这是indexloc提供的服务,不要输入任何密码
Skip to content

Unexpected output from actor_network. Expected Distribution objects, but saw output spec: TensorSpec(shape=(4,), dtype=tf.int32, name=None) #942

@mhdtslm

Description

@mhdtslm

Hi everybody
i have a problem with training a complex network by tf ppo agent:

    class CustomActorNetwork(network.Network):
        def __init__(self, input_tensor_spec, output_tensor_spec, name='CustomActorNetwork'):
            super(CustomActorNetwork, self).__init__(
                input_tensor_spec=input_tensor_spec,
                state_spec=(),
                name=name)
            
            self.conv1 = Conv2D(filters=32, kernel_size=(3, 3), strides=(1, 1), activation='relu')
            self.pool1 = MaxPooling2D((2, 2))
            self.conv2 = Conv2D(filters=64, kernel_size=(3, 3), strides=(1, 1), activation='relu')
            self.pool2 = MaxPooling2D((2, 2))
            self.conv3 = Conv2D(filters=128, kernel_size=(3, 3), strides=(1, 1), activation='relu')
            self.pool3 = MaxPooling2D((2, 2))
            self.reshape = Reshape((-1, 128))
            self.lstm = LSTM(512, return_sequences=False, use_bias=True)
            self.batch_norm = BatchNormalization()
            self.dense1 = [Dense(128, activation='relu') for _ in range(4)]
            self.dense2 = [Dense(64, activation='relu') for _ in range(4)]
            self.out1 = Dense(3, activation='softmax')
            self.out2 = Dense(100, activation='softmax')
            self.out3 = Dense(100, activation='softmax')
            self.out4 = Dense(30, activation='softmax')
    
        def call(self, observation, step_type=None, network_state=(), training=False):
            x = self.conv1(observation)
            x = self.pool1(x)
            x = self.conv2(x)
            x = self.pool2(x)
            x = self.conv3(x)
            x = self.pool3(x)
            x = self.reshape(x)
            x = self.lstm(x)
            x = self.batch_norm(x)
            x_out1 = self.dense1[0](x)
            x_out1 = self.dense2[0](x_out1)
            out1_logits = self.position(x_out1)
            out1_dist = tfp.distributions.Categorical(logits=out1_logits).sample()
            xc = concatenate([out1_logits, x], axis=-1)
            x_out2 = self.dense1[1](xc)
            x_out2 = self.dense2[1](x_out2)
            out2_logits = self.up_band(x_out2)
            out2_dist = tfp.distributions.Categorical(logits=out2_logits).sample()
            x_out3 = self.dense1[2](xc)
            x_out3 = self.dense2[2](x_out3)
            out3_logits = self.down_band(x_out3)
            out3_dist = tfp.distributions.Categorical(logits=out3_logits).sample()
            xc2 = concatenate([xc, out2_logits, out3_logits], axis=-1)
            x_out4 = self.dense1[3](xc2)
            x_out4 = self.dense2[3](x_out4)
            out4_logits = self.volume(x_out4)
            out4_dist = tfp.distributions.Categorical(logits=out4_logits).sample()
            return tf.stack([out1_dist, out2_dist, out3_dist, out4_dist], axis=-1), network_state        

this is my action sepc:

    array_spec.BoundedArraySpec(
                shape=(4,), dtype=np.int32, minimum=[0, 0, 0, 0], maximum=[2, 99, 99, 29], name='action')

and this is my agent:

    actor_net = Model.CustomActorNetwork(observation_spec,action_spec)
    value_net = Model.CustomValueNetwork(observation_spec,action_spec)
    
    optimizer = tf.compat.v1.train.AdamOptimizer(learning_rate=1e-4)
    train_step_counter = tf.Variable(0)
  
    tf_agent = ppo_agent.PPOAgent(
        time_step_spec=train_env.time_step_spec(),
        action_spec=action_spec,
        optimizer=optimizer,
        actor_net=actor_net,
        value_net=value_net,
        num_epochs=5,
        train_step_counter=train_step_counter
    )

and my error is :

    Exception has occurred: ValueError
          Unexpected output from `actor_network`.  Expected `Distribution` objects, but saw output spec: TensorSpec(shape=(4,),                 
          dtype=tf.int32, name=None)
          In call to configurable 'PPOPolicy' (<class 'tf_agents.agents.ppo.ppo_policy.PPOPolicy'>)
          In call to configurable 'PPOAgent' (<class 'tf_agents.agents.ppo.ppo_agent.PPOAgent'>)
          ValueError: Unexpected output from `actor_network`.  Expected `Distribution` objects, but saw output spec: 
          TensorSpec(shape=(4,), dtype=tf.int32, name=None)

can everybody help me?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions