diff --git a/tests/test_metrics.py b/tests/test_metrics.py index c44c3b67..f0e5f869 100644 --- a/tests/test_metrics.py +++ b/tests/test_metrics.py @@ -368,26 +368,26 @@ def test_default_metric_binary(requests_mock: Mocker): print(metrics_df) # FIXME: different between python versions - # assert metrics_df.loc[0, segment_header] == train_segment - # assert metrics_df.loc[0, rows_header] == 500 - # assert metrics_df.loc[0, target_mean_header] == 0.51 - # assert metrics_df.loc[0, baseline_gini] == approx(0.104954) - # assert metrics_df.loc[0, enriched_gini] == approx(0.097089) - # assert metrics_df.loc[0, uplift] == approx(-0.007864) - - # assert metrics_df.loc[1, segment_header] == eval_1_segment - # assert metrics_df.loc[1, rows_header] == 250 - # assert metrics_df.loc[1, target_mean_header] == 0.452 - # assert metrics_df.loc[1, baseline_gini] == approx(-0.053705) - # assert metrics_df.loc[1, enriched_gini] == approx(0.080266) - # assert metrics_df.loc[1, uplift] == approx(0.133971) - - # assert metrics_df.loc[2, segment_header] == eval_2_segment - # assert metrics_df.loc[2, rows_header] == 250 - # assert metrics_df.loc[2, target_mean_header] == 0.536 - # assert metrics_df.loc[2, baseline_gini] == approx(-0.002072) - # assert metrics_df.loc[2, enriched_gini] == approx(-0.002432) - # assert metrics_df.loc[2, uplift] == approx(-0.000360) + assert metrics_df.loc[0, segment_header] == train_segment + assert metrics_df.loc[0, rows_header] == 500 + assert metrics_df.loc[0, target_mean_header] == 0.51 + assert metrics_df.loc[0, baseline_gini] == approx(0.073815) + assert metrics_df.loc[0, enriched_gini] == approx(0.007632) + assert metrics_df.loc[0, uplift] == approx(-0.066183) + + assert metrics_df.loc[1, segment_header] == eval_1_segment + assert metrics_df.loc[1, rows_header] == 250 + assert metrics_df.loc[1, target_mean_header] == 0.452 + assert metrics_df.loc[1, baseline_gini] == approx(-0.062115) + assert metrics_df.loc[1, enriched_gini] == approx(0.115173) + assert metrics_df.loc[1, uplift] == approx(0.177288) + + assert metrics_df.loc[2, segment_header] == eval_2_segment + assert metrics_df.loc[2, rows_header] == 250 + assert metrics_df.loc[2, target_mean_header] == 0.536 + assert metrics_df.loc[2, baseline_gini] == approx(0.004902) + assert metrics_df.loc[2, enriched_gini] == approx(-0.005224) + assert metrics_df.loc[2, uplift] == approx(-0.010126) def test_default_metric_binary_custom_loss(requests_mock: Mocker): @@ -492,26 +492,26 @@ def test_default_metric_binary_custom_loss(requests_mock: Mocker): print(metrics_df) # FIXME: different between python versions - # assert metrics_df.loc[0, segment_header] == train_segment - # assert metrics_df.loc[0, rows_header] == 500 - # assert metrics_df.loc[0, target_mean_header] == 0.51 - # assert metrics_df.loc[0, baseline_gini] == approx(0.104954) - # assert metrics_df.loc[0, enriched_gini] == approx(0.097089) - # assert metrics_df.loc[0, uplift] == approx(-0.007864) - - # assert metrics_df.loc[1, segment_header] == eval_1_segment - # assert metrics_df.loc[1, rows_header] == 250 - # assert metrics_df.loc[1, target_mean_header] == 0.452 - # assert metrics_df.loc[1, baseline_gini] == approx(-0.053705) - # assert metrics_df.loc[1, enriched_gini] == approx(0.080266) - # assert metrics_df.loc[1, uplift] == approx(0.133971) - - # assert metrics_df.loc[2, segment_header] == eval_2_segment - # assert metrics_df.loc[2, rows_header] == 250 - # assert metrics_df.loc[2, target_mean_header] == 0.536 - # assert metrics_df.loc[2, baseline_gini] == approx(-0.002072) - # assert