Internet Engineering Task Force (IETF) C. Daboo
Request for Comments. 6352 Apple
Category: Standards Track August 2011
ISSN: 2070-1721

CardDAV: vCard Extensionsto

Abstract

This document defines extensions to the Web Distributed Authoring and Versioning (WebDAV) protocol to
specify a standard way of accessing, managing, and sharing contact information based on the vCard format.

Status of ThisMemo

Thisis an Internet Standards Track document.

This document is a product of the Internet Engineering Task Force (IETF). It represents the consensus of

the IETF community. It has received public review and has been approved for publication by the Internet
Engineering Steering Group (IESG). Further information on Internet Standardsis available in Section 2 of RFC
5741".

Information about the current status of this document, any errata, and how to provide feedback on it may be
obtained at http://www.rfc-editor.org/info/rfc6352°.

Copyright Notice

Copyright (c) 2011 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Lega Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info®) in effect on the date of publication of this document. Please review

these documents carefully, as they describe your rights and restrictions with respect to this document. Code
Components extracted from this document must include Simplified BSD License text as described in Section
4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD
License.

This document may contain material from IETF Documents or |ETF Contributions published or made publicly
available before November 10, 2008. The person(s) controlling the copyright in some of this material may

not have granted the IETF Trust the right to allow modifications of such material outside the IETF Standards
Process. Without obtaining an adequate license from the person(s) controlling the copyright in such materials,
this document may not be modified outside the IETF Standards Process, and derivative works of it may not be
created outside the IETF Standards Process, except to format it for publication as an RFC or to trandate it into
languages other than English.

1 https://www.rfc-editor.org/rfc/rfc5741.html#section-2
2 http://www.rfc-editor.org/info/rfc6352
3 http://trustee.ietf.org/license-info

https://www.rfc-editor.org/rfc/rfc5741.html#section-2
https://www.rfc-editor.org/rfc/rfc5741.html#section-2
http://www.rfc-editor.org/info/rfc6352
http://trustee.ietf.org/license-info

RFC 6352 CardDAV August 2011

Table of Contents

1 INtrodUCEION @NO OVEN VIEW......cvcveeirieereieisesres ettt e e r bt n et ren e e nen e 4
B2 O 1Y = 014 o 1SS 5
3 ROOUITEMENTS OVEN VIBIW ...ttt ettt bttt e e et e e e e e s e e ae et e heeh e e bt e bt eb e e besaeeb e beseeseensens e e e st enesaeeaenbenras 6
4 Address BOOK Data MOGEL.........coiriiiirecenres st n e 7
g R AN [0 =SS 2 ToTo Q= = RS 7
5 AdAreSS BOOK RESDUI CES.......eieiuieieeieiieiee ettt sttt se ettt e et st aeebesbesaesbesbesbese e benb e e emeeseeaeaaeebesbesaeebesbeseesbebenen 8
5.1 AdAreSS ODJECE RESOUICES........ccuiiteteieeieieieeeteetesestestestesrestesteseessesseeesseseesesseaseatessesaestestessessentessessensesennsenessenses 8
511 Data TYPE CONVEISION......cueiieuietirieitietesestestestessessessessessessesessesseasessessessessessessessensessessessensessessssesessessessessessenses 8
5111 Additional Precondition fOr GET ..ottt es 8
5.2 Address BOOK COlECHIONS..........cuiiriririeeiiresiereise sttt r et n e n e e en s 8
(O N0 (o T= SRl 200 S = U = 10
6.1 AdAreSS BOOK SUDPO.......ciuieuieterieitietesteseesteie e seeseeee e e e esesaesaesbesbeseeseebeseeseeseneeaeeneeseeneaneeaeesesaessesbeseeseessensaseans 10
6.1.1 Example: Using OPTIONS for the Discovery of Support for CardDAVcccoeeiernennenneseseseeeseeeee 10
6.2 AdAreSS BOOK PrOPEITIES........ciuiiiiitiiie ettt ettt b et ettt b e b e bt sb e s be s eesb e be b e ne et ene e e eaeenenais 10
6.21 CARDDAYV :addressbook-desCription PrOPETY.........cocoeoeeriereeesese ettt sae s sne 10
6.2.2 CARDDAYV:supported-address-data PrOPEITYocieiirieriererieeeiee et st s e e enens 11
6.2.3 CARDDAV:Max-reSOUrCE-SIZE PrOPEITY......cciiiieriirieriereeeeteee ettt sttt st s s e e e e s sbe b b snens 11
LSRG T O1 ==] o [(== o U o= 12
6.3.1 Extended MKCOL MENOG........cccoiieiiiriririeiisesie sttt b e eb e 12
6.3.1.1 Example - SUCCESSIUl MK COL REQUESL........cceiieieeeeeeetieeete et e st sre e st saeee e e e e e e s e seesessesaesresteseesrensan 13
6.3.2 Creating Address ObjECE RESOUICES.........cccereieeirieiiestestestesseseessessesseseesesessessessessessestessessessessessessessessessesens 13
6.3.2.1 Additional Preconditions for PUT, COPY, and MOVE........ccoiiiiiinree e 14
6.3.22 Non-Standard vCard Properties and ParameELErS..........ccceveveiieiieieceeesie ettt st e e srennas 15
6.3.2.3 Address Object RESOUICE ENITY TaQ.....ccceiiereireieieeeeesese e s e ste e e e see e e sae e esesse e e eneeressesnestestesressenseses 15
7 Address BOOK ACCESS CONEIOl.....ccrireririreereiiiesie st n et n e s s r et n s 16
7.1 Additional PrinCipal PrOPEMTIES........ccoiiiriiiriiirtiieteseet ettt bbbt e bt se bbb e b nnenes 16
7.1.1 CARDDAV:addressbook-home-Sat PrOPErtY........cccoeireirieirieiesiee ettt sttt e 16
7.1.2 CARDDAV:PrinCipal-addreSS PrOPErtY.......c.ccereerieirieirieesee sttt sttt s sne s 16
8 AdArESS BOOK REDOITS.....ceiititiie ettt ettt s e et e e e se e e e e et e st eheeaeeaeebeebesbesbeebeseeseensanbeneeneeneeneeneanens 18
8.1 REPORT MELNOU.coieiuitiiiirieieteereste ettt bbb st b bt e e b et se e b et st m b st nnen et 18
L2 © (o (107 YA @0 <ot 0] 1SS 18
8.3 SearChing TEXt: COlALIONS........ccerieterieieriete ettt b ettt et st s be e b neene s 18
8.3.1 CARDDAV:supported-collation-SEt PrOPEITY........cccireirieireirieiriecrieeneesees e 18
8.4 Partial REITEVEL........oueuieieeeete ettt ettt et b et b R e e bkt e b b e e bt nene et bene s 19
8.5 Non-Standard Properties and ParamELErS...........coeirieirieirieirieeries et 19
8.6 CARDDAV:addressho0K-QUENY REPOI........ciiiuiitiierieieieieeeiesierie ettt s ee e se e se e se e st sbesbesaesbesbesaeseennan 20
8.6.1 LiMITING RESUITS.... ettt ettt sttt sttt a e b bt e he s b bt sa e s b e bese e se e e e b e e eaeese e st e seebeebesaesbenbeseeseens 21
8.6.2 TrUNCALION OF RESUITS.......coviieririeiirieiiriee ettt e bt e bt nn b n et n e s e e nn s 21
8.6.3 Example: Partial Retrieval of vCards Matching NICKNAME..........cooiiiiene e 21
8.6.4 Example: Partial Retrieval of vCards Matching a Full Name or Email Address.........coooveveeveenieneeneeeeeenene 23

Daboo Standards Track [Page 2]

RFC 6352 CardDAV August 2011

8.6.5 EXample: TrunCated RESUILS.........ccciiiuiiieieieeceee ettt et et se e e e eaeebeesesaestestesaesrenteseeseens 25
8.7 CARDDAV:addressbooK-MUItIJEL REPOM...........cccoviiiiiieesestese e see e sre e resre et sae e e e e e e eseenenneens 27
8.7.1 Examples CARDDAYV :addresshook-multiget REPOI.......cccccveieeeieirere e 28
8.7.2 Examplee CARDDAYV :addresshook-multiget REPOI.......cccccveieieeieirese st st 29
LS I O 7= o A U o (= TS SRS 31
9.1 Restrict the PropertieS REIUIMNE.cocoirieirieiriet ettt b st nn et nn s 31
0.2 AVOIAING LOSE UPUALES........eiuiiiieiiterieieereeie ettt sttt sttt e e s et eh e eb e bt sbesbesbese et e neese e e e e et eaesrenaas 31
1S G T Ot 1=t | @ T o (1] 31
9.4 Finding Other USers Address BOOKS........c.ciueiieiriereeiirise e sesiestestes e seeeeseseesessessessessessessessessessesssssssssssssessenses 31
10 XML EIemMent DEfINITIONS......ccoieeeieiee sttt te e s testeseesa e se e e e eneeneeneeneesessesnnnneas 33
10.1 CARDDAV:addresshook XML EIEMENL.........cccoiiieiiiie ettt s te e sre s sae e sresaeestesaaesbeennesreens 33
10.2 CARDDAV:supported-collation XML EI@MENT........ccooiiiiieieee e 33
10.3 CARDDAV:addresshook-query XIML EIEMENL.........cccooiiiiiiiiie ittt re e s srenean 33
104 CARDDAV:address-data XML EIEMENL.......oociriiiiiieee et 33
10.4.1 CARDDAV:AIProp XML EIEBMENL.......cccoiiiicese st s sa e e e s e nesnesresnesnens 34
10.4.2 CARDDAV:Prop XML ElEMENL.......ccociiiiiieeiieseeseseeeeee et ese e te e st aesaesae e e e e e esessessessessessessenses 35
10.5 CARDDAV FIEr XIML EIBMEN.. ..ottt sttt s esbe s e e sbeeaeesreeaesbeebesaeenbesraenbessaentenns 35
1051 CARDDAV:Prop-filter XML EIEMENL.......ccoiiirierieeriete ettt st s b e st saeneas 36
10.5.2 CARDDAV:param-filter XML EIEMENL.......cccoiiiiriireereeneeree sttt st s s 36
10.5.3 CARDDAV:isnot-defined XML EIEMENL........c.ccoiiiiiirerererieeseeseeeeese e et sees e seeseenseeeneensesens 37
1054 CARDDAV:text-matCh XML EIEBMENL.......cccoiiieeecese e seie et st s sa e e naeneene e eneas 37
10.6 CARDDAV:IIMIt XML EIBMENL......ccciiieeiiieisiciieestei ettt se s s b s te e rens 38
10.6.1 CARDDAV:NreSUItS XML ElBMENL.......ccciiiieiesieeerieeee ettt s ese e ssesresee e snenees 38
10.7 CARDDAV:addressbook-multiget XML EI@MENE.........cooiiiririneneeerene et 38
11 Service DIiSCOVErY Via SRV RECOMNUS........ciiiiiiiieiiiiesee st s st st s e te ettt eseesae s aeesaeeneesaeetesreentessaensenneenes 39
12 Internationalization CONSIAEr BLIONS.........cuitiiriiririerre ettt sttt ettt et se et seebesaeseseenesreneas 40
13 SECUIITY CONSIUEN BLIONS.....cueeeuieeeirteiert ettt ettt ettt ettt s e ea et s e b e b e b b eb e e bt n e e bt s b e st s b e e b e e b s b e s e 41
T4 TANA CONSIAEN BLION. ...ttt sttt ettt e et eb e s bt saeebesbesaesaebeseeseeaseaee e e e eseeaeeaeebeebesbesbeebesbeseesbenbeseens 42
I R N = 1S 0= o = S =0 o T 42
15 ACKNOWIEUGIMENTS......iitieiitiiieteeet ettt bbbt bbb bbbt b et b et b et b e e b e b e bt b st bt e b et et e e st e e 43
I L= (== o= 44
16.1 NOIMELVE REFEIEINCES......evevirieterietiseeti sttt sttt sttt e et seebesaebesaesesaesestesesbe st ebe e ebeseebeseebeseebeseeseneesenennens 44
16.2 INFOrMELIVE REFEIENCES.......eitieeieicte ettt et et b et b bbb e st st e et e et et ebeseebeseebeneenen 45
U T R o o [=SSO 46

Daboo Standards Track [Page 3]

RFC 6352 CardDAV August 2011

1. Introduction and Overview

Address books containing contact information are a key component of personal information management
tools, such as email, calendaring and scheduling, and instant messaging clients. To date several protocols have
been used for remote access to contact data, including the Lightweight Directory Access Protocol (LDAP)
[RFC4510], Internet Message Support Protocol [IMSP], and Application Configuration Access Protocol
(ACAP) [RFC2244], together with SyncML used for synchronization of such data.

WebDAYV [RFC4918] offers anumber of advantages as a framework or basis for address book access
and management. Most of these advantages boil down to asignificant reduction in the costs of design,
implementation, interoperability testing, and deployment.

The key features of address book support with WebDAYV are:

1. Ability to use multiple address books with hierarchical layout.

2. Ability to control accessto individual address books and address entries as per WebDAYV Access Control
List (ACL) [RFC3744].

3. Principal collections can be used to enumerate and query other users on the system as per WebDAV ACL
[RFC3744].

4. Server-side searching of address data, avoiding the need for clients to download an entire address book in
order to do a quick address 'expansion’ operation.

5. Waell-defined internationalization support through WebDAV's use of XML.

6. Use of vCards [RFC2426] for well-defined address schema to enhance client interoperability.

7. Many limited clients (e.g., mobile devices) contain an HT TP stack that makes implementing WebDAV
much easier than other protocols.

The key disadvantage of address book support in WebDAV is:

1. Lack of change natification. Many of the alternative protocols also lack this ability. However, an extension
for push notifications could easily be devel oped.

vCard isaMIME directory profile aimed at encapsulating personal addressing and contact information about
people. The specification of vCard was originally done by the Versit consortium, with a subsequent 3.0 version
standardized by the IETF [RFC2426]. vCard isin widespread use in email clients and mobile devicesasa
means of encapsulating address information for transport via email or for import/export and synchronization
operations.

An update to vCard -- vCard v4 -- is currently being devel oped [RFC6350] and is compatible with this
specification.

Daboo Standards Track [Page 4]

RFC 6352 CardDAV August 2011

2. Conventions

The key words"MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD
NOT", "RECOMMENDED", "MAY™", and "OPTIONAL" in this document are to be interpreted as described in
[RFC2119].

The term "protected” is used in the Conformance field of property definitions as defined in Section 15 of
[RFC4918].

This document uses XML DTD fragments ([W3C.REC-xml-20081126], Section 3.2) as a purely notational

convention. WebDAYV request and response bodies cannot be validated by a DTD due to the specific

extensibility rules defined in Section 17 of [RFC4918] and due to the fact that all XML elements defined by

that specification use the XML namespace name "DAV:". In particular:

1. Element names use the "DAV:" namespace.

2. Element ordering isirrelevant unless explicitly stated.

3. Extension elements (elements not already defined as valid child elements) may be added anywhere, except
when explicitly stated otherwise.

4. Extension attributes (attributes not already defined as valid for this element) may be added anywhere,
except when explicitly stated otherwise.

The namespace "urn:ietf:params:xml:ns.carddav" is reserved for the XML elements defined in this
specification, itsrevisions, and related CardDAV specifications. XML elements defined by individual
implementations MUST NOT use the "urn:ietf:params:xml:ns:carddav" namespace, and instead should use a
namespace that they control.

When XML element types in the namespaces "DAV:" and "urn:ietf:params:xml:ns.carddav" are referenced
in this document outside of the context of an XML fragment, the strings "DAV:" and "CARDDAV:" will be
prefixed to the element types, respectively.

This document inherits, and sometimes extends, DTD productions from Section 14 of [RFC4918].

Also, note that some CardDAV XML element names are identical to WebDAV XML element names, though
their namespace differs. Care must be taken not to confuse the two sets of names.

Daboo Standards Track [Page 5]

RFC 6352 CardDAV August 2011

3. Requirements Overview

This section lists what functionality is required of a CardDAV server. To advertise support for CardDAV, a
server:

MUST support vCard v3 [RFC2426] as a media type for the address object resource format;
MUST support WebDAV Class 3 [RFC4918];
MUST support WebDAV ACL [RFC3744];

MUST support secure transport as defined in [RFC2818] using Transport Layer Security (TLS) [RFC5246]
and using the certificate validation procedures described in [RFC5280];

MUST support ETags [RFC2616] with additional requirements specified in Section 6.3.2.3 of this
document;

MUST support all address book reports defined in Section 8 of this document; and

MUST advertise support on all address book collections and address object resources for the address

book reports in the DAV :supported-report-set property, as defined in Versioning Extensions to WebDAV
[RFC3253].

In addition, a server:

Daboo

SHOULD support vCard v4 [RFC6350] as a media type for the address object resource format;

SHOUL D support the extended MK COL method [RFC5689] to create address book collections as defined
in Section 6.3.1 of this document.

SHOULD support the DAV :current-user-principal-URL property as defined in [RFC5397] to give clients a
fast way to locate user principals.

Standards Track [Page 6]

RFC 6352 CardDAV August 2011

4. Address Book Data M odel

Asabrief overview, a CardDAV address book is modeled as aWebDAYV collection with awell-defined
structure; each of these address book collections contains a number of resources representing address objects as
their direct child resources. Each resource representing an address object is called an "address object resource”.
Each address object resource and each address book collection can be individually locked and have individual
WebDAYV properties. Requirements derived from this model are provided in Sections 5.1 and 5.2.

4.1. AddressBook Server

A CardDAYV server is an address-aware engine combined with aWebDAV server. The server may include
address data in some parts of its URL namespace and non-address data in other parts.

A WebDAYV server can advertiseitself asa CardDAV server if it supports the functionality defined in this
specification at any point within the root of its repository. That might mean that address data is spread
throughout the repository and mixed with non-address datain nearby collections (e.g., address data may be
found in /lisa/addressbook/ as well as in /bernard/addressbook/, and non-address datain /lisa/calendars/). Or, it
might mean that address data can be found only in certain sections of the repository (e.g., /addressbooks/user/).
Address book features are only required in the repository sections that are or contain address objects. So, a
repository confining address data to the /carddav/ collection would only need to support the CardDAYV required
features within that collection.

The CardDAYV server isthe canonical location for address data and state information. Clients may submit
reguests to change data or download data. Clients may store address objects offline and attempt to synchronize
at alater time. Address data on the server can change between the time of last synchronization and when
attempting an update, as address book collections may be shared and accessible viamultiple clients. Entity tags
and locking help this work.

Daboo Standards Track [Page 7]

RFC 6352 CardDAV August 2011

5. Address Book Resour ces

5.1. Address Object Resources

This specification uses vCard as the default format for address or contact information being stored on the
server. However, this specification does allow other formats for address data provided that the server advertises
support for those additional formats as described below. The requirements in this section pertain to vCard
address data or formats that follow the semantics of vCard data.

Address object resources contained in address book collections MUST contain asingle vCard component only.

vCard components in an address book collection MUST have a UID property value that MUST be uniquein
the scope of the address book collection in which it is contained.

5.1.1. Data Type Conversion

Servers might support more than one primary media type for address object resources, for example, vCard
v3.0 and vCard v4.0. In such cases, servers have to accept all mediatypes that they advertise viathe
CARDDAV :supported-address-data WebDAYV property (see Section 6.2.2).

However, clients can use standard HT TP content negotiation behavior (the Accept request header defined in
Section 14.1 of [RFC2616]) to request that an address object resource's data be returned in a specific media
type format. For example, a client merely capable of handling vCard v3.0 would only want to have address
object resources returned in v3.0 format.

Additionally, REPORT requests, defined later in this specification, allow for the return of address object
resource data within an XML response body. Again, the client can use content negotiation to request that data
be returned in a specific mediatype by specifying appropriate attributes on the CARDDAV :address-data XML
element used in the request body (see Section 10.4).

In some cases, it might not be possible for a server to convert from one mediatype to another. When that
happens, the server MUST return the CARDDAYV :supported-address-data-conversion precondition (see below)
in the response body (when the failure to convert appliesto the entire response) or use that same precondition
code in the DAV:response XML element in the response for the targeted address object resource when one of
the REPORT s defined below is used. See Section 8.7.2 for an example of this.

5.1.1.1. Additional Precondition for GET
This specification creates additional preconditions for the GET method.

The new precondition is:

(CARDDAV :supported-address-data-conversion): The resource targeted by the GET request can be
converted to the media type specified in the Accept request header included with the request.

5.2. AddressBook Collections

Address book collections appear to clients asa WebDAYV collection resource, identified by a URL. An address
book collection MUST report the DAV :collection and CARDDAV :addressbook XML elements in the value of
the DAV :resourcetype property. The element type declaration for CARDDAV :addressbook is:

<! ELEMENT addr essbook EMPTY>

An address book collection can be created through provisioning (e.g., automatically created when a user's
account is provisioned), or it can be created with the extended MKCOL method (see Section 6.3.1). This can be
used by a user to create additional address books (e.g., "soccer team members') or for users to share an address
book (e.g., "sales team contacts"). However, note that this document doesn't define what extra address book
collections are for. Users must rely on non-standard cues to find out what an address book collection isfor, or
use the CARDDAYV :addresshook-description property defined in Section 6.2.1 to provide such a cue.

Daboo Standards Track [Page §]

RFC 6352 CardDAV August 2011

The following restrictions are applied to the resources within an address book collection:

a. Address book collections MUST only contain address object resources and collections that are not address
book collections. That is, the only "top-level" non-collection resources allowed in an address book
collection are address object resources. This ensures that address book clients do not have to deal with
non-address data in an address book collection, though they do have to distinguish between address object
resources and collections when using standard WebDAV techniques to examine the contents of a collection.

b. Collections contained in address book collections MUST NOT contain address book collections at any
depth. That is, "nesting" of address book collections within other address book collections at any depthis
not allowed. This specification does not define how collections contained in an address book collection are
used or how they relate to any address object resources contained in the address book collection.

Multiple address book collections MAY be children of the same collection.

Daboo Standards Track [Page 9]

RFC 6352 CardDAV August 2011

6. AddressBook Feature

6.1. AddressBook Support

A server supporting the features described in this document MUST include "addressbook" as afield in the
DAV response header from an OPTIONS request on any resource that supports any address book properties,
reports, or methods. A value of "addressbook™ in the DAV response header MUST indicate that the server
supports all MUST level requirements and REQUIRED features specified in this document.

6.1.1. Example: Using OPTIONS for the Discovery of Support for CardDAV
>> Reguest <<

OPTI ONS / addr essbooks/ users/ HITP/ 1.1
Host: addressbook. exanpl e. com

>> Regponse <<

HTTP/ 1.1 200 OK

Al l ow. OPTIONS, GET, HEAD, POST, PUT, DELETE, TRACE, COPY, MOVE
Al ow. MKCOL, PROPFI ND, PROPPATCH, LOCK, UNLOCK, REPORT, ACL
DAV: 1, 2, 3, access-control, addressbook

DAV: ext ended- nkcol

Date: Sat, 11 Nov 2006 09:32:12 GVI

Content -Length: O

In this example, the OPTIONS response indicates that the server supports CardDAV in this namespace;
therefore, the /addressbooks/users/" collection may be used as a parent for address book collections as the
extended MK COL method is available and as a possible target for REPORT requests for address book reports.

6.2. AddressBook Properties

6.2.1. CARDDAYV:addresshook-description Property

Name: addresshook-description

Namespace: urn:ietf:params:xml:ns.carddav

Purpose: Provides a human-readable description of the address book collection.

Value: Any text.

Protected: SHOULD NOT be protected so that users can specify a description.

COPY/MOVE behavior: This property value SHOULD be preserved in COPY and MOVE
operations.

allprop behavior: SHOULD NOT be returned by a PROPFIND DAV:allprop request.

Description: This property contains a description of the address book collection that is

suitable for presentation to a user. The xml:lang attribute can be used to
add alanguage tag for the value of this property.

Definition: <! ELEMENT addr essbook- descri ption (#PCDATA) >
<l -- PCDATA val ue: string -->

Daboo Standards Track [Page 10]

RFC 6352

Example:

CardDAV August 2011

<C: addr essbook- descri pti on xmi : | ang="fr - CA"
xm ns: C="urn:ietf:paranms: xm : ns: car ddav"
>Adr esses de A iver Daboo</C: addr essbook-
descri pti on>

6.2.2. CARDDAV:supported-address-data Property

Name:
Namespace:
Purpose:

Protected:

COPY/MOVE behavior:

allprop behavior:
Description:

Definition:

Example:

supported-address-data
urn:ietf:params;:xml:ns.carddav

Specifies what media types are allowed for address object resourcesin an
address book collection.

MUST be protected asit indicates the level of support provided by the
server.

This property value MUST be preserved in COPY and MOVE
operations.

SHOULD NOT be returned by a PROPFIND DAV :allprop request.

The CARDDAYV :supported-address-data property is used to specify the
media type supported for the address object resources contained in a
given address book collection (e.g., vCard version 3.0). Any attempt by
the client to store address object resources with a mediatype not listed in
this property MUST result in an error, with the CARDDAYV :supported-
address-data precondition (Section 6.3.2.1) being violated. In the absence
of this property, the server MUST only accept data with the mediatype
"text/vcard" and vCard version 3.0, and clients can assume that is all the
server will accept.

<! ELEMENT support ed- addr ess- dat a (addr ess- dat a-
type+) >

<! ELEMENT addr ess- dat a-type EMPTY>
<I ATTLI ST address-data-type content-type CDATA
"text/vcard"
versi on CDATA "3.0">
<I-- content-type value: a MM nedia type -->
<I-- version value: a version string -->

<C: support ed- addr ess- dat a
xm ns: C="urn:ietf:parans: xm : ns: carddav" >
<C:. addr ess-dat a-type content-type="text/vcard"
version="3.0"/>
</ C:. support ed- addr ess- dat a>

6.2.3. CARDDAYV:max-resour ce-size Property

Name:
Namespace:

Daboo

max-resource-size

urn:ietf:params:xml:ns.carddav

Standards Track [Page 11]

RFC 6352

Purpose:

Vaue:
Protected:

COPY/MOVE behavior:

allprop behavior:
Description:

Definition:

Example:

6.3. Creating Resources

CardDAV August 2011

Provides a numeric value indicating the maximum size in octets of a
resource that the server iswilling to accept when an address object
resource is stored in an address book collection.

Any text representing a numeric value.
MUST be protected asit indicates limits provided by the server.

This property value MUST be preserved in COPY and MOVE
operations.

SHOULD NOT be returned by a PROPFIND DAV :allprop request.

The CARDDAYV :max-resource-size is used to specify a numeric value
that represents the maximum size in octets that the server iswilling

to accept when an address object resourceis stored in an address

book collection. Any attempt to store an address book object resource
exceeding this size MUST result in an error, with the CARDDAYV :max-
resource-size precondition (Section 6.3.2.1) being violated. In the
absence of this property, the client can assume that the server will allow
storing aresource of any reasonable size.

<! ELEMENT max-resource-si ze (#PCDATA) >
<l -- PCDATA val ue: a nuneric value (positive
deci nal integer) -->

<C. max-resource-si ze
xm ns: C="urn:ietf:paranms: xm : ns: car ddav"
>102400</ C. max-r esour ce- si ze>

Address book collections and address object resources may be created by either a CardDAYV client or the
CardDAV server. This specification defines restrictions and a data model that both clients and servers MUST
adhere to when manipulating such address data.

6.3.1. Extended MKCOL Method

An HTTP request using the extended MKCOL method [RFC5689] can be used to create a new address book
collection resource. A server MAY restrict address book collection creation to particular collections.

To create an address book, the client sends an extended MK COL request to the server and in the body of the
reguest sets the DAV :resourcetype property to the resource type for an address book collection as defined in

Section 5.2.

Support for creating address books on the server is only RECOMMENDED and not REQUIRED because some
address book stores only support one address book per user (or principal), and those are typically pre-created
for each account. However, servers and clients are strongly encouraged to support address book creation
whenever possible to allow usersto create multiple address book collections to help organize their data better.

The DAV :displayname property can be used for a human-readable name of the address book. Clients can either
specify the value of the DAV :displayname property in the request body of the extended MK COL request or,
aternatively, issue a PROPPATCH request to change the DAV :displayname property to the appropriate value
immediately after using the extended MK COL request. When displaying address book collectionsto users,
clients SHOULD check the DAV :displayname property and use that value as the name of the address book. In
the event that the DAV :displayname property is not set, the client MAY use the last part of the address book
collection URI as the name; however, that path segment may be "opaque” and not represent any meaningful

human-readabl e text.

Daboo

Standards Track [Page 12]

RFC 6352 CardDAV August 2011

6.3.1.1. Example- Successful MKCOL Request

This example creates an address book collection called /home/lisa/addressbook/ on the server
addresshook.example.com with specific values for the properties DAV :resourcetype, DAV :displayname, and
CARDDAV :addressbook-description.

>> Request <<

MKCOL / home/ | i sa/ addr essbook/ HTTP/ 1.1
Host: addressbook. exanpl e. com

Cont ent - Type: text/xm; charset="utf-8"
Cont ent - Lengt h: xxx

<?xm version="1.0" encodi ng="utf-8" ?>
<D: nkcol xni ns: D="DAV: "
xm ns: Cz"urn:ietf:parans: xm : ns: car ddav" >
<D: set >
<D: pr op>
<D: r esour cet ype>
<D: col | ecti on/ >
<C: addr essbook/ >
</ D: resour cet ype>
<D: di spl aynane>Li sa's Cont act s</ D: di spl aynane>
<C:. addr esshook-description xm : | ang="en"
>My prinmary address book. </ C:. addr esshook- descri pti on>
</ D: pr op>
</ D: set >
</ D: nkcol >

>> Regponse <<

HTTP/ 1.1 201 Created

Cache-Control : no-cache

Date: Sat, 11 Nov 2006 09:32:12 GVII

Cont ent - Type: application/xm ; charset="utf-8"
Cont ent - Lengt h: xxxx

<?xm version="1.0" encodi ng="utf-8" ?>
<D: mkcol -response xm ns: D="DAV: "
xm ns: C="urn:ietf:parans: xm : ns: car ddav" >
<D: pr opst at >
<D: pr op>
<D: r esour cet ype/ >
<D: di spl aynane/ >
<C: addr essbook- descri pti on/ >
</ D: pr op>
<D:stat us>HTTP/ 1.1 200 OK</D: st at us>
</ D: pr opst at >
</ D: nkcol - r esponse>

6.3.2. Creating Address Object Resour ces

Clients populate address book collections with address object resources. The URL for each address object
resource is entirely arbitrary and does not need to bear a specific relationship (but might) to the address object
resource's vCard properties or other metadata. New address object resources MUST be created with aPUT
request targeted at an unmapped URI. A PUT request targeted at a mapped URI updates an existing address
object resource.

Daboo Standards Track [Page 13]

RFC 6352 CardDAV August 2011

When servers create new resources, it's not hard for the server to choose a unique URL. It's slightly tougher for
clients, because a client might not want to examine all resources in the collection and might not want to lock
the entire collection to ensure that a new one isn't created with a name collision. However, thereisan HTTP
feature to mitigate this. If the client intends to create a new address resource, the client SHOULD usethe HTTP
header "If-None-Match: *" on the PUT request. The Request-URI on the PUT request MUST include the target
collection, where the resource is to be created, plus the name of the resourcein the last path segment. The "If-
None-Match" header ensures that the client will not inadvertently overwrite an existing resource even if the last
path segment turned out to already be used.

>> Reguest <<

PUT /| i sa/ addr essbook/ newcard. vef HTTP/ 1.1
| f - None- Match: *

Host: addressbook. exanpl e. com

Cont ent - Type: text/vcard

Cont ent - Lengt h: xxx

BEG N: VCARD

VERSI ON: 3. 0

FN: Cyrus Daboo

N: Daboo; Cyr us

ADR; TYPE=POSTAL: ; 2822 Enmi | HQ Suite 2821; RFCVil | e; PA; 15213; USA
EMAI L; TYPE=I NTERNET, PREF: cyr us@xanpl e. com
NI CKNAME: ne

NOTE: Exanpl e VCard.

ORG Sel f Enpl oyed

TEL; TYPEEWORK, VO CE: 412 605 0499

TEL; TYPE=FAX: 412 605 0705

URL: ht t p: / / www. exanpl e. com

Ul D: 1234- 5678-9000- 1

END: VCARD

>> Response <<

HTTP/ 1.1 201 Created

Date: Thu, 02 Sep 2004 16:53:32 GMI
Content -Length: O

ETag: "123456789-000-111"

The request to change an existing address object resource without overwriting a change made on the server uses
aspecific ETag in an "If-Match" header, rather than the "1f-None-Match" header.

File names for vCards are commonly suffixed by ".vcf", and clients may choose to use the same convention for
URLs.

6.3.2.1. Additional Preconditionsfor PUT, COPY, and MOVE
This specification creates additional preconditions for the PUT, COPY, and MOV E methods. These
preconditions apply:
* When aPUT operation of an address object resource into an address book collection occurs.
* When aCOPY or MOVE operation of an address object resource into an address book collection occurs.

The new preconditions are:

(CARDDAV :supported-address-data): The resource submitted in the PUT request, or targeted by a COPY
or MOVE request, MUST be a supported mediatype (i.e., vCard) for address object resources.

Daboo Standards Track [Page 14]

RFC 6352 CardDAV August 2011

(CARDDAV:valid-address-data): The resource submitted in the PUT request, or targeted by a COPY or
MOVE request, MUST be valid data for the media type being specified (i.e.,, MUST contain valid vCard
data).

(CARDDAV:no-uid-conflict): The resource submitted in the PUT request, or targeted by a COPY or
MOVE request, MUST NOT specify avCard UID property value already in use in the targeted address
book collection or overwrite an existing address object resource with one that has a different UID property
value. Servers SHOULD report the URL of the resource that is already making use of the same UID
property valuein the DAV :href element.

<! ELEMENT no-ui d-conflict (DAV:href)>

(CARDDAV :addressbook-collection-location-ok): In a COPY or MOV E request, when the Request-URI
is an address book collection, the URI targeted by the Destination HTTP Request header MUST identify a
|ocation where an address book collection can be created.

(CARDDAYV:max-resource-size): The resource submitted in the PUT request, or targeted by

aCOPY or MOVE request, MUST have asize in octets less than or equal to the value of the

CARDDAV :max-resource-size property value (Section 6.2.3) on the address book collection where the
resource will be stored.

6.3.2.2. Non-Standard vCard Properties and Parameters

vCard provides a "standard mechanism for doing non-standard things'. This extension support allows
implementers to make use of non-standard vCard properties and parameters whose names are prefixed with the
text "X-".

Servers MUST support the use of non-standard properties and parameters in address object resources stored via
the PUT method.

Servers may need to enforce rules for their own "private" properties or parameters, so servers MAY reject any
attempt by the client to change those or use values for those outside of any restrictions the server may have. A
server SHOULD ensure that any "private" properties or parameters it uses follow the convention of including a
vendor ID inthe "X-" name, as described in Section 3.8 of [RFC2426], e.g., "X-ABC-PRIVATE".

6.3.2.3. Address Object Resour ce Entity Tag
The DAV :getetag property MUST be defined and set to a strong entity tag on all address object resources.

A response to a GET request targeted at an address object resource MUST contain an ETag response header
field indicating the current value of the strong entity tag of the address object resource.

Servers SHOULD return a strong entity tag (ETag header) in a PUT response when the stored address object
resource is equivalent by octet equality to the address object resource submitted in the body of the PUT request.
This allows clientsto reliably use the returned strong entity tag for data synchronization purposes. For instance,
the client can do a PROPFIND request on the stored address object resource, have the DAV :getetag property
returned, compare that value with the strong entity tag it received on the PUT response, and know that if they
are equal, then the address object resource on the server has not been changed.

In the case where the data stored by a server asaresult of aPUT request is not equivalent by octet equality
to the submitted address object resource, the behavior of the ETag response header is not specified here, with
the exception that a strong entity tag MUST NOT be returned in the response. As aresult, a client may need
to retrieve the modified address object resource (and ETag) as a basis for further changes, rather than use the
address object resource it had sent with the PUT request.

Daboo Standards Track [Page 15]

RFC 6352

CardDAV August 2011

7. AddressBook Access Control

CardDAYV servers MUST support and adhere to the requirements of WebDAV ACL [RFC3744]. WebDAV
ACL provides aframework for an extensible set of privileges that can be applied to WebDAV collections and

ordinary resources.

7.1. Additional Principal Properties
This section defines additional properties for WebDAV principal resources as defined in [RFC3744].

7.1.1. CARDDAYV:addresshook-home-set Property

Name:
Namespace:
Purpose:

Protected:

COPY/MOVE behavior:

allprop behavior:
Description:

Definition:

Example:

addressbook-home-set
urn:ietf:params:xml:ns.carddav

Identifies the URL of any WebDAV collections that contain address
book collections owned by the associated principal resource.

MAY be protected if the server has fixed locations in which address
books are created.

This property value MUST be preserved in COPY and MOVE
operations.

SHOULD NOT be returned by a PROPFIND DAV :allprop request.

The CARDDAYV :addresshook-home-set property is meant to allow
usersto easily find the address book collections owned by the principal.
Typically, userswill group all the address book collections that they

own under a common collection. This property specifiesthe URL of
collections that are either address book collections or ordinary collections
that have child or descendant address book collections owned by the
principal.

<I ELEMENT addr essbook- home-set (DAV: href*)>

<C:. addr essbook- hone- set xmnl ns: D="DAV: "
xm ns: C="urn:ietf:paranms: xm : ns: car ddav" >
<D: hr ef >/ ber nar d/ addr esses/ </ D: hr ef >
</ C. addr essbhook- hone- set >

7.1.2. CARDDAV:principal-address Property

Name:
Namespace:
Purpose:

Protected:

COPY/MOVE behavior:

alprop behavior:

Daboo

principal -address
urn:ietf:params.xml:ns.carddav

Identifies the URL of an address object resource that corresponds to the
user represented by the principal .

MAY be protected if the server provides afixed location for principal
addresses.

This property value MUST be preserved in COPY and MOVE
operations.

SHOULD NOT be returned by a PROPFIND DAV :allprop request.

Standards Track [Page 16]

RFC 6352

Description:

Definition:

Example:

Daboo

CardDAV August 2011

The CARDDAYV :principal-address property is meant to allow usersto
easily find contact information for users represented by principals on the
system. This property specifies the URL of the resource containing the
corresponding contact information. The resource could be an address
object resource in an address book collection, or it could be aresource in
a"regular” collection.

<I ELEMENT pri nci pal - addr ess (DAV: href) >

<C: pri nci pal - address xmi ns: D="DAV: "
xm ns: C="urn:ietf:paranms: xm : ns: carddav" >
<D: hr ef >/ syst enf cyrus. vcf </ D: hr ef >

</ C: pri nci pal - addr ess>

Standards Track [Page 17]

RFC 6352 CardDAV August 2011

8. AddressBook Reports

This section defines the reports that CardDAV servers MUST support on address book collections and address
object resources.

CardDAYV servers MUST advertise support for these reports on all address book collections and address object
resources with the DAV :supported-report-set property defined in Section 3.1.5 of [RFC3253]. CardDAV
servers MAY also advertise support for these reports on ordinary collections.

Some of these reports allow address data (from possibly multiple resources) to be returned.

8.1. REPORT Method

The REPORT method (defined in Section 3.6 of [RFC3253]) provides an extensible mechanism for obtaining
information about a resource. Unlike the PROPFIND method, which returns the value of one or more named
properties, the REPORT method can involve more complex processing. REPORT is valuable in cases where
the server has accessto al of the information needed to perform the complex request (such as a query), and
where it would require multiple requests for the client to retrieve the information needed to perform the same
request.

A server that supports this specification MUST support the DAV :expand-property report (defined in Section
3.8 of [RFC3253]).

8.2. Ordinary Collections

Servers MAY support the reports defined in this document on ordinary collections (collections that are not
address book collections) in addition to address book collections or address object resources. In computing
responses to the reports on ordinary collections, servers MUST only consider address object resources
contained in address book collections that are targeted by the REPORT based on the value of the Depth request
header.

8.3. Searching Text: Collations

Some of the reports defined in this section do text matches of character strings provided by the client and
compared to stored address data. Since vCard datais by default encoded in the UTF-8 charset and may include
characters outside of the US-ASCII charset range in some property and parameter values, there is a need to
ensure that text matching follows well-defined rules.

To deal with this, this specification makes use of the IANA Collation Registry defined in [RFC4790] to specify
collations that may be used to carry out the text comparison operations with awell-defined rule.

Collations supported by the server MUST support "equality” and "substring” match operations as per
[RFCA4790], Section 4.2, including the "prefix" and "suffix" options for "substring” matching. CardDAV uses
these match options for "equals’, "contains’, "starts-with", and "ends-with" match operations.

CardDAYV servers are REQUIRED to support the "i;ascii-casemap” [RFC4790] and "i;unicode-casemap"
[RFC5051] collationsand MAY support other collations.

Servers MUST advertise the set of collations that they support viathe CARDDAYV :supported-col | ation-set
property defined on any resource that supports reports that use collations.

In the absence of a collation explicitly specified by the client, or if the client specifies the "default" collation
identifier (as defined in [RFC4790], Section 3.1), the server MUST default to using "i;unicode-casemap" asthe
collation.

Wildcards (as defined in [RFC4790], Section 3.2) MUST NOT be used in the collation identifier.

If the client chooses a collation not supported by the server, the server MUST respond with a
CARDDAV :supported-collation precondition error response.

Daboo Standards Track [Page 18]

RFC 6352 CardDAV August 2011

8.3.1. CARDDAV:supported-collation-set Property

Name: supported-collation-set

Namespace: urn:ietf:params:xml:ns.carddav

Purpose: Identifies the set of collations supported by the server for text matching
operations.

Protected: MUST be protected asit indicates support provided by the server.

COPY/MOVE behavior: This property value MUST be preserved in COPY and MOVE
operations.

allprop behavior: SHOULD NOT be returned by a PROPFIND DAV :allprop request.

Description: The CARDDAYV :supported-collation-set property contains two or more

CARDDAV :supported-collation elements that specify the identifiers of
the collations supported by the server.

Definition: <! ELEMENT supported-col | ation-set (
supported-col | ation
supported-col | ation
supported-col | ati on*) >
<I-- Both "ij;ascii-casemap” and "i;uni code-
casemap"
will be present -->
<I ELEMENT supported-col | ati on (#PCDATA) >
Example: <C: support ed-col | ati on- set

xm ns: C="urn:ietf:parans: xm : ns: car ddav" >

<C: supported-col | ati on>i ; asci i - casenap</
C: supported-col | ati on>

<C: support ed-col | ati on>i ; oct et </ C. support ed-
col | ati on>

<C: support ed-col | ati on>i ; uni code- casemap</
C: supported-col | ati on>

</ C: supported-col | ati on-set >

8.4. Partial Retrieval

Some address book reports defined in this document allow partial retrieval of address object resources. A
CardDAV client can specify what information to return in the body of an address book REPORT reguest.

A CardDAV client can request particular WebDAV property values, all WebDAYV property values, or alist

of the names of the resource's WebDAYV properties. A CardDAV client can also request address data to be
returned and whether all vCard properties should be returned or only particular ones. See CARDDAYV :address-
datain Section 10.4.

8.5. Non-Standard Properties and Parameters

Servers MUST support the use of non-standard vCard property or parameter names in the CARDDAYV :address-
data XML element in address book REPORT requests to allow clients to request that non-standard properties
and parameters be returned in the address data provided in the response.

Servers MAY support the use of non-standard vCard property or parameter names in the CARDDAYV :prop-
filter and CARDDAV :param-filter XML elements specified in the CARDDAV :filter XML element of address
book REPORT requests.

Daboo Standards Track [Page 19]

RFC 6352 CardDAV August 2011

Servers MUST fail with the CARDDAV :supported-filter precondition if an address book REPORT request
uses a CARDDAYV :prop-filter or CARDDAV :param-filter XML element that makes reference to a non-
standard vCard property or parameter name on which the server does not support queries.

8.6. CARDDAV:addressbook-query Report

The CARDDAV :addresshook-query REPORT performs a search for all address object resources that match a
specified filter. The response of this report will contain all the WebDAV properties and address object resource
data specified in the request. In the case of the CARDDAYV :address-data XML element, one can explicitly
specify the vCard properties that should be returned in the address object resource data that matches the filter.

The format of this report is modeled on the PROPFIND method. The request and response bodies of the
CARDDAV :addressbook-query report use XML elements that are also used by PROPFIND. In particular,
the request can include XML elements to request WebDAYV properties to be returned. When that occurs,
the response should follow the same behavior as PROPFIND with respect to the DAV :multistatus response
elements used to return specific WebDAV property results. For instance, a request to retrieve the value of
aWebDAV property that does not exist is an error and MUST be noted with aresponse XML element that
contains a 404 (Not Found) status value.

Support for the CARDDAYV :addressbook-query REPORT is REQUIRED.

Marshalling:
The request body MUST be a CARDDAV :addressbook-query XML element as defined in Section 10.3.
The request MUST include a Depth header. The scope of the query is determined by the value of the
Depth header. For example, to query all address object resources in an address book collection, the
REPORT would use the address book collection as the Request-URI and specify a Depth of 1 or infinity.
The response body for a successful request MUST be a DAV :multistatus XML element (i.e., the response
uses the same format as the response for PROPFIND). In the case where there are no response elements,
the returned DAV :multistatus XML element is empty.
The response body for a successful CARDDAV :addressbook-query REPORT request MUST contain a

DAV :response element for each address object that matched the search filter. Address datais returned in
the CARDDAYV :address-data XML element inside the DAV :propstat XML element.

Preconditions:

(CARDDAV :supported-address-data): The attributes "content-type" and "version" of the
CARDDAV :address-data XML element (see Section 10.4) specify a media type supported by the server
for address object resources.

