields in arequest or response, and it MUST
NOT add any of thesefieldsif not already present:

» Content-Location

* Content-MD5

e ETag

+ Last-Modified

A transparent proxy MUST NOT modify any of the following fields in a response:

* Expires

Fielding, et al. Standards Track [Page 67]

RFC 2616 HTTP/1.1 June 1999

but it MAY add any of these fieldsif not already present. If an Expires header is added, it MUST be given a
field-value identical to that of the Date header in that response.

A proxy MUST NOT maodify or add any of the following fields in a message that contains the no-transform
cache-control directive, or in any request:

e Content-Encoding
¢ Content-Range
* Content-Type

A non-transparent proxy MAY modify or add these fields to a message that does not include no-transform,

but if it does so, it MUST add a Warning 214 (Transformation applied) if one does not already appear in the

message (see Section 14.46).
Warning: unnecessary modification of end-to-end headers might cause authentication failures if stronger
authentication mechanisms are introduced in later versions of HTTP. Such authentication mechanisms
MAY rely on the values of header fields not listed here.

The Content-Length field of arequest or response is added or deleted according to the rulesin Section 4.4. A
transparent proxy MUST preserve the entity-length (Section 7.2.2) of the entity-body, although it MAY change
the transfer-length (Section 4.4).

13.5.3. Combining Headers

When a cache makes a validating request to a server, and the server provides a 304 (Not Modified) response or
a 206 (Partial Content) response, the cache then constructs a response to send to the requesting client.

If the status code is 304 (Not Modified), the cache uses the entity-body stored in the cache entry as the entity-
body of this outgoing response. If the status code is 206 (Partial Content) and the ETag or Last-Modified
headers match exactly, the cache MAY combine the contents stored in the cache entry with the new contents
received in the response and use the result as the entity-body of this outgoing response, (see 13.5.4).

The end-to-end headers stored in the cache entry are used for the constructed response, except that

« any stored Warning headers with warn-code 1xx (see Section 14.46) MUST be deleted from the cache entry
and the forwarded response.

» any stored Warning headers with warn-code 2xx MUST be retained in the cache entry and the forwarded
response.

« any end-to-end headers provided in the 304 or 206 response MUST replace the corresponding headers from
the cache entry.

Unless the cache decides to remove the cache entry, it MUST also replace the end-to-end headers stored with
the cache entry with corresponding headers received in the incoming response, except for Warning headers as
described immediately above. If a header field-name in the incoming response matches more than one header in
the cache entry, all such old headers MUST be replaced.

In other words, the set of end-to-end headers received in the incoming response overrides al corresponding
end-to-end headers stored with the cache entry (except for stored Warning headers with warn-code 1xx, which
are deleted even if not overridden).
Note: thisrule allows an origin server to use a 304 (Not Modified) or a 206 (Partial Content) response to
update any header associated with a previous response for the same entity or sub-ranges thereof, although
it might not always be meaningful or correct to do so. This rule does not allow an origin server to use a
304 (Not Modified) or a 206 (Partial Content) response to entirely delete a header that it had provided with
a previous response.

13.5.4. Combining Byte Ranges

A response might transfer only a subrange of the bytes of an entity-body, either because the request included
one or more Range specifications, or because a connection was broken prematurely. After several such
transfers, a cache might have received several ranges of the same entity-body.

Fielding, et al. Standards Track [Page 68]

RFC 2616 HTTP/1.1 June 1999

If a cache has a stored non-empty set of subranges for an entity, and an incoming response transfers another
subrange, the cache MAY combine the new subrange with the existing set if both the following conditions are
met:

* Both the incoming response and the cache entry have a cache validator.
e Thetwo cache validators match using the strong comparison function (see Section 13.3.3).

If either requirement is not met, the cache MUST use only the most recent partial response (based on the Date
values transmitted with every response, and using the incoming response if these values are equal or missing),
and MUST discard the other partial information.

13.6. Caching Negotiated Responses

Use of server-driven content negotiation (Section 12.1), as indicated by the presence of a Vary header field in
aresponse, alters the conditions and procedure by which a cache can use the response for subsequent requests.
See Section 14.44 for use of the Vary header field by servers.

A server SHOULD use the Vary header field to inform a cache of what request-header fields were used to
select among multiple representations of a cacheable response subject to server-driven negotiation. The set of
header fields named by the Vary field value is known as the "selecting" request-headers.

When the cache receives a subsequent request whose Request-URI specifies one or more cache entries
including aVary header field, the cache MUST NOT use such a cache entry to construct a response to the new
reguest unless all of the selecting request-headers present in the new request match the corresponding stored
reguest-headersin the original request.

The selecting request-headers from two requests are defined to match if and only if the selecting request-
headers in the first request can be transformed to the sel ecting request-headers in the second request by adding
or removing linear white space (LWS) at places where thisis allowed by the corresponding BNF, and/or
combining multiple message-header fields with the same field name following the rules about message headers
in Section 4.2.

A Vary header field-value of "*" always fails to match and subsequent requests on that resource can only be
properly interpreted by the origin server.

If the selecting request header fields for the cached entry do not match the selecting request header fields of the
new request, then the cache MUST NOT use a cached entry to satisfy the request unlessit first relays the new
request to the origin server in a conditional request and the server responds with 304 (Not Modified), including
an entity tag or Content-L ocation that indicates the entity to be used.

If an entity tag was assigned to a cached representation, the forwarded request SHOULD be conditional and
include the entity tags in an If-None-Match header field from all its cache entries for the resource. This conveys
to the server the set of entities currently held by the cache, so that if any one of these entities matches the
requested entity, the server can use the ETag header field in its 304 (Not Modified) response to tell the cache
which entry is appropriate. If the entity-tag of the new response matches that of an existing entry, the new
response SHOULD be used to update the header fields of the existing entry, and the result MUST be returned
to the client.

If any of the existing cache entries contains only partial content for the associated entity, its entity-tag
SHOULD NOT be included in the If-None-Match header field unless the request is for a range that would be
fully satisfied by that entry.

If a cache receives a successful response whose Content-L ocation field matches that of an existing cache
entry for the same Request-URI, whose entity-tag differs from that of the existing entry, and whose Date is
more recent than that of the existing entry, the existing entry SHOULD NOT be returned in response to future
reguests and SHOULD be deleted from the cache.

Fielding, et al. Standards Track [Page 69]

RFC 2616 HTTP/1.1 June 1999

13.7. Shared and Non-Shared Caches

For reasons of security and privacy, it is necessary to make a distinction between "shared" and "non-shared"
caches. A non-shared cache isonethat is accessible only to asingle user. Accessihility in this case SHOULD
be enforced by appropriate security mechanisms. All other caches are considered to be "shared." Other sections
of this specification place certain constraints on the operation of shared cachesin order to prevent |oss of
privacy or failure of access controls.

13.8. Errorsor Incomplete Response Cache Behavior

A cache that receives an incompl ete response (for example, with fewer bytes of datathan specified in a
Content-Length header) MAY store the response. However, the cache MUST treat this as a partial response.
Partial responses MAY be combined as described in Section 13.5.4; the result might be afull response or might
still be partial. A cache MUST NOT return a partial response to a client without explicitly marking it as such,
using the 206 (Partial Content) status code. A cache MUST NOT return a partial response using a status code
of 200 (OK).

If a cache receives a 5xx response while attempting to revalidate an entry, it MAY either forward this response
to the requesting client, or act asif the server failed to respond. In the latter case, it MAY return a previously
received response unless the cached entry includes the "must-revalidate” cache-control directive (see Section
14.9).

13.9. Side Effectsof GET and HEAD

Unless the origin server explicitly prohibits the caching of their responses, the application of GET and HEAD
methods to any resources SHOULD NOT have side effects that would lead to erroneous behavior if these
responses are taken from acache. They MAY till have side effects, but a cache is not required to consider
such side effects in its caching decisions. Caches are always expected to observe an origin server's explicit
restrictions on caching.

We note one exception to this rule: since some applications have traditionally used GETs and HEADs with
query URLSs (those containing a"?" in the rel_path part) to perform operations with significant side effects,
caches MUST NOT treat responses to such URIs as fresh unless the server provides an explicit expiration time.
This specifically means that responses from HTTP/1.0 servers for such URIs SHOULD NOT be taken from a
cache. See Section 9.1.1 for related information.

13.10. Invalidation After Updates or Deletions

The effect of certain methods performed on aresource at the origin server might cause one or more existing
cache entries to become non-transparently invalid. That is, although they might continue to be "fresh," they do
not accurately reflect what the origin server would return for a new request on that resource.

Thereis no way for the HTTP protocol to guarantee that all such cache entries are marked invalid. For
example, the request that caused the change at the origin server might not have gone through the proxy where a
cache entry is stored. However, several rules help reduce the likelihood of erroneous behavior.

In this section, the phrase "invalidate an entity" means that the cache will either remove all instances of that
entity from its storage, or will mark these as "invalid" and in need of a mandatory revalidation before they can
be returned in response to a subsequent request.

Some HTTP methods MUST cause a cache to invalidate an entity. Thisis either the entity referred to by the
Request-URI, or by the Location or Content-L ocation headers (if present). These methods are:

o PUT

+ DELETE

+ POST

In order to prevent denial of service attacks, an invalidation based on the URI in a Location or Content-
Location header MUST only be performed if the host part is the same asin the Request-URI.

Fielding, et al. Standards Track [Page 70]

RFC 2616 HTTP/1.1 June 1999

A cache that passes through requests for methods it does not understand SHOULD invalidate any entities
referred to by the Request-URI.

13.11. Write-Through Mandatory

All methods that might be expected to cause modifications to the origin server's resources MUST be written
through to the origin server. This currently includes all methods except for GET and HEAD. A cache MUST
NOT reply to such arequest from a client before having transmitted the request to the inbound server, and
having received a corresponding response from the inbound server. This does not prevent a proxy cache from
sending a 100 (Continue) response before the inbound server has sent its final reply.

The aternative (known as "write-back™ or "copy-back" caching) isnot allowed in HTTP/1.1, dueto the
difficulty of providing consistent updates and the problems arising from server, cache, or network failure prior
to write-back.

13.12. Cache Replacement

If anew cacheable (see sections 14.9.2, 13.2.5, 13.2.6 and 13.8) response is received from a resource while
any existing responses for the same resource are cached, the cache SHOULD use the new response to reply to
the current request. It MAY insert it into cache storage and MAY,, if it meets all other requirements, use it to
respond to any future requests that would previously have caused the old response to be returned. If it inserts
the new response into cache storage the rulesin Section 13.5.3 apply.

Note: a new response that has an older Date header value than existing cached responsesis not cacheable.

13.13. History Lists

User agents often have history mechanisms, such as "Back” buttons and history lists, which can be used to
redisplay an entity retrieved earlier in asession.

History mechanisms and caches are different. In particular history mechanisms SHOULD NOT try to show a
semantically transparent view of the current state of aresource. Rather, a history mechanism is meant to show
exactly what the user saw at the time when the resource was retrieved.

By default, an expiration time does not apply to history mechanisms. If the entity is till in storage, a history
mechanism SHOULD display it even if the entity has expired, unless the user has specifically configured the
agent to refresh expired history documents.

Thisis not to be construed to prohibit the history mechanism from telling the user that aview might be stale.

Note: if history list mechanisms unnecessarily prevent users from viewing stale resources, this will

tend to force service authors to avoid using HT TP expiration controls and cache controls when they

would otherwise like to. Service authors may consider it important that users not be presented with error
messages or warning messages when they use navigation controls (such as BACK) to view previously
fetched resources. Even though sometimes such resources ought not to cached, or ought to expire quickly,
user interface considerations may force service authors to resort to other means of preventing caching (e.g.
"once-only" URLS) in order not to suffer the effects of improperly functioning history mechanisms.

Fielding, et al. Standards Track [Page 71]

RFC 2616 HTTP/1.1 June 1999

14. Header Field Definitions

This section defines the syntax and semantics of all standard HTTP/1.1 header fields. For entity-header fields,
both sender and recipient refer to either the client or the server, depending on who sends and who receives the
entity.

14.1. Accept

The Accept request-header field can be used to specify certain media types which are acceptable for the
response. Accept headers can be used to indicate that the request is specifically limited to a small set of desired
types, asin the case of arequest for an in-line image.

Accept = "Accept"
#(medi a-range [accept-parans])

u*/*u

(‘type "/" "*")

medi a- r ange = (
|
| (type "/" subtype)
)

*(";" paraneter)
accept-parans = ";" "q" "=" qvalue *(accept-extension)
accept-extension = ";" token ["=" (token | quoted-string)]

The asterisk "*" character is used to group media types into ranges, with "*/*" indicating all mediatypes and
"typel*" indicating all subtypes of that type. The media-range MAY include media type parametersthat are
applicable to that range.

Each media-range MAY be followed by one or more accept-params, beginning with the"q" parameter for
indicating arelative quality factor. Thefirst "q" parameter (if any) separates the media-range parameter(s) from
the accept-params. Quality factors allow the user or user agent to indicate the relative degree of preference for
that media-range, using the gvalue scale from 0 to 1 (Section 3.9). The default valueis g=1.

Note: Use of the"q" parameter name to separate media type parameters from Accept extension parameters
isdueto historical practice. Although this prevents any media type parameter named "q" from being used
with amedia range, such an event is believed to be unlikely given the lack of any "q" parametersin the
IANA mediatype registry and the rare usage of any mediatype parametersin Accept. Future media types
are discouraged from registering any parameter named "q".

The example

Accept: audio/*; g=0.2, audio/basic

SHOULD beinterpreted as"| prefer audio/basic, but send me any audio typeif it is the best available after an
80% mark-down in quality."

If no Accept header field is present, then it is assumed that the client accepts all mediatypes. If an Accept
header field is present, and if the server cannot send a response which is acceptabl e according to the combined
Accept field value, then the server SHOULD send a 406 (not acceptable) response.

A more elaborate exampleis

Accept: text/plain; g=0.5, text/htn,
text/x-dvi; g=0.8, text/x-c

Verbally, thiswould be interpreted as "text/html and text/x-c are the preferred media types, but if they do not
exist, then send the text/x-dvi entity, and if that does not exist, send the text/plain entity."

Media ranges can be overridden by more specific media ranges or specific mediatypes. If more than one media
range applies to a given type, the most specific reference has precedence. For example,

Fielding, et al. Standards Track [Page 72]

RFC 2616 HTTP/1.1 June 1999

Accept: text/*, text/htm, text/htnl;level =1, */*

have the following precedence:

1) text/htnl;level =1
2) text/htm

3) text/*

4) */*

The mediatype quality factor associated with a given type is determined by finding the media range with the
highest precedence which matches that type. For example,

Accept: text/*;q=0.3, text/htm ;qg=0.7, text/htm ;level =1,
text/htm ;level =2;9=0.4, */*;q=0.5

would cause the following values to be associated:

text/htm;level =1
text/htm
text/plain

i mage/ j peg
text/htnl ;| evel =2
text/htm ;| evel =3

PP
~N B 0w

Note: A user agent might be provided with a default set of quality values for certain mediaranges. However,
unless the user agent is a closed system which cannot interact with other rendering agents, this default set ought
to be configurable by the user.

14.2. Accept-Char set

The Accept-Charset request-header field can be used to indicate what character sets are acceptable for the
response. Thisfield allows clients capable of understanding more comprehensive or special -purpose character
setsto signal that capability to a server which is capable of representing documents in those character sets.

Accept - Charset = "Accept - Charset"
1#((charset | "*")[";" "q" "=" qvalue])

Character set values are described in Section 3.4. Each charset MAY be given an associated quality value
which represents the user's preference for that charset. The default valueis g=1. An exampleis

Accept - Charset: is0-8859-5, unicode-1-1;9=0.8

The special value"*", if present in the Accept-Charset field, matches every character set (including

I SO-8859-1) which is not mentioned elsewhere in the Accept-Charset field. If no "*" is present in an Accept-
Charset field, then all character sets not explicitly mentioned get a quality value of 0, except for 1SO-8859-1,
which gets a quality value of 1 if not explicitly mentioned.

If no Accept-Charset header is present, the default is that any character set is acceptable. If an Accept-Charset
header is present, and if the server cannot send a response which is acceptable according to the Accept-Charset
header, then the server SHOULD send an error response with the 406 (not acceptable) status code, though the
sending of an unacceptable responseis also allowed.

14.3. Accept-Encoding

Fielding, et al. Standards Track [Page 73]

RFC 2616 HTTP/1.1 June 1999

The Accept-Encoding request-header field is similar to Accept, but restricts the content-codings (Section 3.5)
that are acceptable in the response.

Accept - Encoding = "Accept - Encoding” ":"
1#(codings [";" "qg" "=" qvalue])
codi ngs = (content-coding | "*")

Examples of its use are:

Accept - Encodi ng: conpress, gzip

Accept - Encodi ng:

Accept - Encodi ng: *

Accept - Encodi ng: conpress; q=0.5, gzip;qg=1.0

Accept - Encodi ng: gzip;g=1.0, identity; q=0.5, *;qg=0

A server tests whether a content-coding is acceptable, according to an Accept-Encoding field, using these rules:

1. If the content-coding is one of the content-codings listed in the Accept-Encoding field, thenitis
acceptable, unlessit is accompanied by a qvalue of 0. (As defined in Section 3.9, aqvalue of 0 means "not
acceptable.")

2. The specia "*" symbol in an Accept-Encoding field matches any available content-coding not explicitly
listed in the header field.

3. If multiple content-codings are acceptable, then the acceptable content-coding with the highest non-zero
gvalueis preferred.

4. The"identity" content-coding is aways acceptable, unless specifically refused because the Accept-
Encoding field includes "identity;q=0", or because the field includes "*;g=0" and does not explicitly
include the "identity" content-coding. If the Accept-Encoding field-value is empty, then only the "identity"
encoding is acceptable.

If an Accept-Encoding field is present in arequest, and if the server cannot send a response which is acceptable
according to the Accept-Encoding header, then the server SHOULD send an error response with the 406 (Not
Acceptable) status code.

If no Accept-Encoding field is present in arequest, the server MAY assume that the client will accept any
content coding. In this case, if "identity" is one of the available content-codings, then the server SHOULD use
the "identity" content-coding, unless it has additional information that a different content-coding is meaningful
to the client.
Note: If the request does not include an Accept-Encoding field, and if the "identity" content-coding is
unavailable, then content-codings commonly understood by HTTP/1.0 clients (i.e., "gzip" and "compress')
are preferred; some older clientsimproperly display messages sent with other content-codings. The server
might also make this decision based on information about the particular user-agent or client.

Note: Most HTTP/1.0 applications do not recognize or obey qvalues associated with content-codings. This
means that qvalues will not work and are not permitted with x-gzip or x-compress.

14.4. Accept-Language

The Accept-Language request-header field is similar to Accept, but restricts the set of natural languages that are
preferred as a response to the request. Language tags are defined in Section 3.10.

ACCGpt-Language =" Accept_l_anguagen T
1#(language-range [";" "q" "=" qvalue])
| anguage-range = ((1*8ALPHA *("-" 1*8ALPHA)) | "*")

Each language-range MAY be given an associated quality value which represents an estimate of the user's
preference for the languages specified by that range. The quality value defaultsto "g=1". For example,

Fielding, et al. Standards Track [Page 74]

RFC 2616 HTTP/1.1 June 1999

Accept - Language: da, en-ghb;g=0.8, en;q=0.7

would mean: "I prefer Danish, but will accept British English and other types of English." A language-range
matches alanguage-tag if it exactly equalsthetag, or if it exactly equals a prefix of the tag such that the first
tag character following the prefix is"-". The special range"*", if present in the Accept-Language field, matches
every tag not matched by any other range present in the Accept-Language field.
Note: Thisuse of a prefix matching rule does not imply that language tags are assigned to languagesin
such away that it is always true that if a user understands a language with a certain tag, then this user will
also understand all languages with tags for which thistag is a prefix. The prefix rule simply allows the use
of prefix tagsif thisisthe case.

The language quality factor assigned to alanguage-tag by the Accept-Language field is the quality value of the
longest language-range in the field that matches the language-tag. If no language-range in the field matches the
tag, the language quality factor assigned is 0. If no Accept-Language header is present in the request, the server
SHOULD assume that all languages are equally acceptable. If an Accept-Language header is present, then all
languages which are assigned a quality factor greater than O are acceptable.

It might be contrary to the privacy expectations of the user to send an Accept-Language header with the
complete linguistic preferences of the user in every request. For a discussion of thisissue, see Section 15.1.4.

Asintelligibility is highly dependent on the individua user, it is recommended that client applications make
the choice of linguistic preference available to the user. If the choice is not made available, then the Accept-
Language header field MUST NOT be given in the request.

Note: When making the choice of linguistic preference available to the user, we remind implementors of
the fact that users are not familiar with the details of language matching as described above, and should
provide appropriate guidance. As an example, users might assume that on selecting "en-gb", they will be
served any kind of English document if British Englishis not available. A user agent might suggest in
such acaseto add "en" to get the best matching behavior.

14.5. Accept-Ranges

The Accept-Ranges response-header field allows the server to indicate its acceptance of range requests for a
resource:

Accept - Ranges
accept abl e-ranges

"Accept - Ranges" ":" acceptabl e-ranges
1#range-unit | "none"

Origin servers that accept byte-range requests MAY send

Accept - Ranges: bytes

but are not required to do so. Clients MAY generate byte-range requests without having received this header
for the resource involved. Range units are defined in Section 3.12.

Serversthat do not accept any kind of range request for aresource MAY send

Accept - Ranges: none

to advise the client not to attempt a range request.

14.6. Age

The Age response-header field conveys the sender's estimate of the amount of time since the response (or its
revalidation) was generated at the origin server. A cached responseis"fresh” if its age does not exceed its
freshness lifetime. Age values are calculated as specified in Section 13.2.3.