metrics_df.loc[2, enriched_gini] == approx(-0.002432) - # assert metrics_df.loc[2, uplift] == approx(-0.000360) + assert metrics_df.loc[0, segment_header] == train_segment + assert metrics_df.loc[0, rows_header] == 500 + assert metrics_df.loc[0, target_mean_header] == 0.51 + assert metrics_df.loc[0, baseline_gini] == approx(0.073815) + assert metrics_df.loc[0, enriched_gini] == approx(0.007632) + assert metrics_df.loc[0, uplift] == approx(-0.066183) + + assert metrics_df.loc[1, segment_header] == eval_1_segment + assert metrics_df.loc[1, rows_header] == 250 + assert metrics_df.loc[1, target_mean_header] == 0.452 + assert metrics_df.loc[1, baseline_gini] == approx(-0.062115) + assert metrics_df.loc[1, enriched_gini] == approx(0.115173) + assert metrics_df.loc[1, uplift] == approx(0.177288) + + assert metrics_df.loc[2, segment_header] == eval_2_segment + assert metrics_df.loc[2, rows_header] == 250 + assert metrics_df.loc[2, target_mean_header] == 0.536 + assert metrics_df.loc[2, baseline_gini] == approx(0.004902) + assert metrics_df.loc[2, enriched_gini] == approx(-0.005224) + assert metrics_df.loc[2, uplift] == approx(-0.010126) def test_default_metric_binary_shuffled(requests_mock: Mocker): @@ -618,26 +618,26 @@ def test_default_metric_binary_shuffled(requests_mock: Mocker): print(metrics_df) # FIXME: different between python versions - # assert metrics_df.loc[0, segment_header] == train_segment - # assert metrics_df.loc[0, rows_header] == 500 - # assert metrics_df.loc[0, target_mean_header] == 0.51 - # assert metrics_df.loc[0, baseline_gini] == approx(0.104954) - # assert metrics_df.loc[0, enriched_gini] == approx(0.097089) - # assert metrics_df.loc[0, uplift] == approx(-0.007864) - - # assert metrics_df.loc[1, segment_header] == eval_1_segment - # assert metrics_df.loc[1, rows_header] == 250 - # assert metrics_df.loc[1, target_mean_header] == 0.452 - # assert metrics_df.loc[1, baseline_gini] == approx(-0.053705) - # assert metrics_df.loc[1, enriched_gini] == approx(0.080266) - # assert metrics_df.loc[1, uplift] == approx(0.133971) - - # assert metrics_df.loc[2, segment_header] == eval_2_segment - # assert metrics_df.loc[2, rows_header] == 250 - # assert metrics_df.loc[2, target_mean_header] == 0.536 - # assert metrics_df.loc[2, baseline_gini] == approx(-0.002072) - # assert metrics_df.loc[2, enriched_gini] == approx(-0.002432) - # assert metrics_df.loc[2, uplift] == approx(-0.000360) + assert metrics_df.loc[0, segment_header] == train_segment + assert metrics_df.loc[0, rows_header] == 500 + assert metrics_df.loc[0, target_mean_header] == 0.51 + assert metrics_df.loc[0, baseline_gini] == approx(0.073815) + assert metrics_df.loc[0, enriched_gini] == approx(0.007632) + assert metrics_df.loc[0, uplift] == approx(-0.066183) + + assert metrics_df.loc[1, segment_header] == eval_1_segment + assert metrics_df.loc[1, rows_header] == 250 + assert metrics_df.loc[1, target_mean_header] == 0.452 + assert metrics_df.loc[1, baseline_gini] == approx(-0.062115) + assert metrics_df.loc[1, enriched_gini] == approx(0.115173) + assert metrics_df.loc[1, uplift] == approx(0.177288) + + assert metrics_df.loc[2, segment_header] == eval_2_segment + assert metrics_df.loc[2, rows_header] == 250 + assert metrics_df.loc[2, target_mean_header] == 0.536 + assert metrics_df.loc[2, baseline_gini] == approx(0.004902) + assert metrics_df.loc[2, enriched_gini] == approx(-0.005224) + assert metrics_df.loc[2, uplift] == approx(-0.010126) def test_blocked_timeseries_rmsle(requests_mock: Mocker):