(CARDDAV :supported-filter): The CARDDAV :prop-filter (see Section 10.5.1) and CARDDAYV :param-
filter (see Section 10.5.2) XML elements used in the CARDDAV :filter XML element (see Section

10.5) in the REPORT request only make reference to vCard properties and parameters for which

queries are supported by the server. That is, if the CARDDAV filter element attempts to reference an
unsupported vCard property or parameter, this precondition is violated. A server SHOULD report the
CARDDAV:prop-filter or CARDDAYV :param-filter for which it does not provide support.

<! ELEMENT supported-filter (prop-filter*,
paramfilter*)>

(CARDDAV :supported-collation): Any XML attribute specifying a collation MUST specify a collation
supported by the server as described in Section 8.3.

Postconditions:

(DAV :number-of-matches-within-limits): The number of matching address object resources must fall
within server-specific, predefined limits. For example, this condition might be triggered if a search
specification would cause the return of an extremely large number of responses.

Daboo Standards Track [Page 20]

RFC 6352 CardDAV August 2011

8.6.1. Limiting Results

A client can limit the number of results returned by the server through use of the CARDDAYV:limit element in
the request body. Thisis useful when clients are only interested in afew matches or only have limited space
to display results to users and thus don't need the overhead of receiving more than that. When the results are
truncated by the server, the server MUST follow the rules below for indicating a result set truncation to the
client.

8.6.2. Truncation of Results

A server MAY limit the number of resourcesin aresponse, for example, to limit the amount of work expended
in processing aquery, or as the result of an explicit limit set by the client. If the result set is truncated because
of such alimit, the response MUST use status code 207 (Multi-Status), return a DAV :multistatus response
body, and indicate a status of 507 (Insufficient Storage) for the Request-URI. That DAV :response element
SHOULD include a DAV :error element with the DAV :number-of -matches-within-limits precondition, as
defined in [RFC3744], Section 9.2.

The server SHOULD also include the partial results in additional DAV :response elements. If a client-requested
limit is being applied, the 507 response for the Request-URI MUST NOT be included in calculating the limit
(e.g., if the client requests that only a single result be returned, and multiple matches are present, then the
DAV:multistatus response will include one DAV :response for the matching resource and one DAV :response
for the 507 status on the Request-URI).

8.6.3. Example: Partial Retrieval of vCards Matching NICKNAME

In this example, the client requests that the server search for address object resources that contain a
NICKNAME property whose value equals some specific text and return specific vCard properties for those
vCards found. In addition, the DAV :getetag property is also requested and returned as part of the response.

Daboo Standards Track [Page 21]

RFC 6352

>> Request <<

CardDAV

REPORT / hone/ ber nar d/ addr essbook/ HTTP/ 1.1

Host :

Depth: 1

Cont ent - Type:

Cont ent - Lengt h:

addr essbook. exanpl e. com

text/xm ; charset="utf-8"
XXXX

<?xm version="1.0" encodi ng="utf-8" ?>
<C: addr essbook- query xm ns: D="DAV: "

<D: pr op>
<D: get et ag/ >

xm ns: C="urn:ietf:parans: xm : ns: car ddav" >

<C: addr ess- dat a>
<C: prop nanme="VERSI| ON'/ >
<C:. prop name="U D'/ >
<C: prop name="N CKNAME"/ >
<C: prop name="EMNAI L"/>
<C: prop name="FN'/>

</ C. addr ess- dat a>

</ D: pr op>
<Cfilter>

<C:.prop-filter name="N CKNAMVE' >
<C:.text-match collation="i; uni code-casemap"

mat ch- t ype="equal s"

>me</ C. t ext - mat ch>
</C prop-filter>

</Cfilter>

</ C:. addr essbhook- quer y>

Daboo

Standards Track

August 2011

[Page 22]

RFC 6352 CardDAV August 2011

>> Response <<

HTTP/ 1.1 207 Multi - Status

Date: Sat, 11 Nov 2006 09:32:12 GVI
Cont ent - Type: text/xm ; charset="utf-8"
Cont ent - Lengt h: xxxx

<?xm version="1.0" encodi ng="utf-8" ?>
<D: mul ti status xnl ns: D="DAV: "
xm ns: C="urn:ietf:paranms: xm : ns: carddav" >
<D: r esponse>
<D: hr ef >/ hone/ ber nar d/ addr essbook/ v102. vcf </ D: hr ef >
<D: pr opst at >
<D: pr op>
<D: get et ag>" 23ba4d- f f 11f b" </ D: get et ag>
<C: addr ess- dat a>BEG N:. VCARD
VERSI ON: 3.0
NI CKNANE: e
Ul D: 34222- 232@xanpl e. com
FN: Cyrus Daboo
EMAI L: daboo@xanpl e. com
END: VCARD
</ C. addr ess- dat a>
</ D: pr op>
<D: status>HTTP/ 1.1 200 OK</D: st at us>
</ D: propst at >
</ D: response>
</D: nul tistatus>

8.6.4. Example: Partial Retrieval of vCards Matching a Full Name or Email Address

In this example, the client requests that the server search for address object resources that contain a FN property
whose value contains some specific text or that contain an EMAIL property whose value contains other text
and return specific vCard properties for those vCards found. In addition, the DAV :getetag property is aso
requested and returned as part of the response.

Daboo Standards Track [Page 23]

Daboo

RFC 6352 CardDAV

>> Request <<

REPORT / hone/ ber nar d/ addr essbook/ HTTP/ 1.1
Host: addressbook. exanpl e. com

Depth: 1

Cont ent - Type: text/xm; charset="utf-8"
Cont ent - Lengt h: xxxx

<?xm version="1.0" encodi ng="utf-8" ?>
<C: addr essbook- query xm ns: D="DAV: "

xm ns: C="urn:ietf:parans: xm : ns: car ddav" >

<D: pr op>
<D: get et ag/ >
<C: addr ess- dat a>
<C: prop nanme="VERSI| ON'/ >
<C:. prop name="U D'/ >
<C: prop name="N CKNAME"/ >
<C: prop name="EMNAI L"/>
<C: prop name="FN'/>
</ C. addr ess- dat a>
</ D: pr op>
<C: filter test="anyof">
<C:prop-filter name="FN'>

<C:text-match collation="i;uni code-casemp"

mat ch- t ype="cont ai ns"
>daboo</ C: t ext - mat ch>
</C prop-filter>
<C:prop-filter name="EMAIL">

<C:text-match coll ation="i;uni code-casemp"

mat ch- t ype="cont ai ns"
>daboo</ C: t ext - mat ch>
</C prop-filter>
</Cfilter>
</ C: addr essbook- quer y>

Standards Track

August 2011

[Page 24]

RFC 6352 CardDAV August 2011

>> Response <<

HTTP/ 1.1 207 Multi - Status

Date: Sat, 11 Nov 2006 09:32:12 GVI
Cont ent - Type: text/xm ; charset="utf-8"
Cont ent - Lengt h: xxxx

<?xm version="1.0" encodi ng="utf-8" ?>
<D: mul ti status xnl ns: D="DAV: "
xm ns: C="urn:ietf:paranms: xm : ns: carddav" >
<D: r esponse>
<D: hr ef >/ hone/ ber nar d/ addr essbook/ v102. vcf </ D: hr ef >
<D: pr opst at >
<D: pr op>
<D: get et ag>" 23ba4d- f f 11f b" </ D: get et ag>
<C: addr ess- dat a>BEG N: VCARD
VERSI ON: 3.0
NI CKNANE: e
Ul D: 34222- 232@xanpl e. com
FN: Davi d Boo
EMAI L: daboo@xanpl e. com
END: VCARD
</ C. addr ess- dat a>
</ D: pr op>
<D: status>HTTP/ 1.1 200 OK</D: st at us>
</ D: pr opst at >
</ D: response>
<D: r esponse>
<D: hr ef >/ hone/ ber nar d/ addr essbook/ v104. vcf </ D: hr ef >
<D: pr opst at >
<D: pr op>
<D: get et ag>" 23ba4d- f f 11f c" </ D: get et ag>
<C: addr ess- dat a>BEG N: VCARD
VERSI ON: 3.0
NI CKNANE: ol i ver
Ul D: 34222- 23222@xanpl e. com
FN: A i ver Daboo
EMAI L: ol i ver @xanpl e. com
END: VCARD
</ C. addr ess- dat a>
</ D: pr op>
<D: status>HTTP/ 1.1 200 OK</D: st at us>
</ D: pr opst at >
</ D: response>
</D: nul tistatus>

8.6.5. Example: Truncated Results

In this example, the client requests that the server search for address object resources that contain a FN property
whose value contains some specific text and return the DAV :getetag property for two results only. The server
response includes a 507 status for the Request-URI indicating that there were more than two resources that
matched the query, but that the server truncated the result set as requested by the client.

Daboo Standards Track [Page 25]

RFC 6352

>> Request <<

CardDAV

REPORT / hone/ ber nar d/ addr essbook/ HTTP/ 1.1

Host :

Depth: 1

Cont ent - Type:

Cont ent - Lengt h:

addr essbook. exanpl e. com

text/xm ; charset="utf-8"
XXXX

<?xm version="1.0" encodi ng="utf-8" ?>
<C: addr essbook- query xm ns: D="DAV: "

<D: pr op>
<D: get et ag/ >
</ D: pr op>

xm ns: C="urn:ietf:parans: xm : ns: car ddav" >

<C: filter test="anyof">
<C: prop-filter name="FN'>
<C:text-match coll ation="i;uni code-casemap"

mat ch- t ype="cont ai ns"

>daboo</ C: t ext - mat ch>
</C. prop-filter>

</Cfilter>
<Climt>

<C:. nresul ts>2</ C:. nresul t s>

</Climt>

</ C:. addr essbhook- quer y>

Daboo

Standards Track

August 2011

[Page 26]

RFC 6352 CardDAV August 2011

>> Response <<

HTTP/ 1.1 207 Multi - Status

Date: Sat, 11 Nov 2006 09:32:12 GVI
Cont ent - Type: text/xm ; charset="utf-8"
Cont ent - Lengt h: xxxx

<?xm version="1.0" encodi ng="utf-8" ?>
<D:mul tistatus xm ns: D="DAV: "
xm ns: C="urn:ietf:paranms: xm : ns: carddav" >
<D: r esponse>
<D: hr ef >/ hone/ ber nar d/ addr essbook/ </ D: hr ef >
<D: status>HTTP/ 1.1 507 Insufficient Storage</D:status>
<D: err or ><D: nunber - of - mat ches-wi thin-1imts/></D: error>
<D: r esponsedescription xnl : | ang="en">
Only two matching records were returned
</ D: r esponsedescri pti on>
</ D: response>
<D: r esponse>
<D: hr ef >/ home/ ber nar d/ addr essbook/ v102. vcf </ D: hr ef >
<D: pr opst at >
<D: pr op>
<D: get et ag>" 23ba4d- f f 11f b" </ D: get et ag>
</ D: pr op>
<D: stat us>HTTP/ 1.1 200 OK</D: st at us>
</ D: pr opst at >
</ D: response>
<D: r esponse>
<D: hr ef >/ home/ ber nar d/ addr essbook/ v104. vcf </ D: hr ef >
<D: pr opst at >
<D: pr op>
<D: get et ag>" 23ba4d- f f 11f c" </ D: get et ag>
</ D: pr op>
<D: stat us>HTTP/ 1.1 200 OK</D: st at us>
</ D: pr opst at >
</ D: response>
</D:mul tistatus>

8.7. CARDDAV:addressbook-multiget Report

The CARDDAYV :addressbhook-multiget REPORT is used to retrieve specific address abject resources from
within a collection, if the Request-URI is acollection, or to retrieve a specific address object resource, if
the Request-URI is an address object resource. Thisreport is similar to the CARDDAV :addressbook-query
REPORT (see Section 8.6), except that it takes alist of DAV :href elementsinstead of a CARDDAYV :filter
element to determine which address object resources to return.

Support for the addressbook-multiget REPORT is REQUIRED.

Marshalling:
The request body MUST be a CARDDAYV :addressbook-multiget XML element (see Section 10.7), which
MUST contain at least one DAV :href XML element and one optional CARDDAYV :address-data element as
defined in Section 10.4. If DAV :href elements are present, the scope of the request is the set of resources
identified by these elements, which all need to be members (not necessarily internal members) of the

resource identified by the Request-URI. Otherwise, the scope is the resource identified by the Request-
URI itself.

Daboo Standards Track [Page 27]

RFC 6352 CardDAV August 2011

The request MUST include a Depth: 0 header; however, the actual scope of the REPORT is determined as
described above.

The response body for a successful request MUST be a DAV :multistatus XML element.

The response body for a successful CARDDAYV :addressbook-multiget REPORT request MUST contain
aDAV:response element for each address object resource referenced by the provided set of DAV :href
elements. Address datais returned in the CARDDAYV :address-data element inside the DAV :prop element.

In the case of an error accessing any of the provided DAV :href resources, the server MUST return the
appropriate error status code in the DAV :status element of the corresponding DAV :response el ement.

Preconditions:

(CARDDAV :supported-address-data): The attributes "content-type" and "version" of the
CARDDAV:address-data XML elements (see Section 10.4) specify a mediatype supported by the server
for address object resources.

Postconditions:
None.

8.7.1. Example: CARDDAV :addressbook-multiget Report

In this example, the client requests the server to return specific vCard properties of the address components
referenced by specific URIs. In addition, the DAV :getetag property is also requested and returned as part
of the response. Note that, in this example, the resource at http://addressbook.example.com/home/bernard/
addressbook/vcfl.vef does not exist, resulting in an error status response.

>> Request <<

REPORT / hone/ ber nar d/ addr essbook/ HTTP/ 1.1
Host: addressbook. exanpl e. com

Depth: 1

Cont ent - Type: text/xm ; charset="utf-8"
Cont ent - Lengt h: xxxx

<?xm version="1.0" encodi ng="utf-8" ?>
<C: addr essbook- mul ti get xm ns: D="DAV: "
xm ns: C="urn:ietf:paranms: xm : ns: carddav" >
<D: pr op>
<D: get et ag/ >
<C: addr ess- dat a>
<C: prop nanme="VERS|I ON'/ >
<C:. prop name="U D'/ >
<C: prop nanme="N CKNAME"/ >
<C: prop name="EMAI L"/>
<C: prop name="FN'/>
</ C. addr ess- dat a>
</ D: pr op>
<D: hr ef >/ hone/ ber nar d/ addr essbook/ vcf 102. vcf </ D: hr ef >
<D: hr ef >/ hone/ ber nar d/ addr essbook/ vcf 1. vcf </ D: hr ef >
</ C:. addr essbook- nul ti get >

Daboo Standards Track [Page 28]

RFC 6352 CardDAV August 2011

>> Response <<

HTTP/ 1.1 207 Multi - Status

Date: Sat, 11 Nov 2006 09:32:12 GVI
Cont ent - Type: text/xm ; charset="utf-8"
Cont ent - Lengt h: xxxx

<?xm version="1.0" encodi ng="utf-8" ?>
<D: mul ti status xnl ns: D="DAV: "
xm ns: C="urn:ietf:paranms: xm : ns: carddav" >
<D: r esponse>
<D: hr ef >/ hone/ ber nar d/ addr essbook/ vcf 102. vcf </ D: hr ef >
<D: pr opst at >
<D: pr op>
<D: get et ag>" 23ba4d- f f 11f b" </ D: get et ag>
<C: addr ess- dat a>BEG N: VCARD
VERSI ON: 3.0
NI CKNANE: e
Ul D: 34222- 232@xanpl e. com
FN: Cyrus Daboo
EMAI L: daboo@xanpl e. com
END: VCARD
</ C. addr ess- dat a>
</ D: pr op>
<D: status>HTTP/ 1.1 200 OK</D: st at us>
</ D: propst at >
</ D: response>
<D: r esponse>
<D: hr ef >/ hone/ ber nar d/ addr essbook/ vcf 1. vcf </ D: hr ef >
<D: status>HTTP/ 1.1 404 Resource not found</D: st atus>
</ D: response>
</D: nul tistatus>

8.7.2. Example: CARDDAYV:addresshook-multiget Report

In this example, the client requests the server to return vCard v4.0 data of the address components referenced
by specific URIs. In addition, the DAV :getetag property is also requested and returned as part of the response.
Note that, in this example, the resource at http://addressbook.example.com/home/bernard/addressbook/vcf3.vcf
exists but in amedia type format that the server is unable to convert, resulting in an error status response.

Daboo Standards Track [Page 29]

RFC 6352 CardDAV August 2011

>> Request <<

REPORT / hone/ ber nar d/ addr essbook/ HTTP/ 1.1
Host: addressbook. exanpl e. com

Depth: 1

Cont ent - Type: text/xm; charset="utf-8"
Cont ent - Lengt h: xxxx

<?xm version="1.0" encodi ng="utf-8" ?>
<C: addr essbook-mul ti get xm ns: D="DAV: "
xm ns: C="urn:ietf:paranms: xm : ns: carddav" >
<D: pr op>
<D: get et ag/ >
<C: address-data content-type='"text/vcard' version="4.0"'/>
</ D: pr op>
<D: hr ef >/ hone/ ber nar d/ addr essbook/ vcf 3. vcf </ D: hr ef >
</ C. addr essbook- nul ti get >

>> Response <<

HTTP/ 1.1 207 Miul ti- Status

Date: Sat, 11 Nov 2006 09: 32: 12 GMI
Cont ent - Type: text/xm ; charset="utf-8"
Cont ent - Lengt h: xxxx

<?xm version="1.0" encodi ng="utf-8" ?>
<D: mul ti status xm ns: D="DAV: "
xm ns: C="urn:ietf:paranms: xm : ns: carddav" >
<D: r esponse>
<D: hr ef >/ hone/ ber nar d/ addr essbook/ vcf 3. vcf </ D: hr ef >
<D: stat us>HTTP/ 1.1 415 Unsupported Media Type</D: st at us>
<D: error ><C: suppor t ed- addr ess- dat a- conver si on/ ></ D: err or >
<D: responsedescri pti on>Unabl e to convert fromvCard v3.0
to vCard v4.0</D: responsedescri pti on>
</ D: r esponse>
</D:nul tistatus>

Daboo Standards Track [Page 30]

RFC 6352 CardDAV August 2011

9. Client Guidedlines

9.1. Restrict the Properties Returned

Clients may not need all the properties in a vCard object when presenting information to the user, or looking
up specific items for their email address, for example. Since some property data can be large (e.g., PHOTO or
SOUND with in-line content) clients can choose to ignore those by only requesting the specific itemsit knows
it will use, through use of the CARDDAV :address-data XML element in the relevant reports.

However, if a client needs to make a change to avCard, it can only change the entire vCard dataviaa PUT
request. Thereis no way to incrementally make a change to a set of properties within avCard object resource.
Asaresult, the client will have to cache the entire set of properties on aresource that is being changed.

9.2. Avoiding Lost Updates

When resources are accessed by multiple clients, the possibility of clients overwriting each other's changes
exists. To aleviate this, clients SHOULD use the If-Match request header on PUT requests with the ETag

of the previoudly retrieved resource data to check whether the resource was modified since it was previously
retrieved. If a precondition failure occurs, clients need to rel oad the resource and go through their own merge or
conflict resolution process before writing back the data (again using the If-Match check).

9.3. Client Configuration

When CardDAYV clients need to be configured, the key piece of information that they requireis the principal-
URL of the user whose address book information is desired. Servers SHOULD support the DAV :current-user-
principal-URL property as defined in [RFC5397] to give clients afast way to locate user principals.

Given support for SRV records (Section 11) and DAV :current-user-principal-URL [RFC5397], users only need
enter a user identifier, host name, and password to configure their client. The client would take the host name
and do an SRV lookup to locate the CardDAV server, then execute an authenticated PROPFIND on the root/
resource looking for the DAV :current-user-principal-URL property. The value returned gives the client direct
access to the user's principal-URL and from there all the related CardDAV properties needed to locate address
books.

9.4. Finding Other Users Address Books

For use cases of address book sharing, one might wish to find the address book belonging to another user. To
find other users address books on the same server, the DAV :principal -property-search REPORT [RFC3744]
can be used to search principals for matching properties and return specified properties for the matching
principal resources. To search for an address book owned by a user named "Laurie", the REPORT request body
would look like this:

<?xm version="1.0" encodi ng="utf-8" ?>
<D: pri nci pal - property-search xnl ns: D="DAV: " >
<D: pr operty-search>
<D: pr op>
<D: di spl aynane/ >
</ D: pr op>
<D: mat ch>Laur i e</ D: mat ch>
</ D: property-search>
<D: pr op>
<C: addr essbook- hore- set
xm ns: C="urn:ietf:paranms: xm : ns: carddav"/ >
<D: di spl aynane/ >
</ D: pr op>
</ D: pri nci pal - property-search>

Daboo Standards Track [Page 31]

RFC 6352 CardDAV August 2011

The server performs a case-sensitive or caseless search for a matching string subset of "Laurie” within the
DAV :displayname property. Thus, the server might return "Laurie Dusseault”, "Laurier Desruisseaux", or
"Wilfrid Laurier" al as matching DAV :displayname values, and the address books for each of these.

Daboo Standards Track [Page 32]

RFC 6352

CardDAV August 2011

10. XML Element Definitions

10.1. CARDDAV:addresshook XML Element

Name:
Namespace:
Purpose:
Description:
Definition:

addressbook

urn:ietf:params:xml:ns.carddav

Specifies the resource type of an address book collection.
See Section 5.2.

<! ELEMENT addr essbook EMPTY>

10.2. CARDDAV:supported-collation XML Element

Name:
Namespace:
Purpose:

Description:

Definition:

supported-collation
urn:ietf:params:xml:ns.carddav
Identifies asingle collation viaits collation identifier as defined by [RFC4790].

The CARDDAV :supported-collation contains the text of a collation identifier as
described in Section 8.3.1.

<! ELEMENT support ed-col | ati on (#PCDATA) >
<! -- PCDATA value: collation identifier -->

10.3. CARDDAV:addressbook-query XML Element

Name:
Namespace:
Purpose:
Description:
Definition:

addressbook-query
urn:ietf:params:xml:ns.carddav

Defines areport for querying address book data
See Section 8.6.

<! ELEMENT addr essbook- query ((DAV:allprop |
DAV: pr opnane |
DAV: prop)?, filter, limt?)>

10.4. CARDDAV:address-data XML Element

Name:
Namespace:
Purpose:

Description:

Daboo

address-data
urn:ietf:params:xml:ns.carddav

Specifies one of the following:

1. The parts of an address object resource that should be returned by a given address
book REPORT request, and the media type and version for the returned data; or

2. The content of an address object resource in aresponse to an address book
REPORT request.

When used in an address book REPORT request, the CARDDAV :address-data

XML element specifies which parts of address object resources need to be returned

in the response. If the CARDDAYV :address-data XML element doesn't contain any
CARDDAV:prop elements, address object resources will be returned in their entirety.

Standards Track [Page 33]

RFC 6352

Note:

Note:

Definition:

CardDAV August 2011

Additionally, amedia type and version can be specified to request that the server return
the datain that format if possible.

Finally, when used in an address book REPORT response, the CARDDAYV :address-
data XML element specifies the content of an address object resource. Given that XML
parsers normalize the two-character sequence CRLF (US-ASCII decimal 13 and US-
ASCII decimal 10) to asingle LF character (US-ASCII decimal 10), the CR character
(US-ASCII decimal 13) MAY be omitted in address object resources specified in

the CARDDAV :address-data XML element. Furthermore, address object resources
specified in the CARDDAV :address-data XML element MAY be invalid per their
media type specification if the CARDDAYV :address-data XML element part of the
address book REPORT request did not specify required vCard properties (e.g., UID,
etc.) or specified a CARDDAV :prop XML element with the "novalue" attribute set to
"yes'.

The CARDDAV :address-data XML element is specified in requests and responses
inside the DAV:prop XML element asif it were aWebDAV property. However, the
CARDDAV:address-data XML element is not aWebDAV property and assuchit is
not returned in PROPFIND responses nor used in PROPPATCH requests.

The address data embedded within the CARDDAYV :address-data XML element MUST
follow the standard XML character data encoding rules, including use of <, >,
& etc., entity encoding or the use of a<![CDATA] ...]]> construct. In the latter
case, the vCard data cannot contain the character sequence "1]>", which is the end
delimiter for the CDATA section.

<! ELEMENT address-data (allprop | prop*)>

when nested in the DAV: prop XM. el ement in an address book
REPORT request to specify which parts of address object
resources should be returned in the response;

<! ELEMENT addr ess-dat a (#PCDATA) >
<! -- PCDATA val ue: address data -->

when nested in the DAV: prop XM. el ement in an address book
REPORT response to specify the content of a returned
addr ess obj ect resource.

<I ATTLI ST address-data content-type CDATA "text/vcard"
ver si on CDATA "3.0">

<l-- content-type value: a MM nedia type -->

<!-- version value: a version string -->

attri butes can be used on each variant of the
CALDAV: addr ess-data XM. el enent.

10.4.1. CARDDAV:allprop XML Element

Name:
Namespace:
Purpose:
Description:

Daboo

alprop
urn:ietf:params:xml:ns.carddav
Specifiesthat all vCard properties shall be returned.

This element can be used when the client wants all vCard properties of components
returned by areport.

Standards Track [Page 34]

RFC 6352

Definition:

CardDAV August 2011

<! ELEMENT al | prop EMPTY>

Note: The CARDDAV :alprop element defined here has the same name as the DAV :alprop element defined in
WebDAV. However, the CARDDAV :alprop element defined here uses the "urn:ietf:params:xml:ns:carddav"
namespace, as opposed to the "DAV:" namespace used for the DAV :alprop element defined in WebDAV.

10.4.2. CARDDAV:prop XML Element

Name:
Namespace:
Purpose:
Description:

Definition:

prop
urn:ietf:params:xml:ns.carddav
Defines which vCard propertiesto return in the response.

The"name" attribute specifies the name of the vCard property to return (e.g.,
"NICKNAME"). The "novalue" attribute can be used by clients to request that the
actual value of the property not be returned (if the "novalue" attributeis set to "yes'). In
that case, the server will return just the vCard property name and any vCard parameters
and atrailing ":" without the subsequent value data.

vCard allows a"group" prefix to appear before a property namein the vCard data.
When the "name" attribute does not specify a group prefix, it MUST match properties
in the vCard data without a group prefix or with any group prefix. When the "name"
attribute includes a group prefix, it MUST match properties that have exactly the same
group prefix and name. For example, a"name" set to "TEL" will match "TEL", "X-
ABC.TEL", and "X-ABC-1.TEL" vCard properties. A "name" set to "X-ABC.TEL"
will match an "X-ABC.TEL" vCard property only; it will not match "TEL" or "X-
ABC-1.TEL".

<! ELEMENT prop EMPTY>

<I ATTLI ST prop name CDATA #REQUI RED

noval ue (yes | no) "no">
<l-- npanme value: a vCard property name -->
<I'-- noval ue val ue: "yes" or "no" -->

Note: The CARDDAV :prop element defined here has the same name as the DAV :prop element defined in
WebDAV. However, the CARDDAYV :prop element defined here uses the "urn:ietf:params:xml:ns.carddav”
namespace, as opposed to the "DAV:" namespace used for the DAV :prop element defined in WebDAV.

10.5. CARDDAV:filter XML Element

Name:
Namespace:
Purpose:
Description:

Daboo

filter
urn:ietf:params:xml:ns.carddav
Determines which matching objects are returned.

The "filter" element specifies the search filter used to match address objects that should
be returned by areport. The "test”" attribute specifies whether any (logical OR) or all
(logica AND) of the prop-filter tests need to match in order for the overal filter to
match.

Standards Track [Page 35]

RFC 6352

Definition:

CardDAV August 2011

<I ELEMENT filter (prop-filter*)>

<I'ATTLI ST filter test (anyof | allof) "anyof">
<l-- test val ue:
anyof |ogical OR for prop-filter natches
all of |ogical AND for prop-filter matches -->

10.5.1. CARDDAV:prop-filter XML Element

Name:
Namespace:
Purpose:
Description:

Definition:

prop-filter
urn:ietf:params.xml:ns.carddav
Limits the search to specific vCard properties.

The CARDDAV:prop-filter XML element specifies search criteria on a specific vCard
property (e.g., "NICKNAME"). An address object is said to match a CARDDAV :prop-
filter if:

* A vCard property of the type specified by the "name" attribute exists, and the
CARDDAV :prop-filter is empty, or it matches any specified CARDDAYV :text-
match or CARDDAV :param-filter conditions. The "test" attribute specifies whether
any (logical OR) or al (logical AND) of the text-filter and param-filter tests need to
match in order for the overal filter to match.

or:

» A vCard property of the type specified by the "name" attribute does not exist, and
the CARDDAV :is-not-defined element is specified.

vCard allows a"group" prefix to appear before a property namein the vCard data.
When the "name" attribute does not specify a group prefix, it MUST match properties
in the vCard data without a group prefix or with any group prefix. When the "name"
attribute includes a group prefix, it MUST match properties that have exactly the
same group prefix and name. For example, a*"name" set to "TEL" will match "TEL",
"X-ABC.TEL", "X-ABC-1.TEL" vCard properties. A "name" set to "X-ABC.TEL"
will match an "X-ABC.TEL" vCard property only, it will not match "TEL" or "X-
ABC-1.TEL".

<! ELEMENT prop-filter (is-not-defined |
(text-match*, paramfilter*))>

<I ATTLI ST prop-filter name CDATA #REQUI RED
test (anyof | allof) "anyof">
<!-- pame value: a vCard property name (e.g., "N CKNAME")
test val ue:
anyof |ogical OR for text-nmatch/paramfilter matches
all of |ogical AND for text-match/paramfilter matches

10.5.2. CARDDAV:param-filter XML Element

Name:
Namespace:
Purpose:

Daboo

param-filter
urn:ietf:params.xml:ns.carddav
Limits the search to specific parameter values.

Standards Track [Page 36]

RFC 6352 CardDAV August 2011

Description: The CARDDAV :param-filter XML element specifies search criteria on a specific
vCard property parameter (e.g., TYPE) in the scope of a given CARDDAYV :prop-filter.
A vCard property is said to match a CARDDAYV :param-filter if:

* A parameter of the type specified by the "name" attribute exists, and the
CARDDAV :param-filter is empty, or it matches the CARDDAYV :text-match
conditions if specified.
or:
e A parameter of the type specified by the "name" attribute does not exist, and the
CARDDAV:is-not-defined element is specified.
Definition: <I ELEMENT paramfilter (is-not-defined | text-match)?>

<I ATTLI ST paramfilter nanme CDATA #REQUI RED>
<l-- npane value: a property paraneter nane (e.g., "TYPE') -->

10.5.3. CARDDAV:is-not-defined XML Element

Name: is-not-defined

Namespace: urn:ietf:params:xml:ns.carddav

Purpose: Specifies that a match should occur if the enclosing vCard property or parameter does
not exist.

Description: The CARDDAV :is-not-defined XML element specifies that a match occurs if the

enclosing vCard property or parameter value specified in an address book REPORT
reguest does not exist in the address data being tested.

Definition: <! ELENMENT i s- not - def i ned EMPTY>

10.5.4. CARDDAV:text-match XML Element

Name: text-match

Namespace: urn:ietf:params:xml:ns.carddav

Purpose: Specifies a substring match on avCard property or parameter value.

Description: The CARDDAV :text-match XML element specifies text used for a substring match
against the vCard property or parameter value specified in an address book REPORT
request.

The"collation" attribute is used to select the collation that the server MUST use for
character string matching. In the absence of this attribute, the server MUST use the
"i;unicode-casemap” collation.

The "negate-condition” attribute is used to indicate that this test returns a match if the
text matches, when the attribute value is set to "no", or return amatch if the text does
not match, if the attribute value is set to "yes". For example, this can be used to match
components with a CATEGORIES property not set to PERSON.

The "match-type" attribute is used to indicate the type of match operation to use.
Possible choices are:

"equals' - an exact match to the target string

"contains' - a substring match, matching anywhere within the target string
"starts-with" - a substring match, matching only at the start of the target string
"ends-with" - a substring match, matching only at the end of the target string

Daboo Standards Track [Page 37]

RFC 6352

Definition:

CardDAV August 2011

<! ELEMENT t ext - mat ch (#PCDATA) >
<!-- PCDATA val ue: string -->

<I ATTLI ST t ext - mat ch
col [ati on CDATA "i ; uni code- casemap”
negat e-condition (yes | no) "no"
mat ch-type (equal s| contains|starts-w th|ends-with)
"cont ai ns" >

10.6. CARDDAV:limit XML Element

Name:
Namespace:
Purpose:

Description:

Definition:

limit
urn:ietf:params:xml:ns.carddav

Specifies different types of limits that can be applied to the results returned by the
server.

The CARDDAV:limit XML element can be used to specify different types of limits
that the client can request the server to apply to the results returned by the server.
Currently, only the CARDDAYV :nresults limit can be used; other types of limit could be
defined in the future.

<IELEMENT limt (nresults)>

10.6.1. CARDDAV:nresults XML Element

Name:
Namespace:
Purpose:
Description:

Definition:

nresults
urn:ietf:params:xml:ns.carddav
Specifiesalimit on the number of results returned by the server.

The CARDDAV:nresults XML element contains a requested maximum number of
DAV :response elements to be returned in the response body of a query. The server
MAY disregard thislimit. The value of this element is an unsigned integer.

<! ELEMENT nresul ts (#PCDATA) >
<I-- nresults val ue: unsigned integer, must be digits -->

10.7. CARDDAV:addressbook-multiget XML Element

Name:
Namespace:
Purpose:
Description:
Definition:

Daboo

addresshook-multiget
urn:ietf:params:xml:ns.carddav
CardDAYV report used to retrieve specific address objects via their URIs.

See Section 8.7.
<! ELEMENT addr essbook-multiget ((DAV:allprop |
DAV: pr opnane |

DAV: pr op) ?,
DAV: hr ef +) >

Standards Track [Page 38]

RFC 6352 CardDAV August 2011

11. Service Discovery via SRV Records

[RFC2782] defines a DNS-based service discovery protocol that has been widely adopted as a means of
locating particular services within alocal area network and beyond, using SRV RRs.

This specification adds two service types for use with SRV records:
carddav: Identifies a CardDAV server that uses HTTP without TLS [RFC2818].
carddavs: Identifiesa CardDAV server that uses HTTP with TLS [RFC2818].

Example: non-TLS service record

_carddav. _tcp SRV 0 1 80 addresshook. exanpl e. com

Example: TLS service

_carddavs. _tcp SRV 0 1 443 addressbook. exanpl e. com

Daboo Standards Track [Page 39]

RFC 6352 CardDAV August 2011

12. Internationalization Consider ations

CardDAYV allows internationalized strings to be stored and retrieved for the description of address book
collections (see Section 6.2.1).

The CARDDAV :addresshook-query REPORT (Section 8.6) includes a text searching option controlled by the
CARDDAV :text-match element and details of character handling are covered in the description of that element
(see Section 10.5.4).

Daboo Standards Track [Page 40]

RFC 6352 CardDAV August 2011

13. Security Considerations

HTTP protocol transactions are sent in the clear over the network unless protection from snooping is
negotiated. This can be accomplished by use of TLS as defined in [RFC2818]. In particular, if HTTP Basic
authentication [RFC2617] is available, the server MUST allow TLS to be used at the same time, and it
SHOULD prevent use of Basic authentication when TLSis not in use. Clients SHOULD use TLS whenever
possible.

With the ACL extension [RFC3744] present, WebDAV allows control over who can access (read or write)
any resource on the WebDAYV server. In addition, WebDAV ACL provides for an "inheritance” mechanism,
whereby resources may inherit access privileges from other resources. Often, the "other" resource is a parent
collection of the resource itself. Servers are able to support address books that are "private” (accessible

only to the "owner"), "shared" (accessible to the owner and other specified authenticated users), and

"public" (accessible to any authenticated or unauthenticated users). When provisioning address books of a
particular type, servers MUST ensure that the correct privileges are applied on creation. In particular, private
and shared address books MUST NOT be accessible by unauthenticated users (to prevent data from being
automatically searched or indexed by web "crawlers").

Clients SHOULD warn users in an appropriate fashion when they copy or move address data from a private
address book to a shared address book or public address book. Clients SHOULD provide aclear indication as
to which address books are private, shared, or public. Clients SHOULD provide an appropriate warning when
changing access privileges for a private or shared address book with data so as to allow unauthenticated users
access.

This specification currently relies on standard HT TP authentication mechanisms for identifying users. These
comprise Basic and Digest authentication [RFC2617] aswell as TLS [RFC2818] using client-side certificates.

Daboo Standards Track [Page 41]

RFC 6352 CardDAV August 2011

14. 1ANA Consider ation

This document uses a URN to describe a new XML namespace conforming to the registry mechanism
described in [RFC3688].
14.1. Namespace Registration
Registration request for the carddav namespace:
URI: urn:ietf:params.xml:ns.carddav
Registrant Contact: The IESG <iesg@ietf.org>
XML: None - not applicable for namespace registrations.

Daboo Standards Track [Page 42]

RFC 6352 CardDAV August 2011

15. Acknowledgments

Thanks go to Lisa Dusseault and Bernard Desruisseaux for their work on CaDAV, on which CardDAYV is
heavily based. The following individuals contributed their ideas and support for writing this specification: Mike

Douglass, Stefan Eissing, Helge Hess, Arnaud Quillaud, Julian Reschke, Elias Sinderson, Greg Stein, Wilfredo
Sanchez, and Simon Vaillancourt.

Daboo Standards Track [Page 43]

RFC 6352 CardDAV August 2011

16. References

16.1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels',
BCP 14, RFC 2119, March 1997.

[RFC2426] Dawson, F. and T. Howes, "vCard MIME Directory Profile", RFC 2426,
September 1998.

[RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., and
T. Berners-Lee, "Hypertext Transfer Protocol -- HTTP/1.1", RFC 26186,
June 1999.

[RFC2617] Franks, J., Hallam-Baker, P., Hostetler, J., Lawrence, S., Leach, P.,

Luotonen, A., and L. Stewart, "HT TP Authentication: Basic and Digest
Access Authentication", RFC 2617, June 1999.

[RFC2782] Gulbrandsen, A., Vixie, P., and L. Esibov, "A DNS RR for specifying the
location of services (DNS SRV)", RFC 2782, February 2000.

[RFC2818] Rescorla, E., "HTTP Over TLS", RFC 2818, May 2000.

[RFC3253] Clemm, G., Amsden, J,, Ellison, T., Kaler, C., and

J. Whitehead, "V ersioning Extensions to WebDAV
(Web Distributed Authoring and Versioning)", RFC 3253, March 2002.

[RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688, January
2004,

[RFC3744] Clemm, G., Reschke, J., Sedlar, E., and J. Whitehead, "Web Distributed
Authoring and Versioning (WebDAV) Access Control Protocol”, RFC 3744,
May 2004.

[RFCA4790] Newman, C., Duerst, M., and A. Gulbrandsen, "Internet Application
Protocol Collation Registry”, RFC 4790, March 2007.

[RFC4918] Dusseault, L., "HTTP Extensions for Web Distributed Authoring and
Versioning (WebDAV)", RFC 4918, June 2007.

[RFC5051] Crispin, M., "i;unicode-casemap - Simple Unicode Collation Algorithm",
RFC 5051, October 2007.

[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS) Protocol
Version 1.2", RFC 5246, August 2008.

[RFC5280] Cooper, D., Santesson, S, Farrell, S., Boeyen, S., Housley, R., and W.

Polk, "Internet X.509 Public Key Infrastructure Certificate and Certificate
Revocation List (CRL) Profile", RFC 5280, May 2008.

[RFC5397] Sanchez, W. and C. Daboo, "WebDAV Current Principal Extension", RFC
5397, December 2008.

[RFC5689] Daboo, C., "Extended MKCOL for Web Distributed Authoring and
Versioning (WebDAV)", RFC 5689, September 2009.

[RFC6350] Perreault, S., "vCard Format Specification", RFC 6350, August 2011.

[W3C.REC-xml-20081126] Bray, T., Paoli, J., Sperberg-McQueen, C., Maler, E., and F. Y ergeau,

"Extensible Markup Language (XML) 1.0 (Fifth Edition)", World Wide
Web Consortium Recommendation REC-xml-20081126, November 2008,
<http://www.w3.0rg/TR/2008/REC-xml-20081126>.

Daboo Standards Track [Page 44]

https://www.rfc-editor.org/rfc/rfc2119.html
https://www.rfc-editor.org/info/bcp14
https://www.rfc-editor.org/rfc/rfc2426.html
https://www.rfc-editor.org/rfc/rfc2616.html
https://www.rfc-editor.org/rfc/rfc2617.html
https://www.rfc-editor.org/rfc/rfc2617.html
https://www.rfc-editor.org/rfc/rfc2782.html
https://www.rfc-editor.org/rfc/rfc2782.html
https://www.rfc-editor.org/rfc/rfc2818.html
https://www.rfc-editor.org/rfc/rfc3253.html
https://www.rfc-editor.org/rfc/rfc3253.html
https://www.rfc-editor.org/rfc/rfc3688.html
https://www.rfc-editor.org/info/bcp81
https://www.rfc-editor.org/rfc/rfc3744.html
https://www.rfc-editor.org/rfc/rfc3744.html
https://www.rfc-editor.org/rfc/rfc4790.html
https://www.rfc-editor.org/rfc/rfc4790.html
https://www.rfc-editor.org/rfc/rfc4918.html
https://www.rfc-editor.org/rfc/rfc4918.html
https://www.rfc-editor.org/rfc/rfc5051.html
https://www.rfc-editor.org/rfc/rfc5246.html
https://www.rfc-editor.org/rfc/rfc5246.html
https://www.rfc-editor.org/rfc/rfc5280.html
https://www.rfc-editor.org/rfc/rfc5280.html
https://www.rfc-editor.org/rfc/rfc5397.html
https://www.rfc-editor.org/rfc/rfc5689.html
https://www.rfc-editor.org/rfc/rfc5689.html
https://www.rfc-editor.org/rfc/rfc6350.html
http://www.w3.org/TR/2008/REC-xml-20081126

RFC 6352 CardDAV August 2011

16.2. Informative References

[IMSP] Myers, J., "IMSP - Internet Message Support Protocol”, Work in Progress,
June 1995.

[RFC2244] Newman, C. and J. Myers, "ACAP -- Application Configuration Access
Protocol", RFC 2244, November 1997.

[RFC4510] Zeilenga, K., "Lightweight Directory Access Protocol (LDAP): Technical

Specification Road Map", RFC 4510, June 2006.

Daboo Standards Track [Page 45]

https://www.rfc-editor.org/rfc/rfc2244.html
https://www.rfc-editor.org/rfc/rfc2244.html
https://www.rfc-editor.org/rfc/rfc4510.html
https://www.rfc-editor.org/rfc/rfc4510.html

Author's Address

Cyrus Daboo

Apple, Inc.

1 Infinite Loop

Cupertino, CA 95014

USA

Email: cyrus@daboo.name
URI: http://www.apple.com/

mailto:cyrus@daboo.name
http://www.apple.com/

	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1 Introduction and Overview
	2 Conventions
	3 Requirements Overview
	4 Address Book Data Model
	4.1 Address Book Server

	5 Address Book Resources
	5.1 Address Object Resources
	5.1.1 Data Type Conversion
	5.1.1.1 Additional Precondition for GET

	5.2 Address Book Collections

	6 Address Book Feature
	6.1 Address Book Support
	6.1.1 Example: Using OPTIONS for the Discovery of Support for CardDAV

	6.2 Address Book Properties
	6.2.1 CARDDAV:addressbook-description Property
	6.2.2 CARDDAV:supported-address-data Property
	6.2.3 CARDDAV:max-resource-size Property

	6.3 Creating Resources
	6.3.1 Extended MKCOL Method
	6.3.1.1 Example - Successful MKCOL Request

	6.3.2 Creating Address Object Resources
	6.3.2.1 Additional Preconditions for PUT, COPY, and MOVE
	6.3.2.2 Non-Standard vCard Properties and Parameters
	6.3.2.3 Address Object Resource Entity Tag

	7 Address Book Access Control
	7.1 Additional Principal Properties
	7.1.1 CARDDAV:addressbook-home-set Property
	7.1.2 CARDDAV:principal-address Property

	8 Address Book Reports
	8.1 REPORT Method
	8.2 Ordinary Collections
	8.3 Searching Text: Collations
	8.3.1 CARDDAV:supported-collation-set Property

	8.4 Partial Retrieval
	8.5 Non-Standard Properties and Parameters
	8.6 CARDDAV:addressbook-query Report
	8.6.1 Limiting Results
	8.6.2 Truncation of Results
	8.6.3 Example: Partial Retrieval of vCards Matching NICKNAME
	8.6.4 Example: Partial Retrieval of vCards Matching a Full Name or Email Address
	8.6.5 Example: Truncated Results

	8.7 CARDDAV:addressbook-multiget Report
	8.7.1 Example: CARDDAV:addressbook-multiget Report
	8.7.2 Example: CARDDAV:addressbook-multiget Report

	9 Client Guidelines
	9.1 Restrict the Properties Returned
	9.2 Avoiding Lost Updates
	9.3 Client Configuration
	9.4 Finding Other Users' Address Books

	10 XML Element Definitions
	10.1 CARDDAV:addressbook XML Element
	10.2 CARDDAV:supported-collation XML Element
	10.3 CARDDAV:addressbook-query XML Element
	10.4 CARDDAV:address-data XML Element
	10.4.1 CARDDAV:allprop XML Element
	10.4.2 CARDDAV:prop XML Element

	10.5 CARDDAV:filter XML Element
	10.5.1 CARDDAV:prop-filter XML Element
	10.5.2 CARDDAV:param-filter XML Element
	10.5.3 CARDDAV:is-not-defined XML Element
	10.5.4 CARDDAV:text-match XML Element

	10.6 CARDDAV:limit XML Element
	10.6.1 CARDDAV:nresults XML Element

	10.7 CARDDAV:addressbook-multiget XML Element

	11 Service Discovery via SRV Records
	12 Internationalization Considerations
	13 Security Considerations
	14 IANA Consideration
	14.1 Namespace Registration

	15 Acknowledgments
	16 References
	16.1 Normative References
	16.2 Informative References

	Author's Address