Fielding, et al. Standards Track [Page 75]

RFC 2616 HTTP/1.1 June 1999

Age = "Age" age-val ue
age-val ue = delta-seconds
Age values are non-negative decimal integers, representing time in seconds.

If acache receives avalue larger than the largest positive integer it can represent, or if any of its age
calculations overflows, it MUST transmit an Age header with avalue of 2147483648 (2"31). AnHTTP/1.1
server that includes a cache MUST include an Age header field in every response generated from its own
cache. Caches SHOULD use an arithmetic type of at least 31 bits of range.

14.7. Allow

The Allow entity-header field lists the set of methods supported by the resource identified by the Request-URI.
The purpose of thisfield is strictly to inform the recipient of valid methods associated with the resource. An
Allow header field MUST be present in a 405 (Method Not Allowed) response.

Allow = "Alow' ":" #Method

Example of use:

Al ow. GET, HEAD, PUT

Thisfield cannot prevent a client from trying other methods. However, the indications given by the Allow
header field value SHOULD be followed. The actual set of allowed methods is defined by the origin server at
the time of each request.

The Allow header field MAY be provided with a PUT request to recommend the methods to be supported by
the new or modified resource. The server is not required to support these methods and SHOULD include an
Allow header in the response giving the actual supported methods.

A proxy MUST NOT modify the Allow header field even if it does not understand all the methods specified,
since the user agent might have other means of communicating with the origin server.

14.8. Authorization

A user agent that wishes to authenticate itself with a server-- usualy, but not necessarily, after receiving a 401
response--does so by including an Authorization request-header field with the request. The Authorization field
value consists of credentials containing the authentication information of the user agent for the realm of the
resource being requested.

Aut hori zation = "Authorization" credential s

HTTP access authentication is described in "HT TP Authentication: Basic and Digest Access Authentication"
[43]. If arequest is authenticated and arealm specified, the same credentials SHOULD be valid for all other
reguests within this realm (assuming that the authentication scheme itself does not require otherwise, such as
credentials that vary according to a challenge value or using synchronized clocks).

When a shared cache (see Section 13.7) receives arequest containing an Authorization field, it MUST
NOT return the corresponding response as a reply to any other request, unless one of the following specific
exceptions holds:

1. If theresponse includes the "s-maxage" cache-control directive, the cache MAY use that responsein
replying to a subsequent request. But (if the specified maximum age has passed) a proxy cache MUST first
revalidate it with the origin server, using the request-headers from the new request to allow the origin server
to authenticate the new request. (Thisis the defined behavior for ssmaxage.) If the response includes"s-
maxage=0", the proxy MUST always revalidate it before re-using it.

Fielding, et al. Standards Track [Page 76]

RFC 2616 HTTP/1.1 June 1999

2. If theresponse includes the "must-revalidate" cache-control directive, the cache MAY use that responsein
replying to a subsequent request. But if the response is stale, all caches MUST first revalidate it with the
origin server, using the request-headers from the new request to allow the origin server to authenticate the
new request.

3. If theresponseincludes the "public" cache-control directive, it MAY be returned in reply to any subsegquent
request.

14.9. Cache-Control

The Cache-Control general-header field is used to specify directives that MUST be obeyed by all caching
mechanisms along the request/response chain. The directives specify behavior intended to prevent caches
from adversely interfering with the request or response. These directives typically override the default caching
algorithms. Cache directives are unidirectional in that the presence of a directive in areguest does not imply
that the same directive isto be given in the response.

Note that HTTP/1.0 caches might not implement Cache-Control and might only implement Pragma: no-
cache (see Section 14.32).

Cache directives MUST be passed through by a proxy or gateway application, regardless of their significance
to that application, since the directives might be applicable to al recipients along the request/response chain. It
is not possible to specify a cache-directive for a specific cache.

Cache- Contr ol "Cache-Control"™ ":" 1#cache-directive

cache-directive = cache-request-directive
| cache-response-directive

cache-request-directive =

"no-cache” ; Section 14.9.1
| "no-store" ; Section 14.9.2
| "max-age" "=" delta-seconds ; Section 14.9.3, 14.9.4
| "max-stale" ["=" delta-seconds] ; Section 14.9.3
| "mn-fresh" "=" delta-seconds ; Section 14.9.3
| "no-transfornt ; Section 14.9.5
| "only-if-cached" ; Section 14.9.4
| cache-extension ; Section 14.9.6

cache-response-directive =

"public" ; Section 14.9.1
| "private" ["=" <"> 1#field-nane <">] ; Section 14.9.1
| "no-cache" ["=" <"> 1#field-nanme <">]; Section 14.9.1
| "no-store" ; Section 14.9.2
| "no-transfornt ; Section 14.9.5
| "must-revalidate" ; Section 14.9.4
| "proxy-revalidate" ; Section 14.9.4
| "max-age" "=" delta-seconds ; Section 14.9.3
| "s-nmaxage" "=" delta-seconds ; Section 14.9.3
| cache-extension ; Section 14.9.6

cache-extension = token ["=" (token | quoted-string)]

When adirective appears without any 1#field-name parameter, the directive applies to the entire request or
response. When such a directive appears with a 1#field-name parameter, it applies only to the named field or
fields, and not to the rest of the request or response. This mechanism supports extensibility; implementations of
future versions of the HTTP protocol might apply these directives to header fields not defined in HTTP/1.1.

Fielding, et al. Standards Track [Page 77]

RFC 2616 HTTP/1.1 June 1999

The cache-control directives can be broken down into these general categories:

Restrictions on what are cacheable; these may only be imposed by the origin server.

Restrictions on what may be stored by a cache; these may be imposed by either the origin server or the user
agent.

Modifications of the basic expiration mechanism; these may be imposed by either the origin server or the
user agent.

Controls over cache revalidation and reload; these may only be imposed by a user agent.
Control over transformation of entities.
Extensions to the caching system.

14.9.1. What is Cacheable

By default, aresponse is cacheable if the requirements of the request method, request header fields, and the
response status indicate that it is cacheable. Section 13.4 summarizes these defaults for cacheability. The
following Cache-Control response directives alow an origin server to override the default cacheability of a
response:

public

Indicates that the response MAY be cached by any cache, even if it would normally be non-cacheable or
cacheable only within a non-shared cache. (See also Authorization, Section 14.8, for additional details.)

private

Indicates that all or part of the response message is intended for asingle user and MUST NOT be cached
by a shared cache. This allows an origin server to state that the specified parts of the response are intended
for only one user and are not avalid response for requests by other users. A private (non-shared) cache
MAY cache the response.

Note: This usage of the word private only controls where the response may be cached, and cannot ensure
the privacy of the message content.

no-cache

If the no-cache directive does not specify afield-name, then acache MUST NOT use the response to
satisfy a subsequent request without successful revalidation with the origin server. Thisallows an origin
server to prevent caching even by caches that have been configured to return stale responses to client
requests.

If the no-cache directive does specify one or more field-names, then a cache MAY use the response to
satisfy a subsequent regquest, subject to any other restrictions on caching. However, the specified field-
name(s) MUST NOT be sent in the response to a subsequent request without successful revalidation with
the origin server. This allows an origin server to prevent the re-use of certain header fieldsin aresponse,
while still allowing caching of the rest of the response.

Note: Most HTTP/1.0 caches will not recognize or obey this directive.

14.9.2. What May be Stored by Caches

no-store

The purpose of the no-store directive is to prevent the inadvertent release or retention of sensitive
information (for example, on backup tapes). The no-store directive appliesto the entire message, and
MAY be sent either in aresponse or in arequest. If sent in arequest, acache MUST NOT store any part of
either this request or any responseto it. If sent in aresponse, a cache MUST NOT store any part of either
this response or the request that elicited it. This directive applies to both non-shared and shared caches.
"MUST NOT store" in this context means that the cache MUST NOT intentionally store the information
in non-volatile storage, and MUST make a best-effort attempt to remove the information from volatile
storage as promptly as possible after forwarding it.

Fielding, et al. Standards Track [Page 78]

RFC 2616 HTTP/1.1 June 1999

Even when this directive is associated with aresponse, users might explicitly store such aresponse outside
of the caching system (e.g., with a"Save As' diaog). History buffers MAY store such responses as part of
their normal operation.

The purpose of this directiveis to meet the stated requirements of certain users and service authors who
are concerned about accidental releases of information via unanticipated accesses to cache data structures.
While the use of this directive might improve privacy in some cases, we caution that it isNOT in any
way areliable or sufficient mechanism for ensuring privacy. In particular, malicious or compromised
caches might not recognize or obey this directive, and communications networks might be vulnerable to
eavesdropping.

14.9.3. Madifications of the Basic Expiration Mechanism

The expiration time of an entity MAY be specified by the origin server using the Expires header (see Section
14.21). Alternatively, it MAY be specified using the max-age directive in aresponse. When the max-age cache-
control directive is present in a cached response, the response is stale if its current age is greater than the age
value given (in seconds) at the time of a new request for that resource. The max-age directive on aresponse
implies that the response is cacheable (i.e., "public") unless some other, more restrictive cache directiveis also
present.

If aresponse includes both an Expires header and a max-age directive, the max-age directive overrides the
Expires header, even if the Expires header is more restrictive. Thisrule allows an origin server to provide,

for agiven response, alonger expiration timeto an HTTP/1.1 (or later) cache than to an HTTP/1.0 cache.
This might be useful if certain HTTP/1.0 caches improperly calculate ages or expiration times, perhaps due to
desynchronized clocks.

Many HTTP/1.0 cache implementations will treat an Expires value that isless than or equal to the response
Date value as being equivalent to the Cache-Control response directive "no-cache". If an HTTP/1.1 cache
receives such aresponse, and the response does not include a Cache-Control header field, it SHOULD consider
the response to be non-cacheable in order to retain compatibility with HTTP/1.0 servers.

Note: An origin server might wish to use arelatively new HTTP cache control feature, such asthe
"private" directive, on a network including older caches that do not understand that feature. The origin
server will need to combine the new feature with an Expires field whose value is less than or equal to the
Date value. Thiswill prevent older caches from improperly caching the response.

s-maxage

If aresponse includes an s-maxage directive, then for a shared cache (but not for a private cache), the
maximum age specified by this directive overrides the maximum age specified by either the max-age
directive or the Expires header. The ss-maxage directive also implies the semantics of the proxy-revalidate
directive (see Section 14.9.4), i.e, that the shared cache must not use the entry after it becomes stale to
respond to a subsequent request without first revalidating it with the origin server. The ss-maxage directive
isalways ignored by aprivate cache.

Note that most older caches, not compliant with this specification, do not implement any cache-control
directives. An origin server wishing to use a cache-control directive that restricts, but does not prevent, caching
by an HTTP/1.1-compliant cache MAY exploit the requirement that the max-age directive overrides the
Expires header, and the fact that pre-HTTP/1.1-compliant caches do not observe the max-age directive.

Other directives allow a user agent to modify the basic expiration mechanism. These directives MAY be
specified on arequest:

max-age

Indicates that the client is willing to accept a response whose age is no greater than the specified timein
seconds. Unless max-stale directive is also included, the client is not willing to accept a stale response.

min-fresh

Fielding, et al. Standards Track [Page 79]

RFC 2616 HTTP/1.1 June 1999

Indicates that the client is willing to accept a response whose freshness lifetime is no less than its current
age plus the specified time in seconds. That is, the client wants a response that will still be fresh for at least
the specified number of seconds.

max-stale

Indicates that the client iswilling to accept a response that has exceeded its expiration time. If max-staleis
assigned a value, then the client is willing to accept aresponse that has exceeded its expiration time by no
more than the specified number of seconds. If no valueis assigned to max-stale, then the client iswilling
to accept a stale response of any age.

If acache returns a stale response, either because of a max-stale directive on arequest, or because the cache is
configured to override the expiration time of aresponse, the cache MUST attach a Warning header to the stale
response, using Warning 110 (Response is stale).

A cache MAY be configured to return stale responses without validation, but only if this does not conflict with
any "MUST"-level requirements concerning cache validation (e.g., a"must-revalidate" cache-control directive).

If both the new request and the cached entry include "max-age" directives, then the lesser of the two valuesis
used for determining the freshness of the cached entry for that request.

14.9.4. Cache Revalidation and Reload Controls

Sometimes a user agent might want or need to insist that a cache revalidate its cache entry with the origin
server (and not just with the next cache along the path to the origin server), or to reload its cache entry from
the origin server. End-to-end revalidation might be necessary if either the cache or the origin server has
overestimated the expiration time of the cached response. End-to-end reload may be necessary if the cache
entry has become corrupted for some reason.

End-to-end revalidation may be requested either when the client does not have its own local cached copy, in
which case we call it "unspecified end-to-end revalidation”, or when the client does have alocal cached copy,
in which case we call it "specific end-to-end revalidation.”

The client can specify these three kinds of action using Cache-Control request directives:

End-to-end reload

The request includes a "no-cache" cache-control directive or, for compatibility with HTTP/1.0 clients,
"Pragma: no-cache”. Field names MUST NOT be included with the no-cache directive in arequest. The
server MUST NOT use a cached copy when responding to such a request.

Specific end-to-end revalidation

The request includes a "max-age=0" cache-control directive, which forces each cache along the path to the
origin server to revalidate its own entry, if any, with the next cache or server. The initial request includes a
cache-validating conditional with the client's current validator.

Unspecified end-to-end revalidation

The request includes "max-age=0" cache-control directive, which forces each cache aong the path to the
origin server to revalidate its own entry, if any, with the next cache or server. Theinitial request does not
include a cache-validating conditional; the first cache along the path (if any) that holds a cache entry for
this resource includes a cache-validating conditional with its current validator.

max-age
When an intermediate cache is forced, by means of a max-age=0 directive, to revalidate its own cache
entry, and the client has supplied its own validator in the request, the supplied validator might differ from

the validator currently stored with the cache entry. In this case, the cache MAY use either validator in
making its own request without affecting semantic transparency.

However, the choice of validator might affect performance. The best approach is for the intermediate
cache to useits own validator when making its request. If the server replies with 304 (Not Modified), then
the cache can return its now validated copy to the client with a 200 (OK) response. If the server replies
with a new entity and cache validator, however, the intermediate cache can compare the returned validator

Fielding, et al. Standards Track [Page 80]

RFC 2616 HTTP/1.1 June 1999

with the one provided in the client's request, using the strong comparison function. If the client's validator
is equal to the origin server's, then the intermediate cache ssimply returns 304 (Not Modified). Otherwise, it
returns the new entity with a 200 (OK) response.

If arequest includes the no-cache directive, it SHOULD NOT include min-fresh, max-stale, or max-age.
only-if-cached

In some cases, such astimes of extremely poor network connectivity, a client may want a cache to return
only those responses that it currently has stored, and not to reload or revalidate with the origin server. To
do this, the client may include the only-if-cached directive in arequest. If it receives this directive, a cache
SHOULD either respond using a cached entry that is consistent with the other constraints of the request, or
respond with a 504 (Gateway Timeout) status. However, if agroup of cachesis being operated as a unified
system with good internal connectivity, such arequest MAY be forwarded within that group of caches.

must-revalidate

Because a cache MAY be configured to ignore a server's specified expiration time, and because a client
request MAY include a max-stale directive (which has asimilar effect), the protocol also includes a
mechanism for the origin server to require revalidation of acache entry on any subsequent use. When
the must-revalidate directive is present in a response received by a cache, that cache MUST NOT use the
entry after it becomes stale to respond to a subsequent request without first revalidating it with the origin
server. (l.e., the cache MUST do an end-to-end revalidation every time, if, based solely on the origin
server's Expires or max-age value, the cached response is stale.)

The must-revalidate directive is necessary to support reliable operation for certain protocol features. In
all circumstances an HTTP/1.1 cache MUST obey the must-revalidate directive; in particular, if the cache
cannot reach the origin server for any reason, it MUST generate a 504 (Gateway Timeout) response.

Servers SHOULD send the must-revalidate directive if and only if failure to revalidate a request on the
entity could result in incorrect operation, such as a silently unexecuted financial transaction. Recipients
MUST NOT take any automated action that violates this directive, and MUST NOT automatically provide
an unvalidated copy of the entity if revalidation fails.

Although thisis not recommended, user agents operating under severe connectivity constraints MAY
violate this directive but, if so, MUST explicitly warn the user that an unvalidated response has been
provided. The warning MUST be provided on each unvalidated access, and SHOULD require explicit user
confirmation.

proxy-revalidate

The proxy-revalidate directive has the same meaning as the must-revalidate directive, except that it does
not apply to non-shared user agent caches. It can be used on aresponse to an authenticated request to
permit the user's cache to store and later return the response without needing to revalidate it (since it

has already been authenticated once by that user), while still requiring proxies that service many users

to revalidate each time (in order to make sure that each user has been authenticated). Note that such
authenticated responses also need the public cache control directivein order to allow them to be cached at
all.

14.9.5. No-Transform Directive

no-transform

Implementors of intermediate caches (proxies) have found it useful to convert the media type of certain
entity bodies. A non-transparent proxy might, for example, convert between image formatsin order to
save cache space or to reduce the amount of traffic on aslow link.

Serious operational problems occur, however, when these transformations are applied to entity bodies
intended for certain kinds of applications. For example, applications for medical imaging, scientific data
analysis and those using end-to-end authentication, all depend on receiving an entity body that is bit for bit
identical to the original entity-body.

Therefore, if amessage includes the no-transform directive, an intermediate cache or proxy MUST NOT
change those headers that are listed in Section 13.5.2 as being subject to the no-transform directive. This

Fielding, et al. Standards Track [Page 81]

RFC 2616 HTTP/1.1 June 1999

implies that the cache or proxy MUST NOT change any aspect of the entity-body that is specified by these
headers, including the value of the entity-body itself.

14.9.6. Cache Control Extensions

The Cache-Control header field can be extended through the use of one or more cache-extension tokens,

each with an optional assigned value. Informational extensions (those which do not require a change in cache
behavior) MAY be added without changing the semantics of other directives. Behaviora extensions are
designed to work by acting as modifiers to the existing base of cache directives. Both the new directive and the
standard directive are supplied, such that applications which do not understand the new directive will default to
the behavior specified by the standard directive, and those that understand the new directive will recognize it as
modifying the requirements associated with the standard directive. In thisway, extensions to the cache-control
directives can be made without requiring changes to the base protocol.

This extension mechanism depends on an HTTP cache obeying all of the cache-control directives defined for
its native HT TP-version, obeying certain extensions, and ignoring all directivesthat it does not understand.

For example, consider a hypothetical new response directive called community which acts as a modifier to the
private directive. We define this new directive to mean that, in addition to any non-shared cache, any cache
which is shared only by members of the community named within its value may cache the response. An origin
server wishing to allow the UCI community to use an otherwise private response in their shared cache(s) could
do so by including

Cache-Control: private, comunity="UC"

A cache seeing this header field will act correctly even if the cache does not understand the community cache-
extension, since it will also see and understand the private directive and thus default to the safe behavior.

Unrecognized cache-directives MUST beignored; it is assumed that any cache-directive likely to be
unrecognized by an HTTP/1.1 cache will be combined with standard directives (or the response's default
cacheability) such that the cache behavior will remain minimally correct even if the cache does not understand
the extension(s).

14.10. Connection

The Connection general-header field allows the sender to specify options that are desired for that particular
connection and MUST NOT be communicated by proxies over further connections.

The Connection header has the following grammar:

Connection = "Connection" ":" 1#(connection-token)
connection-token = token

HTTP/1.1 proxies MUST parse the Connection header field before a message is forwarded and, for each
connection-token in this field, remove any header field(s) from the message with the same name as the
connection-token. Connection options are signaled by the presence of a connection-token in the Connection
header field, not by any corresponding additional header field(s), since the additional header field may not be
sent if there are no parameters associated with that connection option.

Message headers listed in the Connection header MUST NOT include end-to-end headers, such as Cache-
Control.

HTTP/1.1 defines the "close" connection option for the sender to signal that the connection will be closed after
completion of the response. For example,

Connection: cl ose

Fielding, et al. Standards Track [Page 82]

RFC 2616 HTTP/1.1 June 1999

in either the request or the response header fields indicates that the connection SHOULD NOT be considered
“persistent’ (Section 8.1) after the current request/response is compl ete.

HTTP/1.1 applications that do not support persistent connections MUST include the "close" connection option
in every message.

A system receiving an HTTP/1.0 (or lower-version) message that includes a Connection header MUST,

for each connection-token in this field, remove and ignore any header field(s) from the message with the
same name as the connection-token. This protects against mistaken forwarding of such header fields by pre-
HTTP/1.1 proxies. See Appendix 19.6.2.

14.11. Content-Encoding

The Content-Encoding entity-header field is used as a modifier to the media-type. When present, its value
indicates what additional content codings have been applied to the entity-body, and thus what decoding
mechanisms must be applied in order to obtain the media-type referenced by the Content-Type header field.
Content-Encoding is primarily used to allow a document to be compressed without losing the identity of its
underlying media type.

Cont ent - Encodi ng = "Content-Encodi ng" ":" 1#content-codi ng

Content codings are defined in Section 3.5. An example of itsuseis

Cont ent - Encodi ng: gzi p

The content-coding is a characteristic of the entity identified by the Request-URI. Typically, the entity-body is
stored with this encoding and is only decoded before rendering or analogous usage. However, a non-transparent
proxy MAY modify the content-coding if the new coding is known to be acceptable to the recipient, unless the
"no-transform" cache-control directiveis present in the message.

If the content-coding of an entity is not "identity”, then the response MUST include a Content-Encoding entity-
header (Section 14.11) that lists the non-identity content-coding(s) used.

If the content-coding of an entity in arequest message is not acceptable to the origin server, the server
SHOULD respond with a status code of 415 (Unsupported Media Type).

If multiple encodings have been applied to an entity, the content codings MUST be listed in the order in which
they were applied. Additional information about the encoding parameters MAY be provided by other entity-
header fields not defined by this specification.

14.12. Content-Language

The Content-Language entity-header field describes the natural language(s) of the intended audience for the
enclosed entity. Note that this might not be equivalent to all the languages used within the entity-body.

Cont ent - Language = "Content-Language" ":" 1#l anguage-tag

Language tags are defined in Section 3.10. The primary purpose of Content-Language isto alow a user to
identify and differentiate entities according to the user's own preferred language. Thus, if the body content is
intended only for a Danish-literate audience, the appropriate field is

Cont ent - Language: da

If no Content-Language is specified, the default is that the content isintended for all language audiences. This
might mean that the sender does not consider it to be specific to any natural language, or that the sender does
not know for which language it is intended.

Fielding, et al. Standards Track [Page 83]

RFC 2616 HTTP/1.1 June 1999

Multiple languages MAY be listed for content that isintended for multiple audiences. For example, arendition
of the "Treaty of Waitangi," presented simultaneously in the original Maori and English versions, would call
for

Cont ent - Language: ni, en

However, just because multiple languages are present within an entity does not mean that it isintended for
multiple linguistic audiences. An example would be a beginner's language primer, such as"A First Lesson in
Latin," which is clearly intended to be used by an English-literate audience. In this case, the Content-L anguage
would properly only include "en".

Content-Language MAY be applied to any mediatype -- it isnot limited to textual documents.

14.13. Content-Length

The Content-Length entity-header field indicates the size of the entity-body, in decimal number of OCTETS,
sent to the recipient or, in the case of the HEAD method, the size of the entity-body that would have been sent
had the request been a GET.

Cont ent - Lengt h = "Content-Length" ":" 1*DIAT

Anexampleis

Cont ent - Lengt h: 3495

Applications SHOULD use thisfield to indicate the transfer-length of the message-body, unlessthisis
prohibited by the rulesin Section 4.4.

Any Content-L ength greater than or equal to zero isavalid value. Section 4.4 describes how to determine the
length of a message-body if a Content-Length is not given.

Note that the meaning of thisfield is significantly different from the corresponding definition in MIME, where
itisan optional field used within the "message/external-body" content-type. In HTTP, it SHOULD be sent
whenever the message's length can be determined prior to being transferred, unless this is prohibited by the
rulesin Section 4.4.

14.14. Content-L ocation

The Content-L ocation entity-header field MAY be used to supply the resource location for the entity enclosed
in the message when that entity is accessible from alocation separate from the requested resource's URI. A
server SHOULD provide a Content-L ocation for the variant corresponding to the response entity; especially
in the case where a resource has multiple entities associated with it, and those entities actually have separate
locations by which they might be individually accessed, the server SHOULD provide a Content-L ocation for
the particular variant which is returned.

Cont ent - Locati on = "Content-Location" ":"
(absoluteURl | relativeURl)

The value of Content-Location also defines the base URI for the entity.

The Content-L ocation value is not a replacement for the original requested URI; it is only a statement of the
location of the resource corresponding to this particular entity at the time of the request. Future requests MAY
specify the Content-Location URI as the request-URI if the desire is to identify the source of that particular
entity.

Fielding, et al. Standards Track [Page 84]

RFC 2616 HTTP/1.1 June 1999

A cache cannot assume that an entity with a Content-L ocation different from the URI used to retrieve it can be
used to respond to later requests on that Content-Location URI. However, the Content-L ocation can be used to
differentiate between multiple entities retrieved from a single requested resource, as described in Section 13.6.

If the Content-Location isarelative URI, therelative URI isinterpreted relative to the Request-URI.

The meaning of the Content-Location header in PUT or POST requests is undefined; servers are free to ignore
it in those cases.

14.15. Content-M D5

The Content-M D5 entity-header field, as defined in RFC 1864 [23], is an MD5 digest of the entity-body for the
purpose of providing an end-to-end message integrity check (MIC) of the entity-body. (Note: aMIC is good for
detecting accidental modification of the entity-body in transit, but is not proof against malicious attacks.)

Cont ent - MD5 = "Content-NMD5" ":" nd5-digest
md5- di gest = <base64 of 128 bit MD5 di gest as per RFC 1864>

The Content-MD5 header field MAY be generated by an origin server or client to function as an integrity
check of the entity-body. Only origin serversor clients MAY generate the Content-MD5 header field; proxies
and gateways MUST NOT generate it, as thiswould defeat its value as an end-to-end integrity check. Any
recipient of the entity-body, including gateways and proxies, MAY check that the digest value in this header
field matches that of the entity-body as received.

The MD5 digest is computed based on the content of the entity-body, including any content-coding that has
been applied, but not including any transfer-encoding applied to the message-body. If the message is received
with atransfer-encoding, that encoding MUST be removed prior to checking the Content-M D5 value against
the received entity.

This has the result that the digest is computed on the octets of the entity-body exactly as, and in the order that,
they would be sent if no transfer-encoding were being applied.

HTTP extends RFC 1864 to permit the digest to be computed for MIME composite media-types (e.g.,
multipart/* and message/rfc822), but this does not change how the digest is computed as defined in the
preceding paragraph.

There are several consequences of this. The entity-body for composite types MAY contain many body-parts,
each with its own MIME and HTTP headers (including Content-M D5, Content-Transfer-Encoding, and
Content-Encoding headers). If a body-part has a Content-Transfer-Encoding or Content-Encoding header, it

is assumed that the content of the body-part has had the encoding applied, and the body-part isincluded in the
Content-MD5 digest asis-- i.e., after the application. The Transfer-Encoding header field is not alowed within
body-parts.

Conversion of al line breaksto CRLF MUST NOT be done before computing or checking the digest: the line
break convention used in the text actually transmitted MUST be left unaltered when computing the digest.

Note: while the definition of Content-MD5 is exactly the same for HTTP asin RFC 1864 for MIME
entity-bodies, there are several waysin which the application of Content-MD5 to HTTP entity-bodies
differsfrom its application to MIME entity-bodies. Oneisthat HTTP, unlike MIME, does not use
Content-Transfer-Encoding, and does use Transfer-Encoding and Content-Encoding. Another is that
HTTP more frequently uses binary content types than MIME, so it isworth noting that, in such cases, the
byte order used to compute the digest is the transmission byte order defined for the type. Lastly, HTTP
allows transmission of text types with any of several line break conventions and not just the canonical
form using CRLF.

14.16. Content-Range

Fielding, et al. Standards Track [Page 85]

RFC 2616 HTTP/1.1 June 1999

The Content-Range entity-header is sent with apartial entity-body to specify wherein the full entity-body the
partial body should be applied. Range units are defined in Section 3.12.

Cont ent - Range = "Cont ent - Range" ":" content-range-spec

cont ent - r ange- spec
byt e- cont ent - r ange- spec

byt e- cont ent - r ange- spec
bytes-unit SP

byt e-range-resp-spec "/"
(instance-length | "*")

byt e-range-resp-spec = (first-byte-pos "-"

| "gn

i nstance-1ength =1*DAdT

| ast - byt e- pos)

The header SHOULD indicate the total length of the full entity-body, unless this length is unknown or difficult
to determine. The asterisk "*" character means that the instance-length is unknown at the time when the
response was generated.

Unlike byte-ranges-specifier values (see Section 14.35.1), a byte-range-resp-spec MUST only specify one
range, and MUST contain absolute byte positions for both the first and last byte of the range.

A byte-content-range-spec with a byte-range-resp-spec whose last-byte-pos value is less than its first-byte-pos
value, or whose instance-length value is less than or equal to its last-byte-pos value, isinvalid. The recipient of
an invalid byte-content-range-spec MUST ignoreit and any content transferred along with it.

A server sending a response with status code 416 (Requested range not satisfiable) SHOULD include a
Content-Range field with a byte-range-resp-spec of "*". The instance-length specifies the current length of the
selected resource. A response with status code 206 (Partial Content) MUST NOT include a Content-Range
field with a byte-range-resp-spec of "*".

Examples of byte-content-range-spec values, assuming that the entity contains atotal of 1234 bytes:
e Thefirst 500 bytes:

bytes 0-499/1234

* The second 500 bytes:

byt es 500-999/1234

e All except for the first 500 bytes:

byt es 500-1233/1234

e Thelast 500 bytes:

bytes 734-1233/1234

When an HT TP message includes the content of a single range (for example, aresponse to arequest for a
single range, or to arequest for a set of ranges that overlap without any holes), this content is transmitted with
a Content-Range header, and a Content-L ength header showing the number of bytes actually transferred. For
example,

Fielding, et al. Standards Track [Page 86]

RFC 2616 HTTP/1.1 June 1999

HTTP/ 1.1 206 Partial content

Date: Wed, 15 Nov 1995 06: 25:24 GMT
Last-Modified: Wed, 15 Nov 1995 04:58: 08 GMI
Cont ent - Range: bytes 21010-47021/ 47022

Cont ent - Lengt h: 26012

Content - Type: image/gif

When an HT TP message includes the content of multiple ranges (for example, aresponse to arequest for
multiple non-overlapping ranges), these are transmitted as a multipart message. The multipart mediatype used
for this purpose is "multipart/byteranges’ as defined in Appendix 19.2. See Appendix 19.6.3 for a compatibility
issue.

A response to arequest for asingle range MUST NOT be sent using the multipart/byteranges mediatype. A
response to a request for multiple ranges, whose result isasingle range, MAY be sent as a multipart/byteranges
media type with one part. A client that cannot decode a multipart/byteranges message MUST NOT ask for
multiple byte-rangesin a single request.

When aclient requests multiple byte-ranges in one request, the server SHOULD return them in the order that
they appeared in the request.

If the server ignores a byte-range-spec because it is syntactically invalid, the server SHOULD treat the request
asif theinvalid Range header field did not exist. (Normally, this means return a 200 response containing the
full entity).

If the server receives arequest (other than one including an If-Range request-header field) with an unsatisfiable
Range request-header field (that is, all of whose byte-range-spec values have a first-byte-pos value greater than
the current length of the selected resource), it SHOULD return a response code of 416 (Requested range not
satisfiable) (Section 10.4.17).

Note: clients cannot depend on servers to send a 416 (Requested range not satisfiable) response instead
of a200 (OK) response for an unsatisfiable Range request-header, since not all serversimplement this
request-header.

14.17. Content-Type

The Content-Type entity-header field indicates the media type of the entity-body sent to the recipient or, in the
case of the HEAD method, the media type that would have been sent had the request been a GET.

Cont ent - Type = "Content-Type" ":" nedi a-type

Mediatypes are defined in Section 3.7. An example of thefield is

Content-Type: text/htm; charset=ISO 8859-4

Further discussion of methods for identifying the media type of an entity is provided in Section 7.2.1.
14.18. Date

The Date general-header field represents the date and time at which the message was originated, having the
same semantics as orig-date in RFC 822. Thefield value isan HTTP-date, as described in Section 3.3.1; it
MUST be sent in RFC 1123 [8]-date format.

Date = "Date" ":" HITP-date

An exampleis

Date: Tue, 15 Nov 1994 08:12: 31 GVI

Fielding, et al. Standards Track [Page 87]

RFC 2616 HTTP/1.1 June 1999

Origin servers MUST include a Date header field in all responses, except in these cases:

1. If the response status code is 100 (Continue) or 101 (Switching Protocols), the response MAY include a
Date header field, at the server's option.

2. If the response status code conveys a server error, e.g. 500 (Internal Server Error) or 503 (Service
Unavailable), and it isinconvenient or impossible to generate avalid Date.

3. If the server does not have a clock that can provide a reasonable approximation of the current time, its
responses MUST NOT include a Date header field. In this case, the rulesin Section 14.18.1 MUST be
followed.

A received message that does not have a Date header field MUST be assigned one by the recipient if the
message will be cached by that recipient or gatewayed via a protocol which requiresaDate. An HTTP
implementation without a clock MUST NOT cache responses without revalidating them on every use. An
HTTP cache, especially a shared cache, SHOULD use a mechanism, such as NTP [28], to synchronize its clock
with areliable external standard.

Clients SHOULD only send a Date header field in messages that include an entity-body, as in the case of the
PUT and POST requests, and even then it is optional. A client without aclock MUST NOT send a Date header
field in arequest.

The HTTP-date sent in a Date header SHOULD NOT represent a date and time subsequent to the generation
of the message. It SHOULD represent the best available approximation of the date and time of message
generation, unless the implementation has no means of generating a reasonably accurate date and time. In
theory, the date ought to represent the moment just before the entity is generated. In practice, the date can be
generated at any time during the message origination without affecting its semantic value.

14.18.1. Clockless Origin Server Operation

Some origin server implementations might not have a clock available. An origin server without aclock MUST
NOT assign Expires or Last-Modified values to aresponse, unless these values were associated with the
resource by a system or user with areliable clock. It MAY assign an Expires value that is known, at or before
server configuration time, to be in the past (this allows "pre-expiration” of responses without storing separate
Expires values for each resource).

14.19. ETag

The ETag response-header field provides the current value of the entity tag for the requested variant. The
headers used with entity tags are described in sections 14.24, 14.26 and 14.44. The entity tag MAY be used for
comparison with other entities from the same resource (see Section 13.3.3).

ETag = "ETag" ":" entity-tag
Examples:
ETag: "xyzzy"
ETag: W"xyzzy"
E‘I‘ag: nn
14.20. Expect

The Expect request-header field is used to indicate that particular server behaviors are required by the client.

Fielding, et al. Standards Track [Page 88]

RFC 2616 HTTP/1.1 June 1999

Expect = "Expect" ":" 1#expectation

expectation = "100-continue" | expectation-extension

expectation-extension = token ["=" (token | quoted-string)
*expect - parans |

expect - parans = ;" token ["=" (token | quoted-string)]

A server that does not understand or is unable to comply with any of the expectation values in the Expect field
of arequest MUST respond with appropriate error status. The server MUST respond with a417 (Expectation
Failed) statusif any of the expectations cannot be met or, if there are other problems with the request, some
other 4xx status.

This header field is defined with extensible syntax to allow for future extensions. If a server receives a request
containing an Expect field that includes an expectation-extension that it does not support, it MUST respond
with a417 (Expectation Failed) status.

Comparison of expectation valuesis case-insensitive for unquoted tokens (including the 100-continue token),
and is case-sensitive for quoted-string expectati on-extensions.

The Expect mechanism is hop-by-hop: that is, an HTTP/1.1 proxy MUST return a 417 (Expectation Failed)
statusiif it receives arequest with an expectation that it cannot meet. However, the Expect request-header itself
is end-to-end; it MUST be forwarded if the request is forwarded.

Many older HTTP/1.0 and HTTP/1.1 applications do not understand the Expect header.
See Section 8.2.3 for the use of the 100 (continue) status.

14.21. Expires

The Expires entity-header field gives the date/time after which the responseis considered stale. A stale cache
entry may not normally be returned by a cache (either a proxy cache or a user agent cache) unlessit isfirst
validated with the origin server (or with an intermediate cache that has a fresh copy of the entity). See Section
13.2 for further discussion of the expiration model.

The presence of an Expires field does not imply that the original resource will change or cease to exist at,
before, or after that time.

The format is an absolute date and time as defined by HTTP-date in Section 3.3.1; it MUST bein RFC 1123
date format:

Expires = "Expires" ":" HITP-date

Anexampleof itsuseis

Expires: Thu, 01 Dec 1994 16: 00: 00 GVl

Note: if aresponse includes a Cache-Control field with the max-age directive (see Section 14.9.3), that
directive overrides the Expiresfield.

HTTP/1.1 clients and caches MUST treat other invalid date formats, especially including the value"0", asin
the past (i.e., "already expired").

To mark aresponse as "aready expired,” an origin server sends an Expires date that is equal to the Date header
value. (Seethe rulesfor expiration calculationsin Section 13.2.4.)

To mark aresponse as "never expires," an origin server sends an Expires date approximately one year from
the time the response is sent. HTTP/1.1 servers SHOULD NOT send Expires dates more than one year in the
future.

Fielding, et al. Standards Track [Page 89]

RFC 2616 HTTP/1.1 June 1999

The presence of an Expires header field with a date value of some time in the future on a response that
otherwise would by default be non-cacheable indicates that the response is cacheable, unlessindicated
otherwise by a Cache-Control header field (Section 14.9).

14.22. From

The From request-header field, if given, SHOULD contain an Internet e-mail address for the human user who
controls the requesting user agent. The address SHOUL D be machine-usable, as defined by "mailbox" in RFC
822 [9] as updated by RFC 1123 [8]:

From = "Fronf ":" mail box

An exampleis:

From webnaster @B. org

This header field MAY be used for logging purposes and as a means for identifying the source of invalid or
unwanted requests. It SHOULD NOT be used as an insecure form of access protection. The interpretation of
thisfield isthat the request is being performed on behalf of the person given, who accepts responsibility for the
method performed. In particular, robot agents SHOULD include this header so that the person responsible for
running the robot can be contacted if problems occur on the receiving end.

The Internet e-mail addressin thisfield MAY be separate from the Internet host which issued the request. For
example, when arequest is passed through a proxy the original issuer's address SHOULD be used.

The client SHOULD NOT send the From header field without the user's approval, as it might conflict with the
user's privacy interests or their site's security policy. It is strongly recommended that the user be able to disable,
enable, and modify the value of thisfield at any time prior to arequest.

14.23. Host

The Host request-header field specifies the Internet host and port number of the resource being requested, as
obtained from the original URI given by the user or referring resource (generally an HTTP URL, as described
in Section 3.2.2). The Host field value MUST represent the naming authority of the origin server or gateway
given by the original URL. This allowsthe origin server or gateway to differentiate between internally-
ambiguous URLSs, such astheroot "/" URL of a server for multiple host names on asingle | P address.

Host = "Host" ":" host [":" port] ; Section 3.2.2

A "host" without any trailing port information implies the default port for the service requested (e.g., "80"
foran HTTP URL). For example, arequest on the origin server for <http://www.w3.org/pub/WWW/> would
properly include:

GET / pub/ WW HTTP/ 1.1
Host: www. W3. or g

A client MUST include a Host header field in all HTTP/1.1 request messages . If the requested URI does
not include an Internet host name for the service being requested, then the Host header field MUST be given
with an empty value. An HTTP/1.1 proxy MUST ensure that any request message it forwards does contain
an appropriate Host header field that identifies the service being requested by the proxy. All Internet-based
HTTP/1.1 servers MUST respond with a 400 (Bad Request) status code to any HTTP/1.1 request message
which lacks a Host header field.

See sections 5.2 and 19.6.1.1 for other requirements relating to Host.

Fielding, et al. Standards Track [Page 90]

RFC 2616 HTTP/1.1 June 1999

14.24. 1f-Match

The If-Match request-header field is used with a method to make it conditional. A client that has one or more
entities previously obtained from the resource can verify that one of those entities is current by including alist
of their associated entity tags in the If-Match header field. Entity tags are defined in Section 3.11. The purpose
of thisfeature isto allow efficient updates of cached information with a minimum amount of transaction
overhead. It is also used, on updating requests, to prevent inadvertent modification of the wrong version of a
resource. As aspecial case, the value "*" matches any current entity of the resource.

If-Match = "If-Match" ":" ("*" | 1l#entity-tag)

If any of the entity tags match the entity tag of the entity that would have been returned in the response to a
similar GET request (without the If-Match header) on that resource, or if "*" is given and any current entity
exists for that resource, then the server MAY perform the requested method asif the I1f-Match header field did
not exist.

A server MUST use the strong comparison function (see Section 13.3.3) to compare the entity tagsin If-Match.

If none of the entity tags match, or if "*" is given and no current entity exists, the server MUST NOT perform
the requested method, and MUST return a 412 (Precondition Failed) response. This behavior is most useful
when the client wants to prevent an updating method, such as PUT, from modifying a resource that has
changed since the client last retrieved it.

If the request would, without the If-Match header field, result in anything other than a 2xx or 412 status, then
the If-Match header MUST be ignored.

The meaning of "If-Match: *" is that the method SHOUL D be performed if the representation selected by the
origin server (or by acache, possibly using the Vary mechanism, see Section 14.44) exists, and MUST NOT be
performed if the representation does not exist.

A request intended to update aresource (e.g., aPUT) MAY include an If-Match header field to signal that the

request method MUST NOT be applied if the entity corresponding to the If-Match value (asingle entity tag) is
no longer arepresentation of that resource. This allows the user to indicate that they do not wish the request to
be successful if the resource has been changed without their knowledge. Examples:

I f-Match: "xyzzy"
I f-Match: "xyzzy", "r2d2xxxx", "c3piozzzz"
| f-Match: *

The result of arequest having both an If-Match header field and either an If-None-Match or an If-Modified-
Since header fields is undefined by this specification.

14.25. 1f-Modified-Since

The If-Modified-Since request-header field is used with a method to make it conditional: if the requested
variant has not been modified since the time specified in this field, an entity will not be returned from the
server; instead, a 304 (not modified) response will be returned without any message-body.

If-Mdified-Since = "If-Mdified-Since" ":" HITP-date

An example of thefield is:

I f-Mdified-Since: Sat, 29 Oct 1994 19:43:31 GVl

A GET method with an If-Modified-Since header and no Range header requests that the identified entity be
transferred only if it has been modified since the date given by the If-Modified-Since header. The algorithm for
determining this includes the following cases:

Fielding, et al. Standards Track [Page 91]

RFC 2616 HTTP/1.1 June 1999

1. If therequest would normally result in anything other than a 200 (OK) status, or if the passed If-Modified-
Since dateisinvalid, the response is exactly the same as for anorma GET. A date which islater than the
server's current timeisinvalid.

2. If the variant has been modified since the If-Modified-Since date, the response is exactly the same asfor a
normal GET.

3. If the variant has not been modified since avalid If-Modified-Since date, the server SHOULD return a 304
(Not Modified) response.

The purpose of this featureisto allow efficient updates of cached information with a minimum amount of
transaction overhead.

Note: The Range request-header field modifies the meaning of 1f-Modified-Since; see Section 14.35 for
full details.

Note: If-Modified-Since times are interpreted by the server, whose clock might not be synchronized with
the client.

Note: When handling an If-Modified-Since header field, some serverswill use an exact date comparison
function, rather than aless-than function, for deciding whether to send a 304 (Not Modified) response. To
get best results when sending an If-Modified-Since header field for cache validation, clients are advised to
use the exact date string received in a previous Last-Modified header field whenever possible.

Note: If aclient uses an arbitrary date in the If-Modified-Since header instead of a date taken from

the Last-Modified header for the same request, the client should be aware of the fact that thisdate is
interpreted in the server's understanding of time. The client should consider unsynchronized clocks and
rounding problems due to the different encodings of time between the client and server. This includes
the possibility of race conditions if the document has changed between the time it was first requested and
the If-Modified-Since date of a subsequent request, and the possibility of clock-skew-related problems

if the If-Modified-Since date is derived from the client's clock without correction to the server's clock.
Corrections for different time bases between client and server are at best approximate due to network
latency.

The result of arequest having both an I1f-Modified-Since header field and either an I1f-Match or an If-
Unmodified-Since header fields is undefined by this specification.

14.26. If-None-Match

The If-None-Match request-header field is used with a method to make it conditional. A client that has one or
more entities previously obtained from the resource can verify that none of those entitiesis current by including
alist of their associated entity tags in the If-None-Match header field. The purpose of this featureisto allow
efficient updates of cached information with a minimum amount of transaction overhead. It is aso used to
prevent amethod (e.g. PUT) from inadvertently modifying an existing resource when the client believes that
the resource does not exist.

Asaspecial case, the value "*" matches any current entity of the resource.
| f-None-Match = "I f-None-Match" ":" ("*" | 1#entity-tag)

If any of the entity tags match the entity tag of the entity that would have been returned in the response to a
similar GET request (without the If-None-Match header) on that resource, or if "*" is given and any current
entity exists for that resource, then the server MUST NOT perform the requested method, unless required to do
so because the resource's modification date fails to match that supplied in an I1f-Modified-Since header field in
the request. Instead, if the request method was GET or HEAD, the server SHOULD respond with a 304 (Not
Modified) response, including the cache-related header fields (particularly ETag) of one of the entities that
matched. For all other request methods, the server MUST respond with a status of 412 (Precondition Failed).

See Section 13.3.3 for rules on how to determine if two entities tags match. The weak comparison function can
only be used with GET or HEAD requests.

Fielding, et al. Standards Track [Page 92]

RFC 2616 HTTP/1.1 June 1999

If none of the entity tags match, then the server MAY perform the requested method as if the If-None-Match
header field did not exist, but MUST also ignore any |f-Modified-Since header field(s) in the request. That is, if
no entity tags match, then the server MUST NOT return a 304 (Not Modified) response.

If the request would, without the If-None-Match header field, result in anything other than a 2xx or 304 status,
then the If-None-Match header MUST be ignored. (See Section 13.3.4 for adiscussion of server behavior when
both If-Modified-Since and If-None-Match appear in the same request.)

The meaning of "If-None-Match: *" isthat the method MUST NOT be performed if the representation
selected by the origin server (or by a cache, possibly using the Vary mechanism, see Section 14.44) exists, and
SHOULD be performed if the representation does not exist. This featureisintended to be useful in preventing
races between PUT operations.

Examples:

| f- None- Match: "xyzzy"

| f- None- Match: W "xyzzy"

| f-None-Match: "xyzzy", "r2d2xxxx", "c3piozzzz"

| f-None- Match: W"xyzzy", W"r2d2xxxx", W"c3piozzzz"
| f- None- Mat ch: *

Theresult of arequest having both an I1f-None-Match header field and either an If-Match or an If-Unmodified-
Since header fields is undefined by this specification.

14.27. 1f-Range

If aclient hasapartial copy of an entity in its cache, and wishes to have an up-to-date copy of the entire
entity in its cache, it could use the Range request-header with a conditional GET (using either or both of If-
Unmodified-Since and I1f-Match.) However, if the condition fails because the entity has been modified, the
client would then have to make a second request to obtain the entire current entity-body.

The If-Range header allows aclient to "short-circuit” the second request. Informally, its meaning is "if the
entity is unchanged, send me the part(s) that | am missing; otherwise, send me the entire new entity'.
If-Range = "If-Range" ":" (entity-tag | HITP-date)

If the client has no entity tag for an entity, but does have a Last-Modified date, it MAY use that date in an If-
Range header. (The server can distinguish between avalid HTTP-date and any form of entity-tag by examining
no more than two characters.) The If-Range header SHOULD only be used together with a Range header, and
MUST beignored if the request does not include a Range header, or if the server does not support the sub-
range operation.

If the entity tag given in the If-Range header matches the current entity tag for the entity, then the server
SHOULD provide the specified sub-range of the entity using a 206 (Partial content) response. If the entity tag
does not match, then the server SHOUL D return the entire entity using a 200 (OK) response.

14.28. 1f-Unmodified-Since

The If-Unmodified-Since request-header field is used with a method to make it conditional. If the requested
resource has not been modified since the time specified in thisfield, the server SHOULD perform the requested
operation asif the If-Unmodified-Since header were not present.

If the requested variant has been modified since the specified time, the server MUST NOT perform the
requested operation, and MUST return a 412 (Precondition Failed).

| f-Unnodi fied-Since = "If-Unnodi fied-Since" ":" HITP-date

An example of thefield is:

Fielding, et al. Standards Track [Page 93]

RFC 2616 HTTP/1.1 June 1999

| f-Unnodified-Since: Sat, 29 Oct 1994 19:43:31 GMI

If the request normally (i.e., without the If-Unmodified-Since header) would result in anything other than a 2xx
or 412 status, the If-Unmodified-Since header SHOULD be ignored.

If the specified dateisinvalid, the header isignored.

The result of arequest having both an If-Unmodified-Since header field and either an I1f-None-Match or an If-
Modified-Since header fieldsis undefined by this specification.

14.29. Last-Modified

The Last-Modified entity-header field indicates the date and time at which the origin server believes the variant
was last modified.

Last-Mddified = "Last-Mdified" ":" HITP-date

Anexampleof itsuseis

Last-Modified: Tue, 15 Nov 1994 12:45:26 GMI

The exact meaning of this header field depends on the implementation of the origin server and the nature of
the original resource. For files, it may be just the file system last-modified time. For entities with dynamically
included parts, it may be the most recent of the set of last-modify times for its component parts. For database
gateways, it may be the last-update time stamp of the record. For virtual objects, it may be the last time the
internal state changed.

Anorigin server MUST NOT send a Last-Modified date which islater than the server's time of message
origination. In such cases, where the resource's last modification would indicate some time in the future, the
server MUST replace that date with the message origination date.

An origin server SHOULD obtain the Last-Modified value of the entity as close as possible to the time that it
generates the Date value of its response. This allows a recipient to make an accurate assessment of the entity's
modification time, especialy if the entity changes near the time that the response is generated.

HTTP/1.1 servers SHOULD send Last-Modified whenever feasible.

14.30. Location

The Location response-header field is used to redirect the recipient to alocation other than the Request-URI

for completion of the request or identification of a new resource. For 201 (Created) responses, the Location is
that of the new resource which was created by the request. For 3xx responses, the location SHOULD indicate
the server's preferred URI for automatic redirection to the resource. The field value consists of asingle absolute
URI.

Locati on = "Location" ":" absol ut eUR

Anexampleis:

Location: http://ww. w3. or g/ pub/ WAV Peopl e. ht m

Note: The Content-L ocation header field (Section 14.14) differs from Location in that the Content-

L ocation identifies the original location of the entity enclosed in the request. It is therefore possible for
aresponse to contain header fields for both Location and Content-L ocation. Also see Section 13.10 for
cache requirements of some methods.

Fielding, et al. Standards Track [Page 94]

RFC 2616 HTTP/1.1 June 1999

14.31. Max-Forwards

The Max-Forwards request-header field provides a mechanism with the TRACE (Section 9.8) and OPTIONS
(Section 9.2) methods to limit the number of proxies or gateways that can forward the request to the next
inbound server. This can be useful when the client is attempting to trace a request chain which appears to be
failing or looping in mid-chain.

Max- For war ds = "Max- Forwards" ":" 1*DIAT

The Max-Forwards value is a decimal integer indicating the remaining number of times this request message
may be forwarded.

Each proxy or gateway recipient of a TRACE or OPTIONS request containing a Max-Forwards header

field MUST check and update its value prior to forwarding the request. If the received value is zero (0), the
recipient MUST NOT forward the request; instead, it MUST respond as the final recipient. If the received Max-
Forwards value is greater than zero, then the forwarded message MUST contain an updated M ax-Forwards
field with a value decremented by one (1).

The Max-Forwards header field MAY beignored for all other methods defined by this specification and for any
extension methods for which it is not explicitly referred to as part of that method definition.

14.32. Pragma

The Pragma general-header field is used to include implementation-specific directives that might apply to any
recipient along the request/response chain. All pragma directives specify optional behavior from the viewpoint
of the protocol; however, some systems MAY require that behavior be consistent with the directives.

Pragnma = "Pragma" ":" 1#pragma-directive
pragma-directive = "no-cache" | extension-pragna
extension-pragna = token ["=" (token | quoted-string)]

When the no-cache directive is present in arequest message, an application SHOULD forward the request
toward the origin server even if it has a cached copy of what is being requested. This pragma directive has

the same semantics as the no-cache cache-directive (see Section 14.9) and is defined here for backward
compatibility with HTTP/1.0. Clients SHOULD include both header fields when ano-cache request is sent to a
server not known to be HTTP/1.1 compliant.

Pragma directives MUST be passed through by a proxy or gateway application, regardless of their significance
to that application, since the directives might be applicable to al recipients along the request/response chain.

It is not possible to specify apragma for a specific recipient; however, any pragmadirective not relevant to a
recipient SHOULD be ignored by that recipient.

HTTP/1.1 caches SHOULD treat "Pragma: no-cache" asif the client had sent " Cache-Control: no-cache". No
new Pragma directives will be defined in HTTP.

Note: because the meaning of "Pragma: no-cache as a response header field is not actually specified, it
does not provide areliable replacement for "Cache-Control: no-cache” in aresponse

14.33. Proxy-Authenticate
The Proxy-Authenticate response-header field MUST be included as part of a 407 (Proxy Authentication
Required) response. The field value consists of a challenge that indicates the authentication scheme and
parameters applicable to the proxy for this Request-URI.

Proxy- Aut henticate = "Proxy-Authenticate" ":" 1#chall enge

Fielding, et al. Standards Track [Page 95]

RFC 2616 HTTP/1.1 June 1999

The HTTP access authentication process is described in "HTTP Authentication; Basic and Digest Access
Authentication” [43]. Unlike WWW-Authenticate, the Proxy-Authenticate header field applies only to the
current connection and SHOULD NOT be passed on to downstream clients. However, an intermediate proxy
might need to obtain its own credentials by requesting them from the downstream client, which in some
circumstances will appear asif the proxy is forwarding the Proxy-Authenticate header field.

14.34. Proxy-Authorization

The Proxy-Authorization request-header field alows the client to identify itself (or its user) to a proxy
which requires authentication. The Proxy-Authorization field value consists of credentials containing the
authentication information of the user agent for the proxy and/or realm of the resource being requested.

Proxy- Aut hori zati on = "Proxy-Aut hori zation" ":" credentials

The HTTP access authentication process is described in "HTTP Authentication: Basic and Digest Access
Authentication” [43]. Unlike Authorization, the Proxy-Authorization header field applies only to the next
outbound proxy that demanded authentication using the Proxy-Authenticate field. When multiple proxies

are used in a chain, the Proxy-Authorization header field is consumed by the first outbound proxy that was
expecting to receive credentials. A proxy MAY relay the credentials from the client request to the next proxy if
that is the mechanism by which the proxies cooperatively authenticate a given request.

14.35. Range

14.35.1. Byte Ranges

Since all HTTP entities are represented in HT TP messages as sequences of bytes, the concept of abyterangeis
meaningful for any HTTP entity. (However, not all clients and servers need to support byte-range operations.)

Byte range specificationsin HTTP apply to the sequence of bytesin the entity-body (not necessarily the same
as the message-body).

A byterange operation MAY specify asingle range of bytes, or a set of ranges within a single entity.

ranges-specifier = byte-ranges-specifier

byt e-ranges-specifier = bytes-unit "=" byte-range-set

byt e-range-set = 1#(byte-range-spec | suffix-byte-range-spec)
byt e-range-spec = first-byte-pos "-" [l ast-byte-pos]
first-byte-pos = 1*DIGAT

| ast - byt e- pos =1*DAT

The first-byte-pos value in a byte-range-spec gives the byte-offset of the first byte in arange. The last-byte-pos
value gives the byte-offset of the last byte in the range; that is, the byte positions specified are inclusive. Byte
offsets start at zero.

If the last-byte-pos value is present, it MUST be greater than or equal to the first-byte-pos in that byte-range-
spec, or the byte-range-spec is syntactically invalid. The recipient of abyte-range-set that includes one or more
syntactically invalid byte-range-spec values MUST ignore the header field that includes that byte-range-set.

If the last-byte-pos value is absent, or if the valueis greater than or equal to the current length of the entity-
body, last-byte-pos is taken to be equal to one less than the current length of the entity-body in bytes.

By its choice of last-byte-pos, a client can limit the number of bytes retrieved without knowing the size of the
entity.

suf fi x-byte-range-spec = "-" suffix-length
suffix-length = 1*DIG T

Fielding, et al. Standards Track [Page 96]

RFC 2616 HTTP/1.1 June 1999

A suffix-byte-range-spec is used to specify the suffix of the entity-body, of alength given by the suffix-length
value. (That is, thisform specifiesthelast N bytes of an entity-body.) If the entity is shorter than the specified
suffix-length, the entire entity-body is used.

If asyntactically valid byte-range-set includes at |east one byte-range-spec whose first-byte-posis less than the
current length of the entity-body, or at |east one suffix-byte-range-spec with a non-zero suffix-length, then the
byte-range-set is satisfiable. Otherwise, the byte-range-set is unsatisfiable. If the byte-range-set is unsatisfiable,
the server SHOULD return aresponse with a status of 416 (Requested range not satisfiable). Otherwise, the
server SHOULD return aresponse with a status of 206 (Partial Content) containing the satisfiable ranges of the
entity-body.

Examples of byte-ranges-specifier values (assuming an entity-body of length 10000):
e Thefirst 500 bytes (byte offsets 0-499, inclusive): bytes=0-499

» The second 500 bytes (byte offsets 500-999, inclusive): bytes=500-999

« Thefinal 500 bytes (byte offsets 9500-9999, inclusive): bytes=-500

e Or bytes=9500-

e Thefirst and last bytes only (bytes 0 and 9999): bytes=0-0,-1

» Severa lega but not canonical specifications of the second 500 bytes (byte offsets 500-999, inclusive):
bytes=500-600,601-999
bytes=500-700,601-999

14.35.2. Range Retrieval Requests

HTTPretrieval reguests using conditional or unconditional GET methods MAY request one or more sub-
ranges of the entity, instead of the entire entity, using the Range request header, which applies to the entity
returned as the result of the request:

Range = "Range" ":" ranges-specifier

A server MAY ignore the Range header. However, HTTP/1.1 origin servers and intermediate caches ought to
support byte ranges when possible, since Range supports efficient recovery from partially failed transfers, and
supports efficient partial retrieval of large entities.

If the server supports the Range header and the specified range or ranges are appropriate for the entity:

» The presence of a Range header in an unconditional GET modifies what is returned if the GET is otherwise
successful. In other words, the response carries a status code of 206 (Partial Content) instead of 200 (OK).

« The presence of a Range header in a conditional GET (arequest using one or both of I1f-Maodified-Since and
If-None-Match, or one or both of If-Unmodified-Since and If-Match) modifies what is returned if the GET
is otherwise successful and the condition is true. It does not affect the 304 (Not Modified) response returned
if the conditional isfalse.

In some cases, it might be more appropriate to use the I1f-Range header (see Section 14.27) in addition to the
Range header.

If aproxy that supports ranges receives a Range request, forwards the request to an inbound server, and
receives an entire entity in reply, it SHOULD only return the requested range to its client. It SHOULD store the
entire received responsein its cache if that is consistent with its cache allocation policies.

14.36. Referer

The Referer[sic] request-header field allows the client to specify, for the server's benefit, the address (URI) of
the resource from which the Request-URI was obtained (the "referrer”, although the header field is misspelled.)
The Referer request-header allows a server to generate lists of back-links to resources for interest, logging,
optimized caching, etc. It aso allows obsolete or mistyped links to be traced for maintenance. The Referer field
MUST NOT be sent if the Request-URI was obtained from a source that does not have its own URI, such as
input from the user keyboard.

Fielding, et al. Standards Track [Page 97]

RFC 2616 HTTP/1.1 June 1999

Ref erer = "Referer" ":" (absoluteURl | relativeUR)

Example:

Referer: http://ww. w3. or g/ hypert ext/ Dat aSour ces/ Over vi ew. ht n

If thefield valueisarelative URI, it SHOULD be interpreted relative to the Request-URI. The URI MUST
NOT include a fragment. See Section 15.1.3 for security considerations.

14.37. Retry-After

The Retry-After response-header field can be used with a 503 (Service Unavailable) response to indicate
how long the service is expected to be unavailable to the requesting client. Thisfield MAY also be used with
any 3xx (Redirection) response to indicate the minimum time the user-agent is asked wait before issuing the
redirected request. The value of this field can be either an HTTP-date or an integer number of seconds (in
decimal) after the time of the response.

Retry-After = "Retry-After" ":" (HTTP-date | delta-seconds)

Two examples of its use are

Retry-After: Fri, 31 Dec 1999 23:59:59 GVl
Retry-After: 120

In the latter example, the delay is 2 minutes.
14.38. Server

The Server response-header field contains information about the software used by the origin server to handle
the request. The field can contain multiple product tokens (Section 3.8) and comments identifying the server
and any significant subproducts. The product tokens are listed in order of their significance for identifying the
application.

Server = "Server" ":" 1*(product | commrent)

Example:

Server: CERN 3.0 |ibww 2.17

If the response is being forwarded through a proxy, the proxy application MUST NOT modify the Server
response-header. Instead, it SHOULD include a Viafield (as described in Section 14.45).

Note: Revealing the specific software version of the server might allow the server machine to become
more vulnerable to attacks against software that is known to contain security holes. Server implementors
are encouraged to make this field a configurable option.

14.39. TE

The TE request-header field indicates what extension transfer-codings it is willing to accept in the response
and whether or not it iswilling to accept trailer fieldsin a chunked transfer-coding. Its value may consist of

the keyword "trailers" and/or a comma-separated list of extension transfer-coding names with optional accept
parameters (as described in Section 3.6).

TE
t - codi ngs

"TE" ":" #(t-codings)
"trailers" | (transfer-extension [accept-paranms])

Fielding, et al. Standards Track [Page 98]

RFC 2616 HTTP/1.1 June 1999

The presence of the keyword "trailers" indicates that the client iswilling to accept trailer fieldsin a chunked
transfer-coding, as defined in Section 3.6.1. This keyword is reserved for use with transfer-coding values even
though it does not itself represent a transfer-coding.

Examples of its use are:

TE: deflate
TE:
TE: trailers, deflate;q=0.5

The TE header field only applies to the immediate connection. Therefore, the keyword MUST be supplied
within a Connection header field (Section 14.10) whenever TE is present in an HTTP/1.1 message.
A server tests whether atransfer-coding is acceptable, according to a TE field, using these rules:

1. The"chunked" transfer-coding is always acceptable. If the keyword "trailers” islisted, the client indicates
that it iswilling to accept trailer fields in the chunked response on behalf of itself and any downstream
clients. Theimplication is that, if given, the client is stating that either all downstream clients are willing
to accept trailer fieldsin the forwarded response, or that it will attempt to buffer the response on behalf of
downstream recipients.

Note: HTTP/1.1 does not define any means to limit the size of a chunked response such that a client can be
assured of buffering the entire response.

2. If thetransfer-coding being tested is one of the transfer-codings listed in the TE field, theniit is
acceptable unlessit is accompanied by a qvalue of 0. (As defined in Section 3.9, agvalue of 0 means "not
acceptable.")

3. If multiple transfer-codings are acceptable, then the acceptabl e transfer-coding with the highest non-zero
gvalueis preferred. The "chunked" transfer-coding always has aqvalue of 1.

If the TE field-valueis empty or if no TE field is present, the only transfer-coding is"chunked". A message
with no transfer-coding is always acceptable.

14.40. Trailer

The Trailer genera field value indicates that the given set of header fieldsis present in the trailer of a message
encoded with chunked transfer-coding.

Trailer = "Trailer" ":" 1#field-nane
An HTTP/1.1 message SHOULD include a Trailer header field in a message using chunked transfer-coding

with a non-empty trailer. Doing so allows the recipient to know which header fields to expect in the trailer.

If no Trailer header field is present, the trailer SHOULD NOT include any header fields. See Section 3.6.1 for
restrictions on the use of trailer fieldsin a"chunked" transfer-coding.

Message header fields listed in the Trailer header field MUST NOT include the following header fields:
e Transfer-Encoding

e Content-Length

o Trailer

14.41. Transfer-Encoding
The Transfer-Encoding general-header field indicates what (if any) type of transformation has been applied

to the message body in order to safely transfer it between the sender and the recipient. This differs from the
content-coding in that the transfer-coding is a property of the message, not of the entity.

Transf er - Encodi ng = "Transfer-Encodi ng" ":" 1#transfer-coding

Fielding, et al. Standards Track [Page 99]

RFC 2616 HTTP/1.1 June 1999

Transfer-codings are defined in Section 3.6. An exampleis:

Tr ansf er - Encodi ng: chunked

If multiple encodings have been applied to an entity, the transfer-codings MUST be listed in the order in which
they were applied. Additional information about the encoding parameters MAY be provided by other entity-
header fields not defined by this specification.

Many older HTTP/1.0 applications do not understand the Transfer-Encoding header.

14.42. Upgrade

The Upgrade general-header allows the client to specify what additional communication protocols it supports
and would like to use if the server finds it appropriate to switch protocols. The server MUST use the Upgrade
header field within a 101 (Switching Protocols) response to indicate which protocol(s) are being switched.

Upgr ade = "Upgrade" ":" 1#product

For example,

Upgrade: HTTP/ 2.0, SHTTP/ 1.3, IRC6.9, RTA/ x11

The Upgrade header field is intended to provide a simple mechanism for transition from HTTP/1.1 to some
other, incompatible protocol. It does so by allowing the client to advertise its desire to use another protocol,
such asalater version of HTTP with a higher major version number, even though the current request has been
made using HTTP/1.1. This eases the difficult transition between incompatible protocols by allowing the client
to initiate arequest in the more commonly supported protocol while indicating to the server that it would like to
use a"better" protocol if available (where "better" is determined by the server, possibly according to the nature
of the method and/or resource being requested).

The Upgrade header field only applies to switching application-layer protocols upon the existing transport-
layer connection. Upgrade cannot be used to insist on a protocol change; its acceptance and use by the server
isoptional. The capabilities and nature of the application-layer communication after the protocol changeis
entirely dependent upon the new protocol chosen, although the first action after changing the protocol MUST
be aresponse to theinitial HTTP request containing the Upgrade header field.

The Upgrade header field only applies to the immediate connection. Therefore, the upgrade keyword MUST
be supplied within a Connection header field (Section 14.10) whenever Upgradeis present inan HTTP/1.1

message.
The Upgrade header field cannot be used to indicate a switch to a protocol on a different connection. For that
purpose, it is more appropriate to use a 301, 302, 303, or 305 redirection response.

This specification only defines the protocol name "HTTP" for use by the family of Hypertext Transfer
Protocols, as defined by the HTTP version rules of Section 3.1 and future updates to this specification. Any
token can be used as a protocol name; however, it will only be useful if both the client and server associate the
name with the same protocol.

14.43. User-Agent

The User-Agent request-header field contains information about the user agent originating the request. Thisis
for statistical purposes, the tracing of protocol violations, and automated recognition of user agents for the sake
of tailoring responses to avoid particular user agent limitations. User agents SHOULD include this field with
reguests. The field can contain multiple product tokens (Section 3.8) and comments identifying the agent and
any subproducts which form a significant part of the user agent. By convention, the product tokens are listed in
order of their significance for identifying the application.

Fielding, et al. Standards Track [Page 100]

RFC 2616 HTTP/1.1 June 1999

User - Agent = "User-Agent" ":" 1*(product | conment)

Example:

User - Agent: CERN- Li neMode/ 2. 15 |i bww/ 2. 17b3

14.44. Vary

The Vary field value indicates the set of request-header fields that fully determines, while the response is fresh,
whether a cache is permitted to use the response to reply to a subsequent request without revalidation. For
uncacheable or stale responses, the Vary field value advises the user agent about the criteria that were used

to select the representation. A Vary field value of "*" implies that a cache cannot determine from the request
headers of a subsequent request whether this response is the appropriate representation. See Section 13.6 for
use of the Vary header field by caches.

Vary = "Vary" ":" ("*" | 1#field-name)

AnHTTP/1.1 server SHOULD include a Vary header field with any cacheable response that is subject to
server-driven negotiation. Doing so allows a cache to properly interpret future requests on that resource and
informs the user agent about the presence of negotiation on that resource. A server MAY include aVary header
field with a non-cacheable response that is subject to server-driven negotiation, since this might provide the
user agent with useful information about the dimensions over which the response varies at the time of the
response.

A Vary field value consisting of alist of field-names signals that the representation selected for the response

is based on a selection agorithm which considers ONLY the listed request-header field valuesin selecting the
most appropriate representation. A cache MAY assume that the same selection will be made for future requests
with the same values for the listed field names, for the duration of time for which the response is fresh.

The field-names given are not limited to the set of standard request-header fields defined by this specification.
Field names are case-insensitive.

A Vary field value of "*" signals that unspecified parameters not limited to the request-headers (e.g., the
network address of the client), play arole in the selection of the response representation. The "*" value MUST
NOT be generated by a proxy server; it may only be generated by an origin server.

14.45. Via

The Viagenera-header field MUST be used by gateways and proxies to indicate the intermediate protocols
and recipients between the user agent and the server on requests, and between the origin server and the client
on responses. It is analogous to the "Received” field of RFC 822 [9] and isintended to be used for tracking
message forwards, avoiding request loops, and identifying the protocol capabilities of all senders along the

reguest/response chain.
Via = "Via" ":" 1#(received-protocol received-by [comment])
recei ved-protocol = [protocol-nane "/"] protocol -version
pr ot ocol - name = t oken
protocol -version = token
recei ved- by = (host [":" port]) | pseudonym
pseudonym = t oken

The received-protocol indicates the protocol version of the message received by the server or client along each
segment of the request/response chain. The received-protocol version is appended to the Viafield value when
the message is forwarded so that information about the protocol capabilities of upstream applications remains
visibleto all recipients.

Fielding, et al. Standards Track [Page 101]

RFC 2616 HTTP/1.1 June 1999

The protocol-name is optional if and only if it would be "HTTP". The received-by field is normally the host
and optional port number of arecipient server or client that subsequently forwarded the message. However, if
the real host is considered to be sensitive information, it MAY be replaced by a pseudonym. If the port is not
given, it MAY be assumed to be the default port of the received-protocol.

Multiple Viafield values represents each proxy or gateway that has forwarded the message. Each recipient
MUST append its information such that the end result is ordered according to the sequence of forwarding
applications.

Comments MAY be used in the Via header field to identify the software of the recipient proxy or gateway,
analogous to the User-Agent and Server header fields. However, all commentsin the Viafield are optional and
MAY beremoved by any recipient prior to forwarding the message.

For example, arequest message could be sent from an HTTP/1.0 user agent to an internal proxy code-named
"fred", which uses HTTP/1.1 to forward the request to a public proxy at nowhere.com, which completes the
reguest by forwarding it to the origin server at www.ics.uci.edu. The request received by www.ics.uci.edu
would then have the following Via header field:

Via: 1.0 fred, 1.1 nowhere.com (Apache/1. 1)

Proxies and gateways used as a portal through a network firewall SHOULD NOT, by default, forward the
names and ports of hosts within the firewall region. Thisinformation SHOULD only be propagated if explicitly
enabled. If not enabled, the received-by host of any host behind the firewall SHOULD be replaced by an
appropriate pseudonym for that host.

For organizations that have strong privacy requirements for hiding internal structures, aproxy MAY combine
an ordered subsequence of Viaheader field entries with identical received-protocol valuesinto asingle such
entry. For example,

Via: 1.0 ricky, 1.1 ethel, 1.1 fred, 1.0 lucy

could be collapsed to

Via: 1.0 ricky, 1.1 nmertz, 1.0 |ucy

Applications SHOULD NOT combine multiple entries unless they are all under the same organizational control
and the hosts have already been replaced by pseudonyms. Applications MUST NOT combine entries which
have different received-protocol values.

14.46. Warning

The Warning general-header field is used to carry additional information about the status or transformation

of amessage which might not be reflected in the message. Thisinformation istypically used to warn about a
possible lack of semantic transparency from caching operations or transformations applied to the entity body of
the message.

Warning headers are sent with responses using:

Fielding, et al. Standards Track [Page 102]

RFC 2616 HTTP/1.1 June 1999

Wr ni ng = "Wr ni ng" 1#war ni ng- val ue

war ni ng-val ue = warn-code SP warn-agent SP warn-t ext
[SP war n- dat €]

warn-code = 3DIAT
warn-agent = (host [":" port]) | pseudonym
; the nane or pseudonym of the server adding
; the Warning header, for use in debuggi ng
warn-text = quoted-string
warn-date = <"> HTTP-date <">

A response MAY carry more than one Warning header.

The warn-text SHOULD be in anatural language and character set that is most likely to be intelligible to the
human user receiving the response. This decision MAY be based on any available knowledge, such as the
location of the cache or user, the Accept-Language field in arequest, the Content-Language field in a response,
etc. The default language is English and the default character set is 1SO-8859-1.

If acharacter set other than 1SO-8859-1 is used, it MUST be encoded in the warn-text using the method
described in RFC 2047 [14].

Warning headers can in general be applied to any message, however some specific warn-codes are specific

to caches and can only be applied to response messages. New Warning headers SHOULD be added after any
existing Warning headers. A cache MUST NOT delete any Warning header that it received with a message.
However, if a cache successfully validates a cache entry, it SHOULD remove any Warning headers previously
attached to that entry except as specified for specific Warning codes. It MUST then add any Warning headers
received in the validating response. In other words, Warning headers are those that would be attached to the
most recent relevant response.

When multiple Warning headers are attached to aresponse, the user agent ought to inform the user of as many
of them as possible, in the order that they appear in the response. If it is not possible to inform the user of all of
the warnings, the user agent SHOUL D follow these heuristics:

« Warnings that appear early in the response take priority over those appearing later in the response.

« Warningsin the user's preferred character set take priority over warningsin other character sets but with
identical warn-codes and warn-agents.

Systems that generate multiple Warning headers SHOULD order them with this user agent behavior in mind.

Requirements for the behavior of caches with respect to Warnings are stated in Section 13.1.2.

Thisisalist of the currently-defined warn-codes, each with arecommended warn-text in English, and a
description of its meaning.
110 Responseis stale
MUST be included whenever the returned responseis stale.
111 Revalidation failed
MUST beincluded if a cache returns a stale response because an attempt to revalidate the response failed,
due to an inability to reach the server.
112 Disconnected operation

SHOULD beincluded if the cacheisintentionally disconnected from the rest of the network for a period
of time.

113 Heuristic expiration

MUST beincluded if the cache heuristically chose a freshness lifetime greater than 24 hours and the
response's age is greater than 24 hours.

Fielding, et al. Standards Track [Page 103]

RFC 2616 HTTP/1.1 June 1999

199 Miscellaneous warning

The warning text MAY include arbitrary information to be presented to a human user, or logged. A system
receiving thiswarning MUST NOT take any automated action, besides presenting the warning to the user.

214 Transformation applied
MUST be added by an intermediate cache or proxy if it applies any transformation changing the content-
coding (as specified in the Content-Encoding header) or media-type (as specified in the Content-Type
header) of the response, or the entity-body of the response, unless this Warning code aready appearsin
the response.

299 Miscellaneous persistent warning

The warning text MAY include arbitrary information to be presented to a human user, or logged. A system
receiving thiswarning MUST NOT take any automated action.

If an implementation sends a message with one or more Warning headers whose version isHTTP/1.0 or lower,
then the sender MUST include in each warning-value a warn-date that matches the date in the response.

If an implementation receives a message with awarning-value that includes a warn-date, and that warn-date
is different from the Date value in the response, then that warning-value MUST be deleted from the message
before storing, forwarding, or using it. (This prevents bad consequences of naive caching of Warning header
fields.) If al of the warning-values are deleted for this reason, the Warning header MUST be deleted as well.

14.47. WWW-Authenticate

The WWW-Authenticate response-header field MUST be included in 401 (Unauthorized) response messages.
The field value consists of at |east one challenge that indicates the authentication scheme(s) and parameters
applicable to the Request-URI.

WAV Aut henticate = "WMWV Aut henticate” ":" 1#chall enge

The HTTP access authentication process is described in "HTTP Authentication: Basic and Digest Access
Authentication” [43]. User agents are advised to take specia care in parsing the WWW-Authenticate field
value as it might contain more than one challenge, or if more than one WWW-Authenticate header field is
provided, the contents of a challenge itself can contain a comma-separated list of authentication parameters.

Fielding, et al. Standards Track [Page 104]

RFC 2616 HTTP/1.1 June 1999

15. Security Considerations

This section is meant to inform application developers, information providers, and users of the security
limitations in HTTP/1.1 as described by this document. The discussion does not include definitive solutions to
the problems revealed, though it does make some suggestions for reducing security risks.

15.1. Personal Information

HTTP clients are often privy to large amounts of personal information (e.g. the user's name, location, mail
address, passwords, encryption keys, etc.), and SHOULD be very careful to prevent unintentional |eakage
of thisinformation viathe HTTP protocol to other sources. We very strongly recommend that a convenient
interface be provided for the user to control dissemination of such information, and that designers and
implementors be particularly careful in this area. History shows that errorsin this area often create serious
security and/or privacy problems and generate highly adverse publicity for the implementor's company.

15.1.1. Abuse of Server Log Information

A server isin the position to save personal data about a user's requests which might identify their reading
patterns or subjects of interest. Thisinformation is clearly confidential in nature and its handling can be
constrained by law in certain countries. People using the HT TP protocol to provide data are responsible for
ensuring that such material is not distributed without the permission of any individuals that are identifiable by
the published results.

15.1.2. Transfer of Sensitive Information

Like any generic data transfer protocol, HTTP cannot regulate the content of the data that is transferred, nor
isthere any apriori method of determining the sensitivity of any particular piece of information within the
context of any given request. Therefore, applications SHOULD supply as much control over thisinformation
as possible to the provider of that information. Four header fields are worth special mention in this context:
Server, Via, Referer and From.

Revealing the specific software version of the server might allow the server machine to become more
vulnerable to attacks against software that is known to contain security holes. Implementors SHOUL D make
the Server header field a configurable option.

Proxies which serve as a portal through a network firewall SHOULD take special precautions regarding the
transfer of header information that identifies the hosts behind the firewall. In particular, they SHOULD remove,
or replace with sanitized versions, any Viafields generated behind the firewall.

The Referer header allows reading patterns to be studied and reverse links drawn. Although it can be very
useful, its power can be abused if user details are not separated from the information contained in the Referer.
Even when the personal information has been removed, the Referer header might indicate a private document's
URI whose publication would be inappropriate.

Theinformation sent in the From field might conflict with the user's privacy interests or their site's security
policy, and hence it SHOULD NOT be transmitted without the user being able to disable, enable, and modify
the contents of the field. The user MUST be able to set the contents of this field within a user preference or
application defaults configuration.

We suggest, though do not require, that a convenient toggle interface be provided for the user to enable or
disable the sending of From and Referer information.

The User-Agent (Section 14.43) or Server (Section 14.38) header fields can sometimes be used to determine
that a specific client or server have a particular security hole which might be exploited. Unfortunately, this
same information is often used for other valuable purposes for which HTTP currently has no better mechanism.

Fielding, et al. Standards Track [Page 105]

RFC 2616 HTTP/1.1 June 1999

15.1.3. Encoding Sensitive Information in URI's

Because the source of alink might be private information or might reveal an otherwise private information
source, it is strongly recommended that the user be able to select whether or not the Referer field is sent.
For example, abrowser client could have atoggle switch for browsing openly/anonymously, which would
respectively enable/disable the sending of Referer and From information.

Clients SHOULD NOT include a Referer header field in a (non-secure) HTTP request if the referring page was
transferred with a secure protocol.

Authors of serviceswhich usethe HTTP protocol SHOULD NOT use GET based forms for the submission
of sensitive data, because this will cause this datato be encoded in the Request-URI. Many existing servers,
proxies, and user agents will log the request URI in some place where it might be visible to third parties.
Servers can use POST-based form submission instead

15.1.4. Privacy Issues Connected to Accept Headers

Accept request-headers can reveal information about the user to all servers which are accessed. The Accept-
Language header in particular can reveal information the user would consider to be of a private nature, because
the understanding of particular languages is often strongly correlated to the membership of a particular ethnic
group. User agents which offer the option to configure the contents of an Accept-Language header to be sent in
every request are strongly encouraged to let the configuration process include a message which makes the user
aware of theloss of privacy involved.

An approach that limits the loss of privacy would be for a user agent to omit the sending of Accept-Language
headers by default, and to ask the user whether or not to start sending Accept-Language headers to a server

if it detects, by looking for any Vary response-header fields generated by the server, that such sending could
improve the quality of service.

Elaborate user-customized accept header fields sent in every request, in particular if these include quality
values, can be used by servers asrelatively reliable and long-lived user identifiers. Such user identifiers
would allow content providersto do click-trail tracking, and would allow collaborating content providers to
match cross-server click-trails or form submissions of individual users. Note that for many users not behind
aproxy, the network address of the host running the user agent will also serve as along-lived user identifier.
In environments where proxies are used to enhance privacy, user agents ought to be conservative in offering
accept header configuration options to end users. As an extreme privacy measure, proxies could filter the
accept headersin relayed requests. General purpose user agents which provide a high degree of header
configurability SHOUL D warn users about the loss of privacy which can be involved.

15.2. AttacksBased On File and Path Names

Implementations of HTTP origin servers SHOULD be careful to restrict the documents returned by HTTP
requests to be only those that were intended by the server administrators. If an HTTP server trandates HTTP
URIsdirectly into file system calls, the server MUST take special care not to serve files that were not intended
to be delivered to HTTP clients. For example, UNIX, Microsoft Windows, and other operating systems use

".." as apath component to indicate a directory level above the current one. On such asystem, an HTTP server
MUST disallow any such construct in the Request-URI if it would otherwise allow access to a resource outside
those intended to be accessible viathe HTTP server. Similarly, files intended for reference only internally

to the server (such as access control files, configuration files, and script code) MUST be protected from
inappropriate retrieval, since they might contain sensitive information. Experience has shown that minor bugs
in such HTTP server implementations have turned into security risks.

15.3. DNS Spoofing

Clientsusing HTTP rely heavily on the Domain Name Service, and are thus generally prone to security
attacks based on the deliberate mis-association of 1P addresses and DNS names. Clients need to be cautiousin
assuming the continuing validity of an |P number/DNS name association.

Fielding, et al. Standards Track [Page 106]

RFC 2616 HTTP/1.1 June 1999

In particular, HTTP clients SHOULD rely on their name resolver for confirmation of an IP number/DNS name
association, rather than caching the result of previous host name lookups. Many platforms aready can cache
host name lookups locally when appropriate, and they SHOULD be configured to do so. It is proper for these
lookups to be cached, however, only when the TTL (Time To Live) information reported by the name server
makes it likely that the cached information will remain useful.

If HTTP clients cache the results of host name lookups in order to achieve a performance improvement, they
MUST observe the TTL information reported by DNS.

If HTTP clients do not observe thisrule, they could be spoofed when a previously-accessed server's | P address
changes. As network renumbering is expected to become increasingly common [24], the possibility of thisform
of attack will grow. Observing this requirement thus reduces this potential security vulnerability.

This requirement also improves the load-balancing behavior of clients for replicated servers using the same
DNS name and reduces the likelihood of a user's experiencing failure in accessing sites which use that strategy.

15.4. Location Headers and Spoofing

If asingle server supports multiple organizations that do not trust one another, then it MUST check the values
of Location and Content-L ocation headers in responses that are generated under control of said organizationsto
make sure that they do not attempt to invalidate resources over which they have no authority.

15.5. Content-Disposition Issues

RFC 1806 [35], from which the often implemented Content-Disposition (see Appendix 19.5.1) header in HTTP
is derived, has a number of very serious security considerations. Content-Disposition is not part of the HTTP
standard, but since it iswidely implemented, we are documenting its use and risks for implementors. See RFC
2183 [49] (which updates RFC 1806) for details.

15.6. Authentication Credentialsand Idle Clients

Existing HTTP clients and user agents typically retain authentication information indefinitely. HTTP/1.1. does
not provide a method for a server to direct clients to discard these cached credentials. Thisis a significant
defect that requires further extensions to HTTP. Circumstances under which credential caching can interfere
with the application's security model include but are not limited to:

« Clientswhich have been idle for an extended period following which the server might wish to cause the
client to reprompt the user for credentials.

» Applications which include a session termination indication (such as a “logout' or “commit' button on a
page) after which the server side of the application “knows' that there is no further reason for the client to
retain the credentials.

Thisis currently under separate study. There are a number of work-arounds to parts of this problem, and we
encourage the use of password protection in screen savers, idle time-outs, and other methods which mitigate the
security problems inherent in this problem. In particular, user agents which cache credentials are encouraged to
provide areadily accessible mechanism for discarding cached credentials under user control.

15.7. Proxiesand Caching

By their very nature, HTTP proxies are men-in-the-middle, and represent an opportunity for man-in-the-
middle attacks. Compromise of the systems on which the proxies run can result in serious security and privacy
problems. Proxies have access to security-related information, personal information about individual users and
organizations, and proprietary information belonging to users and content providers. A compromised proxy, or
aproxy implemented or configured without regard to security and privacy considerations, might be used in the
commission of awide range of potential attacks.

Proxy operators should protect the systems on which proxies run as they would protect any system that
contains or transports sensitive information. In particular, log information gathered at proxies often contains

Fielding, et al. Standards Track [Page 107]

RFC 2616 HTTP/1.1 June 1999

highly sensitive personal information, and/or information about organizations. Log information should be
carefully guarded, and appropriate guidelines for use developed and followed. (Section 15.1.1).

Caching proxies provide additional potential vulnerahilities, since the contents of the cache represent an
attractive target for malicious exploitation. Because cache contents persist after an HTTP request is complete,
an attack on the cache can reveal information long after a user believes that the information has been removed
from the network. Therefore, cache contents should be protected as sensitive information.

Proxy implementors should consider the privacy and security implications of their design and coding decisions,
and of the configuration options they provide to proxy operators (especially the default configuration).

Users of aproxy need to be aware that they are no trustworthier than the people who run the proxy; HTTP itself
cannot solve this problem.

Thejudicious use of cryptography, when appropriate, may suffice to protect against a broad range of security
and privacy attacks. Such cryptography is beyond the scope of the HTTP/1.1 specification.

15.7.1. Denial of Service Attacks on Proxies
They exist. They are hard to defend against. Research continues. Beware.

Fielding, et al. Standards Track [Page 108]

RFC 2616 HTTP/1.1 June 1999

16. Acknowledgments

This specification makes heavy use of the augmented BNF and generic constructs defined by David H. Crocker
for RFC 822 [9]. Similarly, it reuses many of the definitions provided by Nathaniel Borenstein and Ned Freed
for MIME [7]. We hope that their inclusion in this specification will help reduce past confusion over the
relationship between HTTP and Internet mail message formats.

The HTTP protocol has evolved considerably over the years. It has benefited from alarge and active developer
community--the many people who have participated on the www-talk mailing list--and it is that community
which has been most responsible for the success of HTTP and of the World-Wide Web in general. Marc
Andreessen, Robert Cailliau, Daniel W. Connolly, Bob Denny, John Franks, Jean-Francois Groff, Phillip M.
Hallam-Baker, Hakon W. Lie, Ari Luotonen, Rob McCool, Lou Montulli, Dave Raggett, Tony Sanders, and
Marc VanHeyningen deserve special recognition for their efforts in defining early aspects of the protocol.

This document has benefited greatly from the comments of all those participating in the HTTP-WG. In addition
to those already mentioned, the following individuals have contributed to this specification:

Gary Adans Ross Patterson
Haral d Tveit Alvestrand Al bert Lunde
Keith Ball John C. Mallery

Bri an Behl endor f
Paul Burchard
Mauri zi o Codogno
M ke Cow i shaw
Roman Czyborra
M chael A. Dol an
David J. Fi ander
Al an Freier

Mar ¢ Hedl und
Greg Herlihy
Koen Hol t man

Al ex Hoprmann

Bob Jer ni gan

Shel Kaphan
Rohit Khare
John Kl ensin
Martijn Koster

Al exei Kosut
David M Kri stol
Dani el LaLi berte
Ben Laurie

Jean-Philippe Martin-Flatin
Mtra

David Morris

Gavin Nicol

Bill Perry

Jeffrey Perry
Scott Powers

Onen Rees

Luigi R zzo

Davi d Robi nson
Mar ¢ Sal onon

Rich Sal z

Allan M Schiffmn
Ji m Sei dnman

Chuck Shotton

Eric W Sink

Simon E. Spero

Ri chard N. Tayl or
Robert S. Thau
Bill (BearHeart) Wi nman
Francoi s Yer geau

Paul J. Leach Mary Ell en Zurko
Dani el DuBoi s Josh Cohen

Much of the content and presentation of the caching design is due to suggestions and comments from
individuals including: Shel Kaphan, Paul Leach, Koen Holtman, David Morris, and Larry Masinter.

Most of the specification of rangesis based on work originally done by Ari Luotonen and John Franks, with
additional input from Steve Zilles.

Thanks to the "cave men" of Palo Alto. You know who you are.

Jim Gettys (the current editor of this document) wishes particularly to thank Roy Fielding, the previous editor
of this document, along with John Klensin, Jeff Mogul, Paul Leach, Dave Kristol, Koen Holtman, John Franks,
Josh Cohen, Alex Hopmann, Scott Lawrence, and Larry Masinter for their help. And thanks go particularly to
Jeff Mogul and Scott Lawrence for performing the "MUST/MAY/SHOULD" audit.

Fielding, et al. Standards Track [Page 109]

RFC 2616 HTTP/1.1 June 1999

The Apache Group, Anselm Baird-Smith, author of Jigsaw, and Henrik Frystyk implemented RFC 2068 early,
and we wish to thank them for the discovery of many of the problems that this document attempts to rectify.

Fielding, et al. Standards Track [Page 110]

RFC 2616 HTTP/1.1 June 1999

17. References

(4
(2]

(3]

[4]

(3]
6]

(7]

(8]
[9]
[10]

[11]
[12]
[13]
[14]

[15]
[16]
[17]
[18]
[19]
[20]

[21]

[22]

[23]
[24]
[25]

Alvestrand, H., "Tags for the |dentification of Languages', RFC 1766, March 1995.

Anklesaria, F., McCahill, M., Lindner, P., Johnson, D., Torrey, D., and B. Alberti, "The Internet Gopher
Protocol (adistributed document search and retrieval protocol)”, RFC 1436, March 1993.

Berners-Leg, T., "Universal Resource ldentifiersin WWW: A Unifying Syntax for the Expression of Names
and Addresses of Objects on the Network as used in the World-Wide Web", RFC 1630, June 1994.

Berners-Lee, T., Masinter, L., and M. McCahill, "Uniform Resource Locators (URL)", RFC 1738,
December 1994.

Berners-Lee, T. and D. Connolly, "Hypertext Markup Language - 2.0", RFC 1866, November 1995.

Berners-Lee, T., Fielding, R., and H. Nielsen, "Hypertext Transfer Protocol -- HTTP/1.0", RFC 1945, May
1996.

Freed, N. and N. Borenstein, "Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet
Message Bodies', RFC 2045, November 1996.

Braden, R., "Requirements for Internet Hosts - Application and Support”, STD 3, RFC 1123, October 1989.
Crocker, D., "Standard for the format of ARPA Internet text messages', STD 11, RFC 822, August 1982.

Davis, F., Kahle, B., Morris, H., Salem, J., Shen, T., Wang, R., Sui, J., and M. Grinbaum, "WAIS Interface
Protocol Prototype Functional Specification (v1.5)", Thinking Machines Corporation, April 1990.

Fielding, R., "Relative Uniform Resource Locators', RFC 1808, June 1995.
Horton, M. and R. Adams, " Standard for interchange of USENET messages', RFC 1036, December 1987.
Kantor, B. and P. Lapsley, "Network News Transfer Protocol", RFC 977, February 1986.

Moore, K., "MIME (Multipurpose Internet Mail Extensions) Part Three: M essage Header Extensions for
Non-ASClI Text", RFC 2047, November 1996.

Masinter, L. and E. Nebel, "Form-based File Upload in HTML", RFC 1867, November 1995.
Postel, J., "Simple Mail Transfer Protocol", STD 10, RFC 821, August 1982.

Postel, J., "Media Type Registration Procedure”, RFC 1590, November 1996.

Postel, J. and J. Reynolds, "File Transfer Protocol”, STD 9, RFC 959, October 1985.
Reynolds, J. and J. Postel, "Assigned Numbers*, STD 2, RFC 1700, October 1994.

Masinter, L. and K. Sollins, "Functional Requirements for Uniform Resource Names', RFC 1737,
December 1994.

American National Standards Institute, "Coded Character Set -- 7-bit American Standard Code for
Information Interchange”, ANSI X3.4, 1986.

International Organization for Standardization, "Information technology - 8-bit single byte coded graphic -
character sets’, 1987-1990.

Part 1: Latin alphabet No. 1, | SO-8859-1:1987. Part 2: Latin alphabet No. 2, |SO-8859-2, 1987. Part 3:
Latin alphabet No. 3, |SO-8859-3, 1988. Part 4: Latin alphabet No. 4, | SO-8859-4, 1988. Part 5: Latin/
Cyrillic alphabet, 1SO-8859-5, 1988. Part 6: Latin/Arabic alphabet, | SO-8859-6, 1987. Part 7: Latin/Greek
alphabet, |SO-8859-7, 1987. Part 8: Latin/Hebrew a phabet, 1SO-8859-8, 1988. Part 9: Latin aphabet No. 5,
| SO-8859-9, 1990.

Myers, J. and M. Rose, "The Content-MD5 Header Field", RFC 1864, October 1995.
Carpenter, B. and Y. Rekhter, "Renumbering Needs Work", RFC 1900, February 1996.

Deutsch, P., Gailly, J-L., Adler, M., Deutsch, L., and G. Randers-Pehrson, "GZIP file format specification
version 4.3", RFC 1952, May 1996.

Fielding, et al. Standards Track [Page 111]

https://www.rfc-editor.org/rfc/rfc1766.html
https://www.rfc-editor.org/rfc/rfc1436.html
https://www.rfc-editor.org/rfc/rfc1436.html
https://www.rfc-editor.org/rfc/rfc1630.html
https://www.rfc-editor.org/rfc/rfc1630.html
https://www.rfc-editor.org/rfc/rfc1738.html
https://www.rfc-editor.org/rfc/rfc1866.html
https://www.rfc-editor.org/rfc/rfc1945.html
https://www.rfc-editor.org/rfc/rfc2045.html
https://www.rfc-editor.org/rfc/rfc2045.html
https://www.rfc-editor.org/rfc/rfc1123.html
https://www.rfc-editor.org/info/std3
https://www.rfc-editor.org/rfc/rfc822.html
https://www.rfc-editor.org/info/std11
https://www.rfc-editor.org/rfc/rfc1808.html
https://www.rfc-editor.org/rfc/rfc1036.html
https://www.rfc-editor.org/rfc/rfc977.html
https://www.rfc-editor.org/rfc/rfc2047.html
https://www.rfc-editor.org/rfc/rfc2047.html
https://www.rfc-editor.org/rfc/rfc1867.html
https://www.rfc-editor.org/rfc/rfc821.html
https://www.rfc-editor.org/info/std10
https://www.rfc-editor.org/rfc/rfc1590.html
https://www.rfc-editor.org/rfc/rfc959.html
https://www.rfc-editor.org/info/std9
https://www.rfc-editor.org/rfc/rfc1700.html
https://www.rfc-editor.org/info/std2
https://www.rfc-editor.org/rfc/rfc1737.html
https://www.rfc-editor.org/rfc/rfc1864.html
https://www.rfc-editor.org/rfc/rfc1900.html
https://www.rfc-editor.org/rfc/rfc1952.html
https://www.rfc-editor.org/rfc/rfc1952.html

RFC 2616 HTTP/1.1 June 1999

[26]

[27]

[28]
[29]
[30]

[31]

[32]

[33]

[34]
[35]

[36]
[37]
[38]
[39]

[40]

[41]
[42]

[43]

[44]
[45]

[46]
[47]
[48]

[49]

Padmanabhan, V. and J. Mogul, "Improving HTTP Latency", Computer Networks and ISDN Systemsv. 28,
pp. 25-35, Dec 1995.

Slightly revised version of paper in Proc. 2nd International WWW Conference '94: Mosaic and the Web,
Oct. 1994, which is available at <http://www.ncsa.uiuc.edu/SDG/I T94/Proceedings/DDay/mogul/HTTPL ate

ncy.html>.

Touch, J., Heidemann, J., and K. Obraczka, "Analysis of HTTP Performance”, ISl Research Report IS/
RR-98-463 (original report dated Aug.1996), Aug 1998, <http://www.isi.edu/touch/pubs/http-perfo6/>.

Mills, D., "Network Time Protocol (Version 3) Specification, Implementation”, RFC 1305, March 1992,
Deutsch, P., "DEFLATE Compressed Data Format Specification version 1.3", RFC 1951, May 1996.

Spero, S, "Analysis of HTTP Performance Problems’, <http://sunsite.unc.edu/mdma-rel ease/http-prob.htm
>

Deutsch, L. and J-L. Gailly, "ZLIB Compressed Data Format Specification version 3.3", RFC 1950, May
1996.

Franks, J., Hallam-Baker, P., Hostetler, J., Leach, P., Luotonen, A., Sink, E., and L. Stewart, "An Extension
to HTTP : Digest Access Authentication”, RFC 2069, January 1997.

Fielding, R., Gettys, J., Mogul, J., Nielsen, H., and T. Berners-Lee, "Hypertext Transfer Protocol --
HTTP/1.1", RFC 2068, January 1997.

Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels', BCP 14, RFC 2119, March 1997.

Troost, R. and S. Dorner, "Communicating Presentation Information in Internet Messages: The Content-
Disposition Header", RFC 1806, June 1995.

Mogul, J.,, Fielding, R., Gettys, J., and H. Nielsen, "Use and Interpretation of HTTP Version Numbers', RFC
2145, May 1997.

Palme, J., "Common Internet Message Headers", RFC 2076, February 1997.
Yergeau, F., "UTF-8, atransformation format of 1SO 10646", RFC 2279, January 1998.

Nielsen, H., Gettys, J., Prud'hommeaux, E., Lie, H., and C. Lilley, "Network Performance Effects of
HTTP/1.1, CSS1, and PNG", Proceedings of ACM SIGCOMM '97, Cannes France, Sep 1997.

Freed, N. and N. Borenstein, "Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types",
RFC 2046, November 1996.

Alvestrand, H., "IETF Policy on Character Sets and Languages', BCP 18, RFC 2277, January 1998.

Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform Resource Identifiers (URI): Generic Syntax", RFC
2396, August 1998.

Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S., Leach, P., Luotonen, A., and L. Stewart, "HTTP
Authentication: Basic and Digest Access Authentication”, RFC 2617, June 1999.

Luotonen, A., "Tunneling TCP based protocols through Web proxy servers', Work in Progress.

Palme, J. and A. Hopmann, "MIME E-mail Encapsulation of Aggregate Documents, such asHTML
(MHTML)", RFC 2110, March 1997.

Bradner, S., "The Internet Standards Process -- Revision 3", BCP 9, RFC 2026, October 1996.
Masinter, L., "Hyper Text Coffee Pot Control Protocol (HTCPCP/1.0)", RFC 2324, 1 April 1998.

Freed, N. and N. Borenstein, "Multipurpose Internet Mail Extensions (MIME) Part Five: Conformance
Criteriaand Examples', RFC 2049, November 1996.

Troost, R., Dorner, S., and K. Moore, "Communicating Presentation Information in Internet Messages. The
Content-Disposition Header Field", RFC 2183, August 1997.

Fielding, et al. Standards Track [Page 112]

http://www.ncsa.uiuc.edu/SDG/IT94/Proceedings/DDay/mogul/HTTPLatency.html
http://www.ncsa.uiuc.edu/SDG/IT94/Proceedings/DDay/mogul/HTTPLatency.html
http://www.isi.edu/touch/pubs/http-perf96/
https://www.rfc-editor.org/rfc/rfc1305.html
https://www.rfc-editor.org/rfc/rfc1951.html
http://sunsite.unc.edu/mdma-release/http-prob.html
https://www.rfc-editor.org/rfc/rfc1950.html
https://www.rfc-editor.org/rfc/rfc2069.html
https://www.rfc-editor.org/rfc/rfc2069.html
https://www.rfc-editor.org/rfc/rfc2068.html
https://www.rfc-editor.org/rfc/rfc2068.html
https://www.rfc-editor.org/rfc/rfc2119.html
https://www.rfc-editor.org/info/bcp14
https://www.rfc-editor.org/rfc/rfc1806.html
https://www.rfc-editor.org/rfc/rfc1806.html
https://www.rfc-editor.org/rfc/rfc2145.html
https://www.rfc-editor.org/rfc/rfc2076.html
https://www.rfc-editor.org/rfc/rfc2279.html
https://www.rfc-editor.org/rfc/rfc2046.html
https://www.rfc-editor.org/rfc/rfc2277.html
https://www.rfc-editor.org/info/bcp18
https://www.rfc-editor.org/rfc/rfc2396.html
https://www.rfc-editor.org/rfc/rfc2617.html
https://www.rfc-editor.org/rfc/rfc2617.html
https://www.rfc-editor.org/rfc/rfc2110.html
https://www.rfc-editor.org/rfc/rfc2110.html
https://www.rfc-editor.org/rfc/rfc2026.html
https://www.rfc-editor.org/info/bcp9
https://www.rfc-editor.org/rfc/rfc2324.html
https://www.rfc-editor.org/rfc/rfc2049.html
https://www.rfc-editor.org/rfc/rfc2049.html
https://www.rfc-editor.org/rfc/rfc2183.html
https://www.rfc-editor.org/rfc/rfc2183.html

RFC 2616 HTTP/1.1 June 1999

18. Authors Addresses

Roy T. Fielding

Department of Information and Computer Science
University of California, Irvine

Irvine, CA 92697-3425

Fax: +1(949)824-1715
EMail: fielding@ics.uci.edu

James Gettys

World Wide Web Consortium
MIT Laboratory for Computer Science, NE43-356
545 Technology Square
Cambridge, MA 02139

Fax: +1(617)258-8682

EMail: jg@w3.org

Jeffrey C. Mogul

Compag Computer Corporation
Western Research Laboratory
250 University Avenue

Palo Alto, CA 94305

EMail: mogul @wrl.dec.com

Henrik Frystyk Nielsen

World Wide Web Consortium

MIT Laboratory for Computer Science, NE43-356
545 Technology Square

Cambridge, MA 02139

Fax: +1(617)258-8682

EMail: frystyk@w3.org

Larry Masinter

Xerox Corporation

MIT Laboratory for Computer Science, NE43-356
3333 Coyote Hill Road

Palo Alto, CA 94034

EMail: masinter @parc.xerox.com

Paul J. Leach

Microsoft Corporation

1 Microsoft Way

Redmond, WA 98052

EMail: paulle@microsoft.com

Tim Berners-Lee

World Wide Web Consortium

MIT Laboratory for Computer Science, NE43-356
545 Technology Square

Cambridge, MA 02139

Fax: +1(617)258-8682

EMail: timbl@w3.org

Fielding, et al. Standards Track [Page 113]

fax:+1(949)824-1715
mailto:fielding@ics.uci.edu
fax:+1(617)258-8682
mailto:jg@w3.org
mailto:mogul@wrl.dec.com
fax:+1(617)258-8682
mailto:frystyk@w3.org
mailto:masinter@parc.xerox.com
mailto:paulle@microsoft.com
fax:+1(617)258-8682
mailto:timbl@w3.org

RFC 2616

19. Appendices

HTTP/1.1 June 1999

19.1. Internet Media Type message/http and application/http

In addition to defining the HTTP/1.1 protocol, this document serves as the specification for the Internet media
type "message/http" and "application/http”. The message/http type can be used to enclose asingle HTTP
regquest or response message, provided that it obeys the MIME restrictions for all "message” types regarding
line length and encodings. The application/http type can be used to enclose a pipeline of one or more HTTP
request or response messages (not intermixed). The following is to be registered with IANA [17].

Media Type name:

Media subtype name:
Required parameters:
Optiona parameters:

Encoding considerations:
Security considerations:

Media Type name:

Media subtype name:
Required parameters:
Optional parameters:

Encoding considerations:

Security considerations:

message
http
none

version, msgtype

version: The HTTP-Version number of the enclosed message (e.g., "1.1").
If not present, the version can be determined from the first line of
the body.

msgtype: The message type -- "request” or "response”. If not present, the

type can be determined from the first line of the body.
only "7bit", "8hit", or "binary" are permitted
none
application
http
none

version, msgtype

version: The HTTP-Version number of the enclosed messages (e.g.,
"1.1"). If not present, the version can be determined from the first
line of the body.

msgtype: The message type -- "request” or "response”. If not present, the

type can be determined from the first line of the body.

HTTP messages enclosed by thistype arein "binary" format; use of an
appropriate Content-Transfer-Encoding is required when transmitted via E-mail.

none

19.2. Internet Media Type multipart/byteranges

When an HTTP 206 (Partial Content) response message includes the content of multiple ranges (a response to
arequest for multiple non-overlapping ranges), these are transmitted as a multipart message-body. The media
type for this purpose is called "multipart/byteranges”.

The multipart/byteranges media type includes two or more parts, each with its own Content-Type and Content-
Range fields. The required boundary parameter specifies the boundary string used to separate each body-part.

Media Type name:

Media subtype name:
Required parameters:
Optiona parameters:

Fielding, et al.

multipart
byteranges
boundary

none

Standards Track [Page 114]

RFC 2616 HTTP/1.1 June 1999

Encoding considerations; only "7bit", "8hit", or "binary" are permitted
Security considerations: none
For example:

HTTP/ 1.1 206 Partial Content

Date: Wed, 15 Nov 1995 06:25:24 GV

Last - Mbdi fied: Wed, 15 Nov 1995 04:58: 08 GVI

Content-type: nultipart/byteranges; boundary=TH S_STRI NG_SEPARATES

--THI S_STRI NG_SEPARATES
Content-type: application/ pdf
Cont ent - range: bytes 500-999/ 8000

...the first range...

--THI S_STRI NG_SEPARATES
Content-type: application/ pdf

Cont ent -range: bytes 7000-7999/ 8000

...the second range
--TH S_STRI NG_SEPARATES- -

Notes:

1. Additional CRLFs may precede the first boundary string in the entity.

2. Although RFC 2046 [40] permits the boundary string to be quoted, some existing implementations handle a
quoted boundary string incorrectly.

3. A number of browsers and servers were coded to an early draft of the byteranges specification to use
amediatype of multipart/x-byteranges, which is amost, but not quite compatible with the version
documented in HTTP/1.1.

19.3. Tolerant Applications

Although this document specifies the requirements for the generation of HTTP/1.1 messages, not all
applications will be correct in their implementation. We therefore recommend that operational applications be
tolerant of deviations whenever those deviations can be interpreted unambiguously.

Clients SHOULD be tolerant in parsing the Status-Line and servers tolerant when parsing the Request-Line. In
particular, they SHOULD accept any amount of SP or HT characters between fields, even though only asingle
SPisrequired.

The line terminator for message-header fields is the sequence CRLF. However, we recommend that
applications, when parsing such headers, recognize asingle LF as aline terminator and ignore the leading CR.

The character set of an entity-body SHOULD be labeled as the lowest common denominator of the character
codes used within that body, with the exception that not labeling the entity is preferred over labeling the entity
with the labels US-ASCII or 1SO-8859-1. See section 3.7.1 and 3.4.1.

Additional rulesfor requirements on parsing and encoding of dates and other potential problems with date
encodings include:

e HTTP/1.1 clients and caches SHOULD assume that an RFC-850 date which appears to be more than 50
yearsin the futureisin fact in the past (this helps solve the "year 2000" problem).

e« ANnHTTP/1.1 implementation MAY internally represent a parsed Expires date as earlier than the proper
value, but MUST NOT internally represent a parsed Expires date as |ater than the proper value.

» All expiration-related calculations MUST be donein GMT. The local time zone MUST NOT influence the
calculation or comparison of an age or expiration time.

Fielding, et al. Standards Track [Page 115]

RFC 2616 HTTP/1.1 June 1999

e If an HTTP header incorrectly carries a date value with atime zone other than GMT, it MUST be converted
into GMT using the most conservative possible conversion.

19.4. Differences Between HTTP Entities and RFC 2045 Entities

HTTP/1.1 uses many of the constructs defined for Internet Mail (RFC 822 [9]) and the Multipurpose Internet
Mail Extensions (MIME [7]) to allow entities to be transmitted in an open variety of representations and with
extensible mechanisms. However, RFC 2045 discusses mail, and HTTP has afew features that are different
from those described in RFC 2045. These differences were carefully chosen to optimize performance over
binary connections, to allow greater freedom in the use of new media types, to make date comparisons easier,
and to acknowledge the practice of some early HTTP servers and clients.

This appendix describes specific areas where HTTP differs from RFC 2045. Proxies and gateways to strict
MIME environments SHOULD be aware of these differences and provide the appropriate conversions where
necessary. Proxies and gateways from MIME environments to HT TP also need to be aware of the differences
because some conversions might be required.

19.4.1. MIME-Version

HTTPisnot aMIME-compliant protocol. However, HTTP/1.1 messages MAY include asingle MIME-
Version general-header field to indicate what version of the MIME protocol was used to construct the message.
Use of the MIME-Version header field indicates that the messageisin full compliance with the MIME protocol
(as defined in RFC 2045[7]). Proxies/gateways are responsible for ensuring full compliance (where possible)
when exporting HT TP messages to strict MIME environments.

M ME- Ver si on = "M ME-Version" ":" 1*DIGT "." 1*DIA T

MIME version "1.0" isthe default for usein HTTP/1.1. However, HTTP/1.1 message parsing and semantics
are defined by this document and not the MIME specification.

19.4.2. Conversion to Canonical Form

RFC 2045 [7] requires that an Internet mail entity be converted to canonical form prior to being transferred,
as described in section 4 of RFC 2049 [48]. Section 3.7.1 of this document describes the forms allowed for
subtypes of the "text" media type when transmitted over HTTP. RFC 2046 requires that content with a type of
"text" represent line breaks as CRLF and forbids the use of CR or LF outside of line break sequences. HTTP
allows CRLF, bare CR, and bare LF to indicate a line break within text content when a message is transmitted
over HTTP.

Whereit is possible, a proxy or gateway from HTTP to a strict MIME environment SHOULD trandate al line
breaks within the text mediatypes described in Section 3.7.1 of this document to the RFC 2049 canonical form
of CRLF. Note, however, that this might be complicated by the presence of a Content-Encoding and by the fact
that HTTP alows the use of some character sets which do not use octets 13 and 10 to represent CR and LF, as
is the case for some multi-byte character sets.

Implementors should note that conversion will break any cryptographic checksums applied to the original
content unless the original content is already in canonical form. Therefore, the canonical form is recommended
for any content that uses such checksumsin HTTP.

19.4.3. Conversion of Date Formats

HTTP/1.1 uses arestricted set of date formats (Section 3.3.1) to simplify the process of date comparison.
Proxies and gateways from other protocols SHOULD ensure that any Date header field present in a message
conforms to one of the HTTP/1.1 formats and rewrite the date if necessary.

Fielding, et al. Standards Track [Page 116]

https://www.rfc-editor.org/rfc/rfc2049.html#section-4

RFC 2616 HTTP/1.1 June 1999

19.4.4. Introduction of Content-Encoding

RFC 2045 does not include any concept equivalent to HTTP/1.1's Content-Encoding header field. Sincethis
acts as amodifier on the mediatype, proxies and gateways from HTTP to MIME-compliant protocols MUST
either change the value of the Content-Type header field or decode the entity-body before forwarding the
message. (Some experimental applications of Content-Type for Internet mail have used a media-type parameter
of ";conversions=<content-coding>" to perform afunction equivaent to Content-Encoding. However, this
parameter is not part of RFC 2045).

19.4.5. No Content-Transfer-Encoding

HTTP does not use the Content-Transfer-Encoding (CTE) field of RFC 2045. Proxies and gateways from
MIME-compliant protocolsto HTTP MUST remove any non-identity CTE ("quoted-printable” or "base64")
encoding prior to delivering the response message to an HTTP client.

Proxies and gateways from HTTP to MIME-compliant protocols are responsible for ensuring that the message
isin the correct format and encoding for safe transport on that protocol, where "safe transport” is defined by the
limitations of the protocol being used. Such a proxy or gateway SHOULD label the data with an appropriate
Content-Transfer-Encoding if doing so will improve the likelihood of safe transport over the destination
protocol.

19.4.6. Introduction of Transfer-Encoding

HTTP/1.1 introduces the Transfer-Encoding header field (Section 14.41). Proxies/gateways MUST remove any
transfer-coding prior to forwarding a message viaa MIME-compliant protocol.

A process for decoding the "chunked" transfer-coding (Section 3.6) can be represented in pseudo-code as:

length := 0
read chunk-size, chunk-extension (if any) and CRLF
whil e (chunk-size > 0) {
read chunk-data and CRLF
append chunk-data to entity-body
length := length + chunk-size
read chunk-size and CRLF
}
read entity-header
while (entity-header not enpty) {
append entity-header to existing header fields
read entity-header
}
Content-Length := length
Renmove "chunked" from Transfer-Encodi ng

19.4.7. MHTML and Line Length Limitations

HTTP implementations which share code with MHTML [45] implementations need to be aware of MIME
line length limitations. Since HT TP does not have this limitation, HTTP does not fold long lines. MHTML
messages being transported by HTTP follow all conventions of MHTML, including line length limitations and
folding, canonicalization, etc., since HTTP transports all message-bodies as payload (see Section 3.7.2) and
does not interpret the content or any MIME header lines that might be contained therein.

19.5. Additional Features

RFC 1945 and RFC 2068 document protocol elements used by some existing HT TP implementations, but not
consistently and correctly across most HTTP/1.1 applications. Implementors are advised to be aware of these
features, but cannot rely upon their presence in, or interoperability with, other HTTP/1.1 applications. Some of

Fielding, et al. Standards Track [Page 117]

RFC 2616 HTTP/1.1 June 1999

these describe proposed experimental features, and some describe features that experimental deployment found
lacking that are now addressed in the base HTTP/1.1 specification.

A number of other headers, such as Content-Disposition and Title, from SMTP and MIME are a so often
implemented (see RFC 2076 [37]).

19.5.1. Content-Disposition

The Content-Disposition response-header field has been proposed as a means for the origin server to suggest a
default filename if the user requests that the content is saved to afile. This usage is derived from the definition
of Content-Disposition in RFC 1806 [35].

content-disposition = "Content-Di sposition" ":"

di sposition-type *(";" disposition-parm)
di sposition-type = "attachnent" | disp-extension-token
di sposition-parm = fil enane-parm | disp-extension-parm
filenane-parm= "filenane" "=" quoted-string

di sp- ext ensi on-t oken = t oken
di sp- ext ensi on-parm = t oken

=" (token | quoted-string)

An exampleis

Content-Di sposition: attachnent; fil ename="fnane. ext"

The receiving user agent SHOULD NOT respect any directory path information present in the filename-parm
parameter, which is the only parameter believed to apply to HTTP implementations at thistime. The filename
SHOULD be treated as a terminal component only.

If this header is used in aresponse with the application/octet-stream content-type, the implied suggestion is that
the user agent should not display the response, but directly enter a “save response as...' dialog.

See Section 15.5 for Content-Disposition security issues.

19.6. Compatibility with Previous Versions

It is beyond the scope of aprotocol specification to mandate compliance with previous versions. HTTP/1.1 was
deliberately designed, however, to make supporting previous versions easy. It isworth noting that, at the time
of composing this specification (1996), we would expect commercial HTTP/1.1 serversto:

» recognize the format of the Request-Line for HTTP/0.9, 1.0, and 1.1 requests;

» understand any valid regquest in the format of HTTP/0.9, 1.0, or 1.1;

» respond appropriately with amessage in the same major version used by the client.
And we would expect HTTP/1.1 clientsto:

» recognize the format of the Status-Line for HTTP/1.0 and 1.1 responses;

e understand any valid response in the format of HTTP/0.9, 1.0, or 1.1.

For most implementations of HTTP/1.0, each connection is established by the client prior to the request and
closed by the server after sending the response. Some implementations implement the Keep-Alive version of
persistent connections described in Section 19.7.1 of RFC 2068 [33].

19.6.1. Changesfrom HTTP/1.0

This section summarizes major differences between versionsHTTP/1.0 and HTTP/1.1.

Fielding, et al. Standards Track [Page 118]

https://www.rfc-editor.org/rfc/rfc2068.html#section-19.7.1

RFC 2616 HTTP/1.1 June 1999

19.6.1.1. Changesto Simplify Multi-homed Web Serversand Conserve | P Addresses

The requirements that clients and servers support the Host request-header, report an error if the Host request-
header (Section 14.23) ismissing from an HTTP/1.1 request, and accept absolute URIs (Section 5.1.2) are
among the most important changes defined by this specification.

Older HTTP/1.0 clients assumed a one-to-one relationship of 1P addresses and servers; there was no other
established mechanism for distinguishing the intended server of arequest than the I P address to which that
request was directed. The changes outlined above will allow the Internet, once older HTTP clients are no longer
common, to support multiple Web sites from a single | P address, greatly simplifying large operational Web
servers, where alocation of many | P addresses to a single host has created serious problems. The Internet

will also be able to recover the IP addresses that have been allocated for the sole purpose of allowing special-
purpose domain names to be used in root-level HTTP URLSs. Given the rate of growth of the Web, and the
number of servers already deployed, it is extremely important that all implementations of HTTP (including
updates to existing HTTP/1.0 applications) correctly implement these requirements:

* Both clientsand servers MUST support the Host request-header.
e Aclient that sendsan HTTP/1.1 request MUST send a Host header.

e Servers MUST report a400 (Bad Request) error if an HTTP/1.1 request does not include a Host request-
header.

* Servers MUST accept absolute URIs.

19.6.2. Compatibility with HTTP/1.0 Persistent Connections

Some clients and servers might wish to be compatible with some previous implementations of persistent
connectionsin HTTP/1.0 clients and servers. Persistent connectionsin HTTP/1.0 are explicitly negotiated as
they are not the default behavior. HTTP/1.0 experimental implementations of persistent connections are faulty,
and the new facilitiesin HTTP/1.1 are designed to rectify these problems. The problem was that some existing
1.0 clients may be sending Keep-Alive to a proxy server that doesn't understand Connection, which would then
erroneously forward it to the next inbound server, which would establish the Keep-Alive connection and result
inahung HTTP/1.0 proxy waiting for the close on the response. The result isthat HTTP/1.0 clients must be
prevented from using Keep-Alive when talking to proxies.

However, talking to proxies isthe most important use of persistent connections, so that prohibition is clearly
unacceptable. Therefore, we need some other mechanism for indicating a persistent connection is desired,
which is safe to use even when talking to an old proxy that ignores Connection. Persistent connections are
the default for HTTP/1.1 messages; we introduce a new keyword (Connection: close) for declaring non-
persistence. See Section 14.10.

The original HTTP/1.0 form of persistent connections (the Connection: Keep-Alive and Keep-Alive header) is
documented in RFC 2068. [33]

19.6.3. Changesfrom RFC 2068

This specification has been carefully audited to correct and disambiguate key word usage; RFC 2068 had many
problems in respect to the conventions laid out in RFC 2119 [34].

Clarified which error code should be used for inbound server failures (e.g. DNSfailures). (Section 10.5.5).
CREATE had arace that required an Etag be sent when aresource isfirst created. (Section 10.2.2).

Content-Base was del eted from the specification: it was not implemented widely, and there is no ssimple, safe
way to introduce it without a robust extension mechanism. In addition, it is used in asimilar, but not identical
fashionin MHTML [45].

Transfer-coding and message lengths all interact in ways that reguired fixing exactly when chunked encoding is
used (to allow for transfer encoding that may not be self delimiting); it was important to straighten out exactly
how message lengths are computed. (Sections 3.6, 4.4, 7.2.2, 13.5.2, 14.13, 14.16)

A content-coding of "identity" was introduced, to solve problems discovered in caching. (Section 3.5)

Fielding, et al. Standards Track [Page 119]

RFC 2616 HTTP/1.1 June 1999

Quality Values of zero should indicate that "1 don't want something"” to allow clients to refuse a representation.
(Section 3.9)

The use and interpretation of HTTP version numbers has been clarified by RFC 2145. Require proxies to
upgrade requests to highest protocol version they support to deal with problems discovered in HTTP/1.0
implementations (Section 3.1)

Charset wildcarding isintroduced to avoid explosion of character set names in accept headers. (Section 14.2)

A case was missed in the Cache-Control model of HTTP/1.1; s-maxage was introduced to add this missing
case. (Sections 13.4, 14.8, 14.9, 14.9.3)

The Cache-Control: max-age directive was not properly defined for responses. (Section 14.9.3)

There are situations where a server (especially a proxy) does not know the full length of aresponse but is
capable of serving a byterange request. We therefore need a mechanism to allow byteranges with a content-
range not indicating the full length of the message. (Section 14.16)

Range request responses would become very verbose if all meta-data were always returned; by allowing the
server to only send needed headersin a 206 response, this problem can be avoided. (Section 10.2.7, 13.5.3, and
14.27)

Fix problem with unsatisfiable range requests; there are two cases: syntactic problems, and range doesn't exist
in the document. The 416 status code was needed to resolve this ambiguity needed to indicate an error for a
byte range request that falls outside of the actual contents of a document. (Section 10.4.17, 14.16)

Rewrite of message transmission requirements to make it much harder for implementors to get it wrong, as
the conseguences of errors here can have significant impact on the Internet, and to deal with the following
problems:

1. Changing "HTTP/1.1 or later" to "HTTP/1.1", in contexts where this was incorrectly placing a requirement
on the behavior of an implementation of afuture version of HTTP/1.x

2. Madeit clear that user-agents should retry requests, not "clients' in general.

3. Converted requirements for clients to ignore unexpected 100 (Continue) responses, and for proxiesto
forward 100 responses, into ageneral requirement for 1xx responses.

4. Modified some TCP-specific language, to make it clearer that non-TCP transports are possible for HTTP.

5. Requirethat the origin server MUST NOT wait for the request body before it sends a required 100
(Continue) response.

6. Allow, rather than require, a server to omit 100 (Continue) if it has already seen some of the request body.

7. Allow serversto defend against denial-of-service attacks and broken clients.

This change adds the Expect header and 417 status code. The message transmission requirements fixes arein
sections 8.2, 10.4.18, 8.1.2.2, 13.11, and 14.20.

Proxies should be able to add Content-L ength when appropriate. (Section 13.5.2)
Clean up confusion between 403 and 404 responses. (Section 10.4.4, 10.4.5, and 10.4.11)

Warnings could be cached incorrectly, or not updated appropriately. (Section 13.1.2, 13.2.4, 13.5.2, 13.5.3,
14.9.3, and 14.46) Warning also needed to be a general header, as PUT or other methods may have need for it
in requests.

Transfer-coding had significant problems, particularly with interactions with chunked encoding. The solution
isthat transfer-codings become as full fledged as content-codings. This involves adding an IANA registry
for transfer-codings (separate from content codings), a new header field (TE) and enabling trailer headers

in the future. Transfer encoding is amajor performance benefit, so it was worth fixing [39]. TE aso solves
another, obscure, downward interoperability problem that could have occurred due to interactions between
authentication trailers, chunked encoding and HTTP/1.0 clients.(Section 3.6, 3.6.1, and 14.39)

The PATCH, LINK, UNLINK methods were defined but not commonly implemented in previous versions of
this specification. See RFC 2068 [33].

Fielding, et al. Standards Track [Page 120]

RFC 2616 HTTP/1.1 June 1999

The Alternates, Content-Version, Derived-From, Link, URI, Public and Content-Base header fields were
defined in previous versions of this specification, but not commonly implemented. See RFC 2068 [33].

Fielding, et al. Standards Track [Page 121]

RFC 2616 HTTP/1.1 June 1999

20. Index
Please see the PostScript version of this RFC for the INDEX.

Fielding, et al. Standards Track [Page 122]

RFC 2616 HTTP/1.1 June 1999

I ndex A .
Accept header field 22, 31, 55, 72

1 Accept-Charset header field 31, 55, 73, 120
100 Continue (status code) 33, 39, 45 Accept-Encoding header field 20, 31, 55, 73

101 Switching Protocols (status code) 33, 45 Accept-Language header field 31, 55, 74
110 Responseis stale (warn code) 103 Accept-Ranges header field 34, 75

111 Revalidation failed (warn code) 103 agell

112 Disconnected operation (warn code) 103 Age header f'el_d 34,75

113 Heuristic expiration (warn code) 103 Allow header field 29, 35, 76

199 Miscellaneous warning (warn code) 104 Alte_rnat_es header fiel_d 121
application/http Media Type 114

2 Authorization header field 31, 49, 66, 76, 78, 120
200 OK (status code) 33, 45

201 Created (tatus code) 33, 45, 119 ¢
202 Accepted (status code) 33, 46 cachell
203 Non-Authoritative Information (status code) 33, 46 Cache Directives
204 No Content (status code) 33, 46 max-age 79, 80
205 Reset Content (status code) 33, 46 mex-stale 80
206 Partial Content (status code) 33, 46, 120 min-fresh 79
214 Transformation applied (warn code) 104 must-revalidate 81
299 Miscellaneous persistent warning (warn code) 104 no-cache 78
no-store 78
3 no-transform 81
300 Multiple Choices (status code) 33, 47 only-if-cached 81
301 Moved Permanently (status code) 33, 47 private 78
302 Found (status code) 33, 48 proxy-revalidate 81
303 See Other (status code) 33, 48 public 78
304 Not Modified (status code) 33, 48 s-maxage 79
305 Use Proxy (status code) 33, 49 Cache-Control header field 28, 57, 57, 58, 60, 62, 66, 67,
306 (Unused) (status code) 49 70,77,90, 95,120
307 Temporary Redirect (status code) 33, 49 cacheable 11
client 10
4 compress (content coding) 20
400 Bad Request (status code) 33, 49 CONNECT method 29, 30, 44
401 Unauthorized (status code) 33, 49 connection 9
402 Payment Required (status code) 33, 50 Connection header field 28, 37, 38, 67, 82, 99, 100, 119
403 Forbidden (status code) 33, 50, 120 Content Codings 20
404 Not Found (status code) 33, 50, 120 compress 20
405 Method Not Allowed (status code) 33, 50 deflate 20
406 Not Acceptable (status code) 33, 50 gzip 20
407 Proxy Authentication Required (status code) 33, 50 identity 21
408 Request Timeout (status code) 33, 50 content negotiation 10
409 Conflict (status code) 33, 51 Content-Base header field 121
410 Gone (status code) 33, 51, 120 Content-Disposition header field 107, 118
411 Length Required (status code) 33, 51 Content-Encoding header field 20, 35, 83, 83
412 Precondition Failed (status code) 33, 51 Content-Language header field 35, 83
413 Request Entity Too Large (status code) 33, 51 Content-Length header field 27, 35, 84, 119
414 Request-URI Too Long (status code) 18, 33, 51 Content-L ocation header field 35, 84, 94
415 Unsupported Media Type (status code) 33, 52 Content-M D5 header field 35, 85
416 Requested Range Not Satisfiable (status code) 33, 52, Content-Range header field 23, 25, 35, 47, 52, 85, 119,
87,120 120, 120
417 Expectation Failed (status code) 33, 52, 120 Content-Type header field 22, 35, 87
Content-Version header field 121
5
500 Internal Server Error (status code) 33, 52 D
501 Not Implemented (status code) 33, 52 Date header field 28, 60, 87
502 Bad Gateway (status code) 33, 52 deflate (content coding) 20
503 Service Unavailable (status code) 33, 52 DELETE method 29, 44
504 Gateway Timeout (status code) 33, 53, 119 Derived-From header field 121
505 HTTP Version Not Supported (status code) 33, 53 downstream 11

Fielding, et al. Standards Track [Page 123]

RFC 2616

entity 10

ETag header field 25, 34, 46, 64, 88
Expect header field 31, 39, 39, 52, 88, 120
Expires header field 35, 67, 79, 89
explicit expiration time 11

first-hand 11

fresh 11

freshness lifetime 11
From heade fieldr 31, 90

G

gateway 10

GET method 29, 42

G anmar
Accept 72
Accept - Char set 73
Accept - Encodi ng 74
accept - ext ensi on 72
Accept - Language 74
accept - parans 72
Accept - Ranges 75
accept abl e-ranges 75
Age 76
age-val ue 76
Al |l ow76
ALPHA 15
asctime-date 19
attribute?21
Aut hori zati on 76
byt e- cont ent - r ange- spec 86
byt e-r ange-r esp- spec 86
byt e- range- set 96
byt e- r ange- spec 96
byt e- ranges- speci fi er 96
bytes-unit 25
Cache- Control 77
cache-directive 77
cache- ext ensi on 77
cache-request-directive 77
cache-response-directive 77
CHAR 15
charset 20
chunk 22
chunk- dat a 22
chunk- ext - nanme 22
chunk- ext -val 22
chunk- ext ensi on 22
chunk-si ze 22
Chunked- Body 22
codi ngs 74
comment 16
Connect i on 82
connect i on-t oken 82
cont ent - codi ng 20
cont ent - di sposi tion 118
Cont ent - Encodi ng 83
Cont ent - Language 83

Fielding, et al.

HTTP/1.1

Standards Track

June 1999

Cont ent - Lengt h 84
Cont ent - Locati on 84
Cont ent - MD5 85

Cont ent - Range 86
cont ent - range- spec 86
Cont ent - Type 87
CR15

CRLF 15

ctext 16

CTL 15

Dat e 87

dat el 19

date2 19

dat e3 19

del t a- seconds 19
DG TIi15

di sp- ext ensi on- par m118
di sp- ext ensi on-t oken 118
di sposi ti on-parm118
di sposi tion-type 118
entity-body 35
entity-header 35
entity-tag25

ETag 88

Expect 89

expect - par ans 89
expect ati on 89
expect ati on- ext ensi on 89
Expi res 89

ext ensi on- code 33
ext ensi on- header 35
ext ensi on- nmet hod 29
ext ensi on- pragma 95
field-content 26
fiel d-nane 26
field-val ue 26

fil ename- par m118
first-byte-pos 96
From90

gener al - header 28
generi c- nessage 26
HEX 15

Host 90

HT 15

HTTP- dat e 19

HTTP- message 26
HTTP- Ver si on 17
http_URL 18

| f-Match ol

I f-Mdified-Since9l
| f - None- Mat ch 92

| f - Range 93

| f-Unnodi fi ed-Si nce 93
i nst ance-1 engt h 86

| anguage-r ange 74

| anguage-t ag 24

| ast - byt e- pos 96

| ast - chunk 22

Last - Modi fi ed 94

LF 15

[Page 124]

RFC 2616 HTTP/1.1 June 1999

LOALPHA 15 t oken 16

Locati on 94 trailer 22

LWS 15 Trail er 99

Max- For war ds 95 transfer-coding21

nd5- di gest 85 Tr ansf er - Encodi ng 99
nmedi a- r ange 72 transfer-extension2l
nmedi a-t ype 22 type 22

nmessage- body 27 UPALPHA 15

message- header 26 Upgr ade 100

Met hod 29 User - Agent 101

M ME- Ver si on 116 val ue 21

nont h 19 Vary 101

CCTET 15 Vi ai101

opaque-tag 25 war n- agent 103

ot her-range-unit 25 war n- code 103

paraneter 21 war n- dat e 103

Pr agna 95 war n-text 103
pragne-directive 95 War ni ng 103

primary-tag 24 war ni ng- val ue 103
product 24 weak 25

product - ver si on 24 weekday 19

pr ot ocol - nane 101 wkday 19

prot ocol -versi on 101 WAV Aut hent i cat e 104

Pr oxy- Aut henti cat e 95 gzip (content coding) 20

Pr oxy- Aut hori zati on 96

pseudonym101 H

qdt ext 16 HEAD method 29, 42

quot ed- pai r 16 Header Fields

quot ed-string 16 Accept 22, 31, 55, 72

gval ue 24 Accept-Charset 31, 55, 73, 120
Range 97 Accept-Encoding 20, 31, 55, 73
range-unit 25 Accept-Language 31, 55, 74
ranges-specifier 96 Accept-Ranges 34, 75
Reason- Phr ase 33 Age 34,75

recei ved- by 101 Allow 29, 35, 76

recei ved- prot ocol 101 Alternate 121

Ref erer 98 Authorization 31, 49, 66, 76, 78, 120
Request 29 Cache-Control 28, 57, 57, 58, 60, 62, 66, 67, 70, 77, 90,
request - header 31 95, 120

Request - Li ne 29 Connection 28, 37, 38, 67, 82, 99, 100, 119
Request - URI 29 Content-Base 121

Response 32 Content-Disposition 107, 118
response- header 34 Content-Encoding 20, 35, 83, 83
Retry- After 98 Content-Language 35, 83
rfcll23-date 19 Content-Length 27, 35, 84, 119
rf c850-dat e 19 Content-Location 35, 84, 94
separators 16 Content-MD5 35, 85

Server 98 Content-Range 23, 25, 35, 47, 52, 85, 119, 120, 120
SP 15 Content-Type 22, 35, 87
start-1ine26 Content-Version 121

St at us- Code 33 Date 28, 60, 87

St at us- Li ne 32 Derived-From 121

subt ag 24 ETag 25, 34, 46, 64, 88

subt ype 22 Expect 31, 39, 39, 52, 88, 120
suf fi x- byt e-range- spec 96 Expires 35, 67, 79, 89
suffix-1ength 96 From 31, 90

t - codi ngs 98 Host 31, 41, 90, 119

TE 98 If-Match 25, 31, 64, 88, 91
TEXT 15 If-Modified-Since 31, 91
tine19 If-None-Match 25, 31, 64, 88, 92

Fielding, et al. Standards Track [Page 125]

RFC 2616

If-Range 25, 31, 46, 93, 97, 120
If-Unmodified-Since 31, 93
Last-Modified 35, 94

Link 121

Location 34, 43, 94
Max-Forwards 31, 44, 95
MIME-Version 116

Pragma 28, 77, 95
Proxy-Authenticate 34, 50, 95
Proxy-Authorization 31, 50, 96
Public 121

Range 25, 31, 42, 46, 52, 92, 96
Referer 31, 97

Retry-After 34, 98

Server 34, 98, 105

TE 21, 22, 31, 98, 120

Trailer 22, 28, 99

Transfer-Encoding 21, 27, 27, 28, 99, 117

Upgrade 28, 45, 100

URI 121

User-Agent 31, 55, 100, 105

Vary 34, 55, 64, 69, 88, 91, 93, 101
Via28, 44, 98, 101

Warning 28, 57, 58, 58, 68, 68, 102, 120

WWW-Authenticate 34, 49, 104
heuristic expiration time 11
Host header field 31, 41, 90, 119
http URI scheme 18

identity (content coding) 21
If-Match header field 25, 31, 64, 88, 91
If-Modified-Since header field 31, 91

If-None-Match header field 25, 31, 64, 88, 92
If-Range header field 25, 31, 46, 93, 97, 120

If-Unmodified-Since header field 31, 93
inbound 11
22 15,111

Last-Modified header field 35, 94
Link header field 121

LINK method 120

Location header field 34, 43, 94
44 44,112

M
max-age
Cache Directive 79, 80
Max-Forwards header field 31, 44, 95
max-stale
Cache Directive 80
MediaType
application/http 114
message/http 114
multipart/byteranges 114
multipart/x-byteranges 115
message 9
message/http Media Type 114
Methods

Fielding, et al.

HTTP/1.1

CONNECT 29, 30, 44

DELETE 29, 44

GET 29, 42

HEAD 29, 42

LINK 120

OPTIONS 29, 41, 95

PATCH 120

POST 29, 42

PUT 29, 43

TRACE 29, 44, 95

UNLINK 120
MIME-Version header field 116
min-fresh

Cache Directive 79
multipart/byteranges Media Type 114
multipart/x-byteranges Media Type 115
must-revalidate

Cache Directive 81

3937,112,120
no-cache

Cache Directive 78
no-store

Cache Directive 78
no-transform

Cache Directive 81

only-if-cached

Cache Directive 81
OPTIONS method 29, 41, 95
origin server 10
outbound 11

26 37,112
PATCH method 120
POST method 29, 42
Pragma header field 28, 77, 95
private
Cache Directive 78
proxy 10
Proxy-Authenticate header field 34, 50, 95
Proxy-Authorization header field 31, 50, 96
proxy-revalidate
Cache Directive 81
public
Cache Directive 78
Public header field 121
PUT method 29, 43

Range header field 25, 31, 42, 46, 52, 92, 96

Referer header field 31, 97
representation 10

request 9

resource 10

response 9

Retry-After header field 34, 98

Standards Track

June 1999

[Page 126]

RFC 2616

1218, 111

818, 87,90, 111

2860, 88, 112

29 111

17 22, 23, 111, 114

39,17,111

19 13, 20, 20, 23, 111

2009, 17,111

49, 17,18, 111

124,111

35107, 112,118

1117,18, 111

23 85,111

5111

1523, 111

24 18,107, 111

69, 111

3120, 112

2920, 112

2520, 111

46 112

79, 21,109, 111, 116, 116, 116

40 23, 23,112, 115
Section 5.1.1 23

14 15, 103, 111

48 112, 116, 116
Section 4 116

331, 17,37, 38,48, 48,112, 118, 118, 119, 120, 121
Section 14.19 48
Section 19.7.1 118

32112

37 112,118

45112, 117, 119

3409, 112,119

3617,17,112

49107, 112

41 20, 112

3820, 112

47 1,9, 112

42 17,18, 30, 112

4350, 50, 54, 76, 96, 96, 104, 112

169, 111

99, 14, 18, 26, 26, 26, 90, 101, 109, 111, 116
Section 3.1 26

189, 111

139,111

S-maxage
Cache Directive 79
semantically transparent 11
server 10
Server header field 34, 98, 105
3037, 112
stale 11
Status Codes
100 Continue 33, 39, 45
101 Switching Protocols 33, 45
200 OK 33, 45
201 Created 33, 45, 119

Fielding, et al.

HTTP/1.1

\Y,

Standards Track

202 Accepted 33, 46

203 Non-Authoritative Information 33, 46
204 No Content 33, 46

205 Reset Content 33, 46

206 Partial Content 33, 46, 120

300 Multiple Choices 33, 47

301 Moved Permanently 33, 47

302 Found 33, 48

303 See Other 33, 48

304 Not Modified 33, 48

305 Use Proxy 33, 49

306 (Unused) 49

307 Temporary Redirect 33, 49

400 Bad Request 33, 49

401 Unauthorized 33, 49

402 Payment Required 33, 50

403 Forbidden 33, 50, 120

404 Not Found 33, 50, 120

405 Method Not Allowed 33, 50

406 Not Acceptable 33, 50

407 Proxy Authentication Required 33, 50
408 Request Timeout 33, 50

409 Conflict 33, 51

410 Gone 33, 51, 120

411 Length Required 33, 51

412 Precondition Failed 33, 51

413 Request Entity Too Large 33, 51
414 Request-URI Too Long 18, 33, 51
415 Unsupported Media Type 33, 52

416 Requested Range Not Setisfiable 33, 52, 87, 120
417 Expectation Failed 33, 52, 120

500 Internal Server Error 33, 52

501 Not Implemented 33, 52

502 Bad Gateway 33, 52

503 Service Unavailable 33, 52

504 Gateway Timeout 33, 53, 119

505 HTTP Version Not Supported 33, 53

TE header field 21, 22, 31, 98, 120

27 37,112

TRACE method 29, 44, 95

Trailer header field 22, 28, 99

Transfer-Encoding header field 21, 27, 27, 28, 99, 117
tunnel 10

UNLINK method 120
Upgrade header field 28, 45, 100
upstream 11
URI header field 121
URI scheme
http 18
2115,111
user agent 10
User-Agent header field 31, 55, 100, 105

validator 11
variant 10

June 1999

[Page 127]

RFC 2616 HTTP/1.1 June 1999

Vary header field 34, 55, 64, 69, 88, 91, 93, 101
Viaheader field 28, 44, 98, 101

w
109,111
Warn Codes
110 Response is stale 103
111 Revalidation failed 103
112 Disconnected operation 103
113 Heuristic expiration 103
199 Miscellaneous warning 104
214 Transformation applied 104
299 Miscellaneous persistent warning 104
Warning header field 28, 57, 58, 58, 68, 68, 102, 120
WWW-Authenticate header field 34, 49, 104

Fielding, et al. Standards Track [Page 128]

Full Copyright Statement

Copyright © The Internet Society (1999). All Rights Reserved.

This document and translations of it may be copied and furnished to others, and derivative works that comment
on or otherwise explain it or assist in itsimplementation may be prepared, copied, published and distributed,

in whole or in part, without restriction of any kind, provided that the above copyright notice and this paragraph
are included on all such copies and derivative works. However, this document itself may not be modified

in any way, such as by removing the copyright notice or references to the Internet Society or other Internet
organizations, except as needed for the purpose of developing Internet standards in which case the procedures
for copyrights defined in the Internet Standards process must be followed, or as required to trandate it into
languages other than English.

The limited permissions granted above are perpetual and will not be revoked by the Internet Society or its
SUCCESSOrs or assigns.

This document and the information contained herein is provided on an “AS IS’ basisand THE INTERNET
SOCIETY AND THE INTERNET ENGINEERING TASK FORCE DISCLAIMS ALL WARRANTIES,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF
THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES
OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Intellectual Property

The |ETF takes no position regarding the validity or scope of any intellectual property or other rights that
might be claimed to pertain to the implementation or use of the technology described in this document or the
extent to which any license under such rights might or might not be available; neither does it represent that it
has made any effort to identify any such rights. Information on the IETF's procedures with respect to rightsin
standards-track and standards-related documentation can be found in BCP-11. Copies of claims of rights made
available for publication and any assurances of licenses to be made available, or the result of an attempt made
to obtain ageneral license or permission for the use of such proprietary rights by implementors or users of this
specification can be obtained from the IETF Secretariat.

The IETF invites any interested party to bring to its attention any copyrights, patents or patent applications,
or other proprietary rights which may cover technology that may be required to practice this standard. Please
address the information to the |ETF Executive Director.

Acknowledgment
Funding for the RFC Editor function is currently provided by the Internet Society.

	Status of this Memo
	Copyright Notice
	Abstract
	Table of Contents
	1 Introduction
	1.1 Purpose
	1.2 Requirements
	1.3 Terminology
	1.4 Overall Operation

	2 Notational Conventions and Generic Grammar
	2.1 Augmented BNF
	2.2 Basic Rules

	3 Protocol Parameters
	3.1 HTTP Version
	3.2 Uniform Resource Identifiers
	3.2.1 General Syntax
	3.2.2 http URL
	3.2.3 URI Comparison

	3.3 Date/Time Formats
	3.3.1 Full Date
	3.3.2 Delta Seconds

	3.4 Character Sets
	3.4.1 Missing Charset

	3.5 Content Codings
	3.6 Transfer Codings
	3.6.1 Chunked Transfer Coding

	3.7 Media Types
	3.7.1 Canonicalization and Text Defaults
	3.7.2 Multipart Types

	3.8 Product Tokens
	3.9 Quality Values
	3.10 Language Tags
	3.11 Entity Tags
	3.12 Range Units

	4 HTTP Message
	4.1 Message Types
	4.2 Message Headers
	4.3 Message Body
	4.4 Message Length
	4.5 General Header Fields

	5 Request
	5.1 Request-Line
	5.1.1 Method
	5.1.2 Request-URI

	5.2 The Resource Identified by a Request
	5.3 Request Header Fields

	6 Response
	6.1 Status-Line
	6.1.1 Status Code and Reason Phrase

	6.2 Response Header Fields

	7 Entity
	7.1 Entity Header Fields
	7.2 Entity Body
	7.2.1 Type
	7.2.2 Entity Length

	8 Connections
	8.1 Persistent Connections
	8.1.1 Purpose
	8.1.2 Overall Operation
	8.1.2.1 Negotiation
	8.1.2.2 Pipelining

	8.1.3 Proxy Servers
	8.1.4 Practical Considerations

	8.2 Message Transmission Requirements
	8.2.1 Persistent Connections and Flow Control
	8.2.2 Monitoring Connections for Error Status Messages
	8.2.3 Use of the 100 (Continue) Status
	8.2.4 Client Behavior if Server Prematurely Closes Connection

	9 Method Definitions
	9.1 Safe and Idempotent Methods
	9.1.1 Safe Methods
	9.1.2 Idempotent Methods

	9.2 OPTIONS
	9.3 GET
	9.4 HEAD
	9.5 POST
	9.6 PUT
	9.7 DELETE
	9.8 TRACE
	9.9 CONNECT

	10 Status Code Definitions
	10.1 Informational 1xx
	10.1.1 100 Continue
	10.1.2 101 Switching Protocols

	10.2 Successful 2xx
	10.2.1 200 OK
	10.2.2 201 Created
	10.2.3 202 Accepted
	10.2.4 203 Non-Authoritative Information
	10.2.5 204 No Content
	10.2.6 205 Reset Content
	10.2.7 206 Partial Content

	10.3 Redirection 3xx
	10.3.1 300 Multiple Choices
	10.3.2 301 Moved Permanently
	10.3.3 302 Found
	10.3.4 303 See Other
	10.3.5 304 Not Modified
	10.3.6 305 Use Proxy
	10.3.7 306 (Unused)
	10.3.8 307 Temporary Redirect

	10.4 Client Error 4xx
	10.4.1 400 Bad Request
	10.4.2 401 Unauthorized
	10.4.3 402 Payment Required
	10.4.4 403 Forbidden
	10.4.5 404 Not Found
	10.4.6 405 Method Not Allowed
	10.4.7 406 Not Acceptable
	10.4.8 407 Proxy Authentication Required
	10.4.9 408 Request Timeout
	10.4.10 409 Conflict
	10.4.11 410 Gone
	10.4.12 411 Length Required
	10.4.13 412 Precondition Failed
	10.4.14 413 Request Entity Too Large
	10.4.15 414 Request-URI Too Long
	10.4.16 415 Unsupported Media Type
	10.4.17 416 Requested Range Not Satisfiable
	10.4.18 417 Expectation Failed

	10.5 Server Error 5xx
	10.5.1 500 Internal Server Error
	10.5.2 501 Not Implemented
	10.5.3 502 Bad Gateway
	10.5.4 503 Service Unavailable
	10.5.5 504 Gateway Timeout
	10.5.6 505 HTTP Version Not Supported

	11 Access Authentication
	12 Content Negotiation
	12.1 Server-driven Negotiation
	12.2 Agent-driven Negotiation
	12.3 Transparent Negotiation

	13 Caching in HTTP
	13.1
	13.1.1 Cache Correctness
	13.1.2 Warnings
	13.1.3 Cache-control Mechanisms
	13.1.4 Explicit User Agent Warnings
	13.1.5 Exceptions to the Rules and Warnings
	13.1.6 Client-controlled Behavior

	13.2 Expiration Model
	13.2.1 Server-Specified Expiration
	13.2.2 Heuristic Expiration
	13.2.3 Age Calculations
	13.2.4 Expiration Calculations
	13.2.5 Disambiguating Expiration Values
	13.2.6 Disambiguating Multiple Responses

	13.3 Validation Model
	13.3.1 Last-Modified Dates
	13.3.2 Entity Tag Cache Validators
	13.3.3 Weak and Strong Validators
	13.3.4 Rules for When to Use Entity Tags and Last-Modified Dates
	13.3.5 Non-validating Conditionals

	13.4 Response Cacheability
	13.5 Constructing Responses From Caches
	13.5.1 End-to-end and Hop-by-hop Headers
	13.5.2 Non-modifiable Headers
	13.5.3 Combining Headers
	13.5.4 Combining Byte Ranges

	13.6 Caching Negotiated Responses
	13.7 Shared and Non-Shared Caches
	13.8 Errors or Incomplete Response Cache Behavior
	13.9 Side Effects of GET and HEAD
	13.10 Invalidation After Updates or Deletions
	13.11 Write-Through Mandatory
	13.12 Cache Replacement
	13.13 History Lists

	14 Header Field Definitions
	14.1 Accept
	14.2 Accept-Charset
	14.3 Accept-Encoding
	14.4 Accept-Language
	14.5 Accept-Ranges
	14.6 Age
	14.7 Allow
	14.8 Authorization
	14.9 Cache-Control
	14.9.1 What is Cacheable
	14.9.2 What May be Stored by Caches
	14.9.3 Modifications of the Basic Expiration Mechanism
	14.9.4 Cache Revalidation and Reload Controls
	14.9.5 No-Transform Directive
	14.9.6 Cache Control Extensions

	14.10 Connection
	14.11 Content-Encoding
	14.12 Content-Language
	14.13 Content-Length
	14.14 Content-Location
	14.15 Content-MD5
	14.16 Content-Range
	14.17 Content-Type
	14.18 Date
	14.18.1 Clockless Origin Server Operation

	14.19 ETag
	14.20 Expect
	14.21 Expires
	14.22 From
	14.23 Host
	14.24 If-Match
	14.25 If-Modified-Since
	14.26 If-None-Match
	14.27 If-Range
	14.28 If-Unmodified-Since
	14.29 Last-Modified
	14.30 Location
	14.31 Max-Forwards
	14.32 Pragma
	14.33 Proxy-Authenticate
	14.34 Proxy-Authorization
	14.35 Range
	14.35.1 Byte Ranges
	14.35.2 Range Retrieval Requests

	14.36 Referer
	14.37 Retry-After
	14.38 Server
	14.39 TE
	14.40 Trailer
	14.41 Transfer-Encoding
	14.42 Upgrade
	14.43 User-Agent
	14.44 Vary
	14.45 Via
	14.46 Warning
	14.47 WWW-Authenticate

	15 Security Considerations
	15.1 Personal Information
	15.1.1 Abuse of Server Log Information
	15.1.2 Transfer of Sensitive Information
	15.1.3 Encoding Sensitive Information in URI's
	15.1.4 Privacy Issues Connected to Accept Headers

	15.2 Attacks Based On File and Path Names
	15.3 DNS Spoofing
	15.4 Location Headers and Spoofing
	15.5 Content-Disposition Issues
	15.6 Authentication Credentials and Idle Clients
	15.7 Proxies and Caching
	15.7.1 Denial of Service Attacks on Proxies

	16 Acknowledgments
	17 References
	18 Authors' Addresses
	19 Appendices
	19.1 Internet Media Type message/http and application/http
	19.2 Internet Media Type multipart/byteranges
	19.3 Tolerant Applications
	19.4 Differences Between HTTP Entities and RFC 2045 Entities
	19.4.1 MIME-Version
	19.4.2 Conversion to Canonical Form
	19.4.3 Conversion of Date Formats
	19.4.4 Introduction of Content-Encoding
	19.4.5 No Content-Transfer-Encoding
	19.4.6 Introduction of Transfer-Encoding
	19.4.7 MHTML and Line Length Limitations

	19.5 Additional Features
	19.5.1 Content-Disposition

	19.6 Compatibility with Previous Versions
	19.6.1 Changes from HTTP/1.0
	19.6.1.1 Changes to Simplify Multi-homed Web Servers and Conserve IP Addresses

	19.6.2 Compatibility with HTTP/1.0 Persistent Connections
	19.6.3 Changes from RFC 2068

	20 Index
	Index
	Intellectual Property and Copyright Statements